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Abstract
Interval-based possibilistic logic is a flexible setting ex-
tending standard possibilistic logic such that each logi-
cal expression is associated with a sub-interval of [0, 1].
This paper focuses on the fundamental issue of condi-
tioning in the interval-based possibilistic setting. The first
part of the paper first proposes a set of natural properties
that an interval-based conditioning operator should sat-
isfy. We then give a natural and safe definition for con-
ditioning an interval-based possibility distribution. This
definition is based on applying standard min-based or
product-based conditioning on the set of all associated
compatible possibility distributions. We analyze the ob-
tained posterior distributions and provide a precise char-
acterization of lower and upper endpoints of the inter-
vals associated with interpretations. The second part of
the paper provides an equivalent syntactic computation of
interval-based conditioning when interval-based distribu-
tions are compactly encoded by means of interval-based
possibilistic knowledge bases. We show that interval-
based conditioning is achieved without extra computa-
tional cost comparing to conditioning standard possibilis-
tic knowledge bases.

1 Introduction
Interval-based uncertainty representations are well-known
frameworks for encoding, reasoning and decision making
with poor information, imprecise beliefs, confidence intervals
and multi-source information [Nguyen and Kreinovich, 2014;
Dubois, 2006]. In this paper, we deal with interval-based pos-
sibilistic logic [Benferhat et al. , 2011] which extends pos-
sibilistic logic [Lang, 2001] such that the uncertainty is de-
scribed with intervals of possible degrees instead of single
certainty degrees associated with formulas. This setting is
more flexible than standard possibilistic logic and allows to
efficiently compute certainty degrees associated with derived
conclusions. Target applications are those where uncertainty
is given as intervals (eg. resulting from different/unreliable
sources). An example of application is sensitivity analysis
to study the effects of some variations in some parameters.
Interval-based possibilistic logic is only specified for static
situations and no form of conditioning has been proposed
for updating the current knowledge and beliefs. Condition-
ing and belief change are important tasks for designing in-
telligent systems. Conditioning is concerned with updating

the current beliefs when a new sure piece of information be-
comes available. In the possibilistic setting, given a possi-
bilistic knowledge base K or a possibility distribution π and
a new evidence φ, conditioning allows to update the old be-
liefs, encoded by π orK, with φ. Conditioning in the standard
possibilistic setting is studied in many works [Hisdal, 1978;
L.M. De Campos and Moral, 1995; Dubois and Prade, 2006;
Fonck, 1997; Dubois and Prade, 1997]. In [Benferhat et al. ,
2013] the authors dealt with syntactic hybrid conditioning of
standard (point-wise) possibilistic knowledge bases with un-
certain inputs.
In [Benferhat et al. , 2011], the authors dealt with inference
issues in the interval-based possibilistic setting but did not
address the conditioning issue. Conditioning operators are de-
signed to satisfy some properties such as giving priority to the
new information and performing minimal change. In this pa-
per, we deal with conditioning interval-based possibility dis-
tributions and interval-based possibilistic knowledge bases.
The main contributions of the paper are:

i) Proposing a set of natural properties that an interval-
based conditioning operator should satisfy.

ii) Proposing a natural definition of conditioning an
interval-based possibility distribution with a new evi-
dence. This definition is safe since it takes into account
all the compatible distributions.

iii) We show that when min-based conditioning is applied
over the set of compatible distributions then the result is
not guaranteed to be an interval-based distribution.

iv) We show that applying product-based conditioning leads
to an interval-based possibility distribution. We provide
the exact computations of lower and upper endpoints of
intervals associated with each interpretation of the con-
ditioned interval-based possibility distribution.

v) Lastly, we propose a syntactic counterpart of condition-
ing over interval-based possibilistic bases. The proposed
conditioning does not induce extra computational cost.
Conditioning an interval-based possibilistic knowledge
base has the same complexity as conditioning a standard
possibilistic knowledge base.

Before presenting our contributions, let us give a brief re-
fresher on standard and interval-based possibilistic logics.
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2 A refresher on standard possibilistic logic
We consider a finite propositional language. We denote by Ω
the finite set of interpretations, and by ω an element of Ω.
φ and ψ denote propositional formulas, and |= denotes the
propositional logic satisfaction relation. Possibility theory is
a well-known uncertainty framework particularly suited for
representing and reasoning with uncertain and incomplete in-
formation [Dubois, 2006; 2014]. One of the main concepts of
this setting is the one of possibility distribution π which is a
mapping from the set of possible worlds or interpretations Ω
to [0, 1]. π(ω) represents the degree of consistency (or fea-
sibility) of the interpretation ω with respect to the available
knowledge. By convention, π(ω)=1 means that ω is fully
consistent with the available knowledge, while π(ω)=0 means
that ω is impossible. π(ω)>π(ω′) simply means that ω is
more consistent than ω′. π is said to be normalized if there
exists an interpretation ω such that π(ω)=1; otherwise it is
said sub-normalized. Possibility degrees are interpreted either
i) qualitatively (in min-based possibility theory) where only
the ”ordering” of the values is important, or ii) quantitatively
(in product-based possibility theory) where the possibilistic
scale [0,1] is numerical.
Another main concept in possibility theory is the one of pos-
sibility measure, denoted Π(φ), and defined as follows:

