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Abstract
Fuzzy Description Logics (DLs) are used to repre-
sent and reason about vague and imprecise knowl-
edge that is inherent to many application domains.
It was recently shown that the complexity of rea-
soning in finitely valued fuzzy DLs is often not
higher than that of the underlying classical DL. We
show that this does not hold for fuzzy extensions
of the light-weight DL EL, which is used in many
biomedical ontologies, under the Łukasiewicz se-
mantics. The complexity of reasoning increases
from PTIME to EXPTIME, even if only one addi-
tional truth value is introduced. The same lower
bound holds also for infinitely valued Łukasiewicz
extensions of EL.

1 Introduction
Description Logics (DLs) are a family of knowledge repre-
sentation formalisms that are successfully applied in many
application domains. They provide the logical foundation for
the Direct Semantics of the standard web ontology language
OWL 2.1 The light-weight DL EL, underlying the OWL 2 EL
profile, is of particular interest since all common reasoning
problems are polynomial in this logic, and it is used in many
prominent biomedical ontologies like SNOMED CT2 and the
Gene Ontology.3 Knowledge is represented by a set of gen-
eral concept inclusions (GCIs) like

∃hasDisease.Flu v ∃hasSymptom.Headache u
∃hasSymptom.Fever (1)

which states that every patient with a flu must also show
headache and fever as symptoms. Reasoning in EL is a poly-
nomial problem [Baader et al., 2005].

An important problem for AI practical applications is to
represent and reason