Π(φ) = max{π(ω) : ω ∈ Ω, ω |= φ}. (1)

A possibilistic base K={(ϕi, αi) : i=1, .., n} is a set of pos-
sibilistic formulas, where ϕi is a propositional formula and
αi∈[0, 1] is a valuation of ϕi representing its certainty degree.
Each piece of information (ϕi,αi) can be viewed as a con-
straint which restricts a set of possible interpretations. If an
interpretation ω satisfies ϕi then its possibility degree is equal
to 1, otherwise it is equal to 1−αi (the more ϕi is certain, the
less ω is possible). Given a possibilistic base K, we can gen-
erate a unique distribution where interpretations ω satisfying
all formulas in K have the highest possible degree π(ω)=1,
whereas the others are pre-ordered with respect to the highest
formulas they falsify. More formally: ∀ω∈Ω, πK(ω) = 1 if ∀(ϕi, αi) ∈ K,ω |= ϕi;

1−max{αi : (ϕi, αi) ∈ K
and ω 2 ϕi} otherwise.

(2)

3 A refresher on interval-based possibilistic
logic

This section gives a refresher on interval-based possibilistic
logic [Benferhat et al. , 2011] where the uncertainty is not
described with single values but by intervals of possible de-
grees. We use closed sub-intervals I⊆[0, 1] to encode the un-
certainty associated with formulas or interpretations. If I is
an interval, then we denote by I and I its upper and lower
endpoints respectively. When all I’s associated with interpre-
tations (resp. formulas) are singletons (namely I = I), we
refer to standard (or point-wise) distributions (resp. standard
possibilistic bases).

3.1 Interval-based possibility distributions
Let us recall the definition of an interval-based distribution:

Definition 1. An interval-based possibility distribution, de-
noted by Iπ, is a function from Ω to I. Iπ(ω)=I means that
the possibility degree of ω is one of the elements of I . Iπ is
said to be normalized if ∃ω∈Ω such that Iπ(ω)=1.

An interval-based possibility distribution is viewed as a
family of compatible standard possibility distributions de-
fined as follows:
Definition 2. Let Iπ be an interval based possibility distri-
bution. A normalized possibility distribution π is said to be
compatible with Iπ iff ∀ω∈Ω, π(ω)∈Iπ(ω).
We denote by C(Iπ) the set of all compatible possibility
distributions with Iπ. In the rest of this paper, we consider
only coherent interval-based possibility distributions, where
∀ω∈Ω, ∀α∈Iπ(ω), there exists a compatible possibility dis-
tribution π∈C(Iπ) such that π(ω)=α.
Given Iπ, we define an interval-based possibility degree of a
formula φ as follows:

IΠ(φ) = [min{Π(φ) : π ∈ C(Iπ)}, max{Π(φ) : π ∈ C(Iπ)}]
(3)

3.2 From interval-based possibilistic bases to
interval-based possibility distributions

The syntactic representation of interval-based possibilistic
logic generalizes the notion of a possibilistic base to an
interval-based possibilistic knowledge base.
Definition 3. An interval-based possibilistic base, denoted
by IK, is a set of formulas associated with intervals: IK =
{(ϕ, I), ϕ ∈ L and I is a closed sub-interval of [0,1]}

As in standard possibilistic logic, an interval-based knowl-
edge base IK is also a compact representation of an interval-
based possibility distribution IπIK [Benferhat et al. , 2011].
Definition 4. Let IK be an interval-based possibilistic base.
Then:

IπIK(ω) =
[
IπIK(ω), IπIK(ω)

]
where:

IπIK(ω) =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{I : (ϕ, I) ∈ K,ω 2 ϕ} otherwise.

and

IπIK(ω) =

{
1 if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−max{I : (ϕ, I) ∈ K,ω 2 ϕ} otherwise.

Definition 4 extends the one given by Equation 2 when I=I .
Example 1. Let IK={(a∧b, [.4, .7]), (a∨¬b, [.6, .9])} be an
interval-based possibilistic base. The interval-based possibil-
ity distribution corresponding to IK according to Definition
4 is given in Table 1.

4 Properties of interval-based conditioning
In standard possibility theory, conditioning is concerned with
updating the current knowledge encoded by a possibility dis-
tribution π when a completely sure event (evidence) is ob-
served. There are several definitions of the possibilistic con-
ditioning [Hisdal, 1978; L.M. De Campos and Moral, 1995;
Dubois and Prade, 2006; Fonck, 1997; Dubois and Prade,
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ω IπIK (ω)
ab [ 1, 1 ]

a¬b [.3, .6]
¬ab [.1, .4]
¬a¬b [.3, .6]

Table 1: Example of an interval-based possibility distribution
induced by an interval-based possibilistic base.

1997]. In the quantitative setting, the product-based condi-
tioning [Shafer, 1976] is the most used one and it is defined
as follows (for Π(φ) 6= 0):

π(ωi|∗φ) =

{
π(ωi)
Π(φ) if ωi |= φ;
0 otherwise.

(4)

The min-based conditioning is defined as follows [Hisdal,
1978]:

π(ωi|mφ) =

{
1 if π(ωi)=Π(φ) and ωi |= φ;
π(ωi) if π(ωi)< Π(φ) and ωi |= φ;
0 otherwise.

(5)

When Π(φ)=0, then by convention ∀ω∈Ω, π(ω|�φ)=1 for
both |�=|m and |�=|∗.

This section gives natural properties that a conditioning
operation should satisfy when interval-based possibility dis-
tributions are used. Let us first fix the values of Iπ(.|φ) for
degenerate possibility distributions Iπ when IΠ(φ)=0 or
IΠ(φ)=0. If IΠ(φ)=0 then by convention, as in standard
possibility distributions, ∀ω∈Ω, Iπ(ω|φ)=[1, 1]. Similarly, if
IΠ(φ)=0 (and IΠ(φ)>0) then ∀ω∈Ω,

Iπ(ω|φ) =

{
[0, 0] if Iπ(ω)=[0, 0] and ω 2 φ;
[0, 1] otherwise.

In the rest of this paper, we assume that Iπ is not degenerate
with respect to φ. Namely, we assume first that IΠ(φ)>0. In
an interval-based setting, a conditioning operator “ | ” should
satisfy the following suitable properties:

(IC1) Iπ(.|φ) should be an interval-based distribution.

(IC2) ∀ω∈Ω, if ω2φ then Iπ(ω|φ)=[0, 0].

(IC3) ∃ω∈Ω such that ω|=φ and Iπ(ω|φ)=1.

(IC4) If ∀ω 2 φ, Iπ(ω)=[0, 0] then Iπ(.|φ) = Iπ.

(IC5) ∀ω∈Ω, if ω|=φ and Iπ(ω)=[0, 0] then
Iπ(ω|φ)=[0, 0].

(IC6) ∀ω|=φ and ∀ω′|=φ, if Iπ(ω)<Iπ(ω′) then
Iπ(ω|φ)<Iπ(ω′|φ).

(IC7) ∀ω|=φ, ∀ω′|=φ, if Iπ(ω)=Iπ(ω′) then Iπ(ω|φ)=
Iπ(ω′|φ).

Property IC1 simply states that the result of applying condi-
tioning over an interval-based possibility distribution should
result in an interval-based possibility distribution. Property
IC2 requires that when the new sure piece of information φ
is observed then any interpretation that is a counter-model of
φ should be completely impossible. Property IC3 states that
there exists at least a compatible possibility distribution π′

of Iπ(.|φ) where Π′(φ)=1. Property IC4 states that if φ is

already fully accepted (namely, all counter-models of φ are
already impossible) then Iπ(.|φ) should be identical to Iπ.
Property IC5 states that impossible interpretations (even if
they are models of φ) remain impossible after conditioning.
Properties IC6 and IC7 express a minimal change principle.
IC6 states that the strict relative ordering between models
of φ should be preserved after conditioning. IC7 states that
equal models of φ should remain equal after conditioning.

5 Semantic-based conditioning using
compatible possibility distributions

5.1 Definitions and property-based analysis
This section provides a natural and safe definition of condi-
tioning an interval-based possibility distribution using the set
of compatible possibility distributions. More precisely, con-
ditioning an interval-based possibility distribution Iπ comes
down to apply standard min-based or product-based condi-
tioning on the set of all compatible possibility distributions
C(Iπ) associated with Iπ. Namely,

Definition 5. The compatible-based conditioned interval-
based possibility distribution is defined as follows: ∀ω∈Ω,
Iπ(ω|�φ)={π(ω|�φ) : π ∈ C(Iπ)}, where |� is either |∗ or
|m given by Equations (4) and (5) respectively.

Conditioning according to Definition 5 is safe since it relies
on all the compatible distributions as opposed to a possible
approach when only an arbitrary set of compatible distribu-
tions is used. Note that the idea of compatible-based condi-
tioning in the interval-based possibilistic setting is somehow
similar to conditioning in credal sets [Levi, 1980] and credal
networks [Cozman, 2000] where the concept of convex set
refers to the set of compatible probability distributions com-
posing the credal set. Regarding the computational cost, con-
ditioning in credal sets is done on the set of extreme points
(edges of the polytope representing the credal set) but their
number can reach N ! where N is the number of interpreta-
tions [Wallner, 2007].
The first important issue with compatible-based conditioning
of Definition 5 is whether conditioning an interval-based dis-
tribution Iπ with an evidence φ gives an interval-based distri-
bution, namely whether the first property (IC1) is satisfied or
not. The result is different using product-based or min-based
conditioning. In case of min-based conditioning, Observation
1 states that the result of compatible-based conditioning using
Definition 5 is not guaranteed to be an interval-based possi-
bility distribution.

Observation 1
Let |m be the conditioning operator given by Equation 5.
Then, there exists an interval-based possibility distribution,
a propositional formula φ, and an interpretation ω such that
Iπ(ω|mφ) is not an interval.

Example 2 (Counter-example).
Let Iπ be the normalized interval-based distribution of Table
2. Let φ=a be the new evidence. The compatible-based condi-
tioned distribution Iπ(.|mφ) is obtained by conditioning Iπ
following Definition 5 with |� = |m.
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ω∈Ω Iπ(ω) ω∈Ω Iπ(ω|mφ)
ab [.7, .9] ab [ 1, 1 ]

a¬b [.4, .7] a¬b [.4, .7]∪{1}
¬ab [ .8, 1] ¬ab [ 0, 0 ]
¬a¬b [.4, .7] ¬a¬b [ 0, 0 ]

Table 2: Counter-example for Observation 1.

From Table 2, Iπ(a¬b|mφ) is not an interval. Indeed,
one can check that for every compatible distribution π of
Iπ, such that π(a¬b)∈[.4, .7[ we have π(a¬b|mφ)∈[.4, .7[
(since π(ab)≥.7). Now, for compatible distributions
where π(a¬b)=.7 we have either π(a¬b|mφ)=.7 (if
π(ab)>.7) or π(a¬b|mφ)=1 (if π(ab)=.7). Hence,
π(a¬b|mφ)=[.4, .7]∪{1} which is not an interval.

Contrary to the min-based conditioning, using the product-
based one, conditioning an interval-based distribution Iπ
with φ using Equation 4 gives an interval-based distribution.
Proposition 1. Let Iπ be an interval-based distribution.
Let φ be the new evidence and |∗ be the standard product-
based conditioning given by Equation 4. Then ∀ω∈Ω,
Iπ(ω|∗φ)=[minπ∈C(IπIK)(π(ω|∗φ)),maxπ∈C(IπIK)(π(ω|∗φ))]
is an interval.

In the rest of the paper, we only consider product-based
conditioning. Hence, we only use Iπ(.|φ) and π(.|φ) instead
of Iπ(.|∗φ) and π(.|∗φ) to avoid heavy notations. The follow-
ing proposition states that the compatible-based conditioning
given in Definition 5 satisfies properties IC1-IC7.
Proposition 2. Let Iπ be a normalized interval-based pos-
sibility distribution. Let φ be the new evidence such that
IΠ(φ)>0. Then the updated interval-based possibility distri-
bution computed according to Definition 5 satisfies properties
IC1-IC7.

5.2 Computing lower and upper endpoints of
Iπ(.|φ)

The objective now is to determine the lower and upper end-
points of Iπ(.|φ). Let us start with a particular case of
interval-based distributions Iπ where in each compatible dis-
tribution π∈C(Iπ), φ is accepted (namely, Π(φ)>Π(¬φ)). In
this case, the computation of Iπ(.|φ) is immediate:
Proposition 3. Let Iπ be an interval-based possibility
distribution and φ be a propositional formula such that
IΠ(φ)=1 and IΠ(¬φ)<1. Then
- If there is only one interpretation ω∗∈Ω
such that ω∗|=φ and Iπ(ω∗)=1 then

Iπ(ω|φ)=

{
[1, 1] if ω = ω∗

Iπ(ω) if ω 6= ω∗ and ω |= φ
[0, 0] otherwise.

- Otherwise, ∀ω∈Ω,

Iπ(ω|φ)=

{
Iπ(ω) if ω |= φ
[0, 0] otherwise (ω 2 φ)

We now consider the complex case where IΠ(¬φ)=1,
namely there exists at least a compatible possibility distribu-
tion π where φ is not accepted. Recall that by Equation (4)

∀ω∈φ, π(ω|φ)=
π(ω)

Π(φ)
. Therefore, intuitively to get, for in-

stance, the lower endpoint Iπ(ω|φ), it is enough to select a

compatible distribution π that provides the smallest value for
π(ω) (namely, if possible π(ω)=Iπ(ω)) and the largest value
for Π(φ) (namely, if possible Π(φ)=IΠ(φ)). The following
two propositions give these bounds depending whether there
exist a unique interpretation or several interpretations having
their upper endpoints equal to IΠ(φ).

Proposition 4. Let Iπ be an interval-based distribution such
that IΠ(¬φ)=1. If there exist more than one model of φ hav-
ing their upper endpoints equal to IΠ(φ), then ∀ω∈Ω:

Iπ(ω|φ) =


[
Iπ(ω)

IΠ(φ)
,min

(
1,
Iπ(ω)

IΠ(φ)

)]
if ω |= φ

[0, 0] otherwise

The next proposition concerns the particular situation
where there exists exactly one interpretation ω∗, model of φ,
such that Iπ(ω∗)=IΠ(φ). In this case, comparing to Propo-
sition 4, only the lower endpoint of the interpretation ω∗ will
differ. More precisely:

Proposition 5. Let Iπ be an interval-based possibility distri-
bution such that IΠ(¬φ)=1. Assume that there exists exactly
one interpretation ω∗, model of φ, such that Iπ(ω∗)=IΠ(φ).

• If ω 6=ω∗ then Iπ(ω|φ) is the same as the one given in
Proposition 4, namely: Iπ(ω|φ)=
[
Iπ(ω)

IΠ(φ)
,min

(
1,
Iπ(ω)

IΠ(φ)

)]
if ω |= φ

[0, 0] otherwise

• If ω=ω∗, let secondbest(Iπ)=max{Iπ(ω′): ω′|=φ and
Iπ(ω′)6=IΠ(φ)}. Then:

Iπ(ω|φ)=


[1, 1] if secondbest(Iπ)=0[

min(1,
Iπ(ω)

secondbest(Iπ)
), 1

]
otherwise

Example 3. Let Iπ be the normalized interval-based distribu-
tion of Table 3. Let φ=¬a be the new evidence. In this exam-
ple, we face the situation where we have exactly one interpreta-
tion where Iπ(ω∗)=IΠ(φ)=.6. Hence, according to Proposition 5,
secondbest(Iπ)=.4.

ω∈Ω Iπ(ω) ω∈Ω Iπ(ω|φ)
ab [ 1, 1 ] ab [ 0, 0 ]

a¬b [.3, .6] a¬b [ 0, 0 ]
¬ab [.1, .4] ¬ab [.1/.6, 1]
¬a¬b [.3, .6] ¬a¬b [.3/.4, 1]

Table 3: Example of conditioning an interval-based possibil-
ity distribution using Proposition 5.

Next section provides the syntactic counterpart of the
compatible-based conditioning.

6 Syntactic characterization of
compatible-based conditioning

Given an interval-based knowledge base IK and a new ev-
idence φ, conditioning at the syntactic level comes down
to altering IK into IKφ such that the induced posterior
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interval-based possibility distribution IπIKφ
equals the poste-

rior interval-based possibility distribution IπIK(.|φ) obtained
by conditioning IπIK with φ as illustrated in Figure 1.

IK IπIK

IKφ IπIK(.|φ)IπIKφ

Definition 4

Syntactic
conditioning

with φ

Definition 4 ?

Conditioning
on φ using

Propositions 4 and 5

Figure 1: Equivalence of semantic and syntactic conditionings.

The aim of this section is then to compute a new interval-
based knowledge base, denoted for the sake of simplicity by
IKφ, such that:

∀ω ∈ Ω, IπIK(ω|φ) = IπIKφ
(ω),

where IπIKφ
is the interval-based distribution associated with

IKφ using Definition 4, and IπIK(.|φ) is the result of condi-
tioning IπIK using the compatible-based conditioning pre-
sented in the previous section (Propositions 4 and 5).

To achieve this aim, we need to provide methods that di-
rectly operate on the interval-based knowledge base IK:

• to check whether IΠIK(φ)=0 (resp. IΠIK(φ)=0) or not,

• to check whether IΠIK(¬φ)=1 or not,

• to compute IΠIK(φ) and IΠIK(φ),

• to compute secondbest(IπIK),

• to check whether there exists a unique interpretation ω∗
such that Iπ(ω∗)=IΠ(φ), and lastly

• to compute IKφ.

6.1 Checking whether IΠIK(φ)=0 (resp.
IΠIK(φ)=0) or not

Recall that an interval-based possibility distribution where
IΠIK(φ)=0 expresses a very strong conflict with the evi-
dence φ. Namely, IK strongly contradicts the formula φ.

Proposition 6. Let IK be an interval-based possibilistic base
and IπIK be its associated interval-based distribution. Then,

i) IΠIK(φ)=0 iff {ψ : (ψ, I)∈IK and I=[1, 1]}∪ {φ} is
inconsistent. In this case, IKφ=∅.

ii) IΠIK(φ)=0 iff {ψ : (ψ, I)∈IK and I=1} ∪ {φ} is in-
consistent. In this case, IKφ={(φ, [1, 1]), (¬φ, [0, 1])}.

Example 4. Let IK={(¬a, [1, 1]), (a∨¬b, [.4, .6])} be an
interval-based possibilistic knowledge base. The associated
interval-based possibility distribution is given in Table 4. Let
φ=a be the new evidence.

In this example, IΠIK(φ)=0 since {ψ : (ψ, I)∈IK and
I=[1, 1]}∪{φ}={¬a}∪{a} is inconsistent. Hence, IKφ=∅.

In the following, we assume that IK is such that φ is some-
what possible, hence its associated interval-based possibility
distribution IπIK (namely IΠIK(φ)>0).

ω∈Ω IπIK(ω) ω∈Ω IπIK(ω|φ)
ab [ 0, 0 ] ab [ 1, 1 ]
a¬b [ 0, 0 ] a¬b [ 1, 1 ]
¬ab [.4, .6] ¬ab [ 1, 1 ]
¬a¬b [ 1, 1 ] ¬a¬b [ 1, 1 ]

Table 4: Interval-based possibility distribution induced by the
interval-based possibilistic base of Example 4.

6.2 Checking whether IΠIK(¬φ)6=1 or not
This subsection shows how to syntactically check if φ is ac-
cepted or not, namely whether IΠIK(¬φ)=1 or not.

Proposition 7. Let IK be an interval-based possibilistic base
and IπIK be its associated possibility distribution. Then:
IΠIK(¬φ)6=1 iff {ψ : (ψ, I)∈IK and I>0} ∪ {¬φ} is in-
consistent. In this case: IKφ=IK ∪ {(φ, [1, 1])}.

6.3 Computing IΠIK(φ) and IΠIK(φ)

The computation of IΠIK(φ) and IΠIK(φ) comes down to
computing the inconsistency degrees of two particular stan-
dard possibilistic knowledge bases (considering only lower
and upper endpoints of intervals associated with formulas) as
it is stated by the following proposition:
Proposition 8. Let IK be an interval-based knowledge
base. Let IK={(ψ, I) : (ψ, I)∈IK} and IK={(ψ, I) :
(ψ, I)∈IK}. Then:

IΠIK(φ)=1− Inc(IK ∪ {(φ, 1)}) and

IΠIK(φ)=1− Inc(IK ∪ {(φ, 1)}).

In Proposition 8, Inc(K) is the inconsistency degree of a
standard possibilistic knowledge baseK and it is defined with
the notion of α-cut by:

Inc(K) =

{
0 If K0 is consistent
max{α : Kα is inconsistent} otherwise

and Kα is defined by Kα={ϕ : (ϕ, β) ∈ K and β≥α}.

6.4 Checking the uniqueness of models of φ having
upper endpoints equal to IΠIK(φ)

We need to show how to syntactically check whether, or not,
there exists a unique interpretation ω∗, model of φ, such that
IπIK(ω∗)=IΠIK(φ). If an interpretation ω, model of φ, is
such that IπIK(ω)=IΠIK(φ) then ω is a model of Φ={ψ :
(ψ, I)∈IK and I>Inc(IK ∪ {(φ, 1)})} ∪ {φ}. Besides, if
for some ω′ 6=ω, IπIK(ω′)<IΠIK(φ) then this means that ω′
falsifies at least one formula from Φ ∪ {φ}.
Additionally, assume that there exists a unique model ω∗ of
φ such that IπIK(ω∗)=IΠIK(φ). We are interested to know
whether ∀ω′ 6=ω∗, Iπ(ω′)=[0, 0]. It is enough to check that all
formulas in {ψ : (ψ, I)∈IKand I>Inc(IK∪{(φ, 1)})} have
their associated interval I equal to [1,1]. The main results of
this section are summarized in the following proposition:

Proposition 9. Let IK be an interval-based knowledge base.
Let IπIK be its associated possibility distribution. Let Φ={ψ:
(ψ, I)∈IK and I>Inc(IK∪{(φ, 1)})} ∪ {φ}. Then:
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• Φ ∪ {φ} admits a unique model iff there exists
a unique interpretation ω∗, model of φ, such that
IπIK(ω∗)=IΠIK(φ).
• Φ ∪ {φ} admits a unique model and each formula in

Φ has [1,1] as certainty-based interval weight iff there
exists ω∗ model of φ such that Iπ(ω∗)=IΠIK(φ) and
∀ω′ 6=ω∗, Iπ(ω′)=[0, 0].

6.5 Computing secondbest(IK)

Recall that IK={(ψ, I) : (ψ, I)∈IK} and that
secondbest(IK) is only computed in the situation
where there exists exactly one interpretation ω∗, model
of φ, such that IΠ(φ)=Iπ(ω∗). In order to easily define
secondbest(IπIK), we first let L={α1,. . ., αn} to be the
different degrees present in IK, with α1>. . .>αn. Then
we define (Aα1 , Aα2 , . . ., Aαn) as the WOP (well ordered
partition) associated with IK, obtained by letting:

Aαi = {(ψ, β) : (ψ, β) ∈ IK and β = αi}. (6)

Namely, Aαi is the subset of IK composed of all weighted
formulas having a certainty degree equal to αi. Then:
Proposition 10. Assume that there exists exactly one inter-
pretation ω∗, model of φ, such that IΠIKφ(φ)=IπIKφ(ω∗).
Let (Aα1

, Aα2
, . . . , Aαn) be the WOP associated with

IK, where Aαi ’s are given by Equation (6). De-
fine secondbest(IK)=1 − min{αi : αi>Inc(IK ∪
{(φ, 1)}) and Aαi is a non-tautological formula }. Then
secondbest(IK)=secondbest(IπIK).

6.6 Computing IKφ

We are now ready to give the syntactic computation of IKφ

when IΠIK(¬φ) = 1. In order to simplify the notations, we
now denote:

i) α=1-
1− I

1− Inc(IK ∪ {(φ, 1)})
ii) α=1-

1− I
1− Inc(IK ∪ {(φ, 1)})

iii) 2α=1-
1− I

secondbest(IK)
iv) Φ={ψ: (ψ, I)∈IK and I>Inc(IK ∪ {(φ, 1)})}
The two following propositions provide the syntactic com-

putation of IKφ depending whether Φ∪{φ} admits more than
one model or not:
Proposition 11 (General case: Φ ∪ {φ} has more than
one model). Assume that Φ ∪ {φ} has strictly more than
one model. Then: IKφ={(φ, [1, 1])} ∪ {(ψ, [max (0, α) , α]) :
(ψ, I)∈IK, and I≥Inc(IK ∪ {(φ, 1)})}.
Proposition 12 (Particular case: Φ ∪ {φ} has exactly one
model). Assume that Φ ∪ {φ} admits a unique model.

1. If each formula in Φ has an interval equal to [1,1],
then: IKφ={(ψ, [1, 1]):(ψ,[1, 1])∈IK and Inc(IK ∪
{φ, 1})<1}∪{(φ,[1, 1])}.

2. If there exists a formula in Φ with a cer-
tainty interval different from [1,1]. Then:
IKφ={(φ,[1, 1])}∪{(ψ,[max (0, α) , α]) : (ψ, I)∈IK,
and I>Inc(IK ∪ {(φ, 1)})} ∪ {(ψ, [0,max(0, 2α)]) :
(ψ, I)∈IK, and I=Inc(IK ∪ {(φ, 1)}) > 0}.

Note that item 1 corresponds to the case where
secondbest(IK)=0.

Example 5. Let us consider Example 1 with the
new evidence being φ=¬a. From this example,
Φ={a∨¬b} and Φ∪{φ} has exactly one model. We
face the case of Proposition 12, 2nd item. Therefore,
IKφ={(¬a, [1, 1]), (a∧b, [0, .1/.4]), (a∨¬b, [0, .5/.6])}.
Computing IπIKφ

according to Definition 4, gives ex-
actly the same distribution as the one of Example 3 when
conditioned on φ=¬a using Propositions 4 and 5.

Algorithm 1 summarizes the main steps for computing IKφ.

Algorithm 1 Syntactic counterpart of conditioning
Input: An interval-based logic base IK and a new evidence φ
Output: A new interval-based possibilistic base IKφ such that
∀ω∈Ω, IπIKφ(ω)=IπIK(ω|φ).
Let A={ψ: (ψ, I)∈IK and I=[1, 1]}∪{φ}
Let B={ψ: (ψ, I)∈IK and I=1}∪{φ}
if A is inconsistent then
IKφ=∅ (Prop. 6).

else if B is inconsistent then
IKφ={(φ, [1, 1]), (¬φ, [0, 1])} (Prop. 6).

else if {ψ : (ψ, I) ∈ IK} ∪ {¬φ} is inconsistent then
IKφ = IK ∪ {(φ, [1, 1])} (Prop. 7).

else if Φ ∪ {φ} admits a unique model then
if each formula ψ in Φ has a certainty interval equal to [1,1] in
IKφ then
IKφ={(ψ, [1, 1]) : (ψ, [1, 1])∈IK and Inc(IK)<1} ∪
{(φ, [1, 1])} (Prop. 12).

else
IKφ={(φ, [1, 1])}∪{(ψ, [max (0, α) , α]):(ψ, I)∈IK,

and I>Inc(IK ∪ {(φ, 1)})} ∪ {(ψ, [0,max(0, 2α)]) :
(ψ, I)∈IK, and I=Inc(IK ∪ {(φ, 1)}) > 0} (Prop. 12).

end if
else
IKφ={(φ, [1, 1])} ∪ {(ψ, [max (0, α) , α]) : (ψ, I)∈IK,

and I≥Inc(IK∪{(φ, 1)})} (Prop. 11).
end if

The nice features of the proposed conditioning is that:
i) It extends the one used in standard possibility theory:
namely when all intervals I , associated with interpretations,
are singletons, then ∀ω∈Ω, Iπ(ω|φ)= [π(ω|φ),π(ω|φ)] where
π is the unique compatible distribution associated with Iπ.
ii) When formulas in IK are in a clausal form then comput-
ing the conditioning of an interval-based possibilistic base
has the same complexity as the one of conditioning standard
possibilistic knowledge bases (namely, when I’s are single-
tons). Indeed, for standard possibilistic knowledge bases K
the hardest task consists in computing Inc(K) which can be
achieved in time in O(log2(m).SAT ) where SAT is a satisfi-
ability test of a set of propositional clauses and m is the num-
ber of different weights in K. For an interval-based knowl-
edge base, the main (hard) tasks in computing IKφ are:

• The computation of Inc(IK∪{(φ,1)}) and Inc(IK ∪
{(φ, 1)}). This is done in O(log2(m).SAT ) where SAT
is a satisfiability test of a set of propositional clauses and
m is the number of different weights in IK and IK,
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• The test whether the sub-bases A or B are consistent or
not. This needs only one call to a SAT solver.

• The computation of secondbest(Iπ)=1-min{αi:
αi>Inc(IK∪{(φ,1)}) and Aαi is a non-tautological
formula} (see Proposition 10). This needs: i) the
computation of Inc(IK∪{(φ,1)}), done again in
O(log2(m).SAT ), and ii) checking for the lowest αi
such that Aαi is a non-tautological formula, which is
done in linear time (w.r.t the number of clauses in IK).

• Lastly, checking whether Φ={ψ: (ψ, I)∈IK, and
I>Inc(IK∪{(φ, 1)})}∪{φ} admits a unique model.
This can be done using two calls to a SAT solver. Indeed,
checking whether there exists a unique interpretation ω∗
such that IπIK(ω∗)=IΠIK(φ) comes down to checking
whether the formula Φ∪{φ} has a unique model. If this
formula is under the clausal form, then this problem is
the one of Unique-SAT. This can be done by launching
two calls to a SAT solver: the first call is applied to
the formula Φ. When it returns a model ω (recall that
Φ∪{φ} is consistent), then a second call to a SAT
solver with the formula Φ∧¬ω is performed (where
¬ω is a clause composed of the disjunction of literals
that are not true in ω). If a SAT solver declares that
the extended formula has no model, then we conclude
that there exists a unique interpretation ω∗ such that
IπIK(ω∗)=IΠIK(φ). Otherwise the formula Φ∪{φ}
has at least two models.

To summarize, the overall complexity is:

Proposition 13. Computing IKφ isO(log2(m).SAT ) where
SAT is a satisfiability test of a set propositional clauses and
m is the number of different weights in IK and IK.

Proposition 13 shows that the syntactic computation of
conditioning an interval-based possibilistic base has exactly
the same computational complexity of computing product-
based conditioning of standard possibilistic knowledge bases.

7 Conclusions
Interval-based possibilistic logic offers an expressive and a
powerful framework for representing and reasoning with un-
certain information. This setting was only specified for static
situations and no form of conditioning has been proposed
for updating the knowledge and the beliefs. In this paper,
we showed that conditioning can be handled in a natural
and safe way and without extra computational cost. More
precisely, we proposed a compatible-based conditioning of
interval-based possibilistic knowledge bases. This condition-
ing reflects viewing an interval-based possibilistic base as a
set of compatible bases. We showed that when min-based
conditioning is applied over the set of compatible distribu-
tions then the obtained result is not guaranteed to be an inter-
val possibility distribution while applying product-based con-
ditioning on the set compatible possible distributions gives an
interval-based possibility distribution. We provided the exact
computations of lower and upper endpoints of intervals as-
sociated with each interpretation of the conditioned interval-
based possibility distributions. Lastly, we provided a syntac-

tic counterpart of the compatible-based conditioning that does
not imply extra computational cost.
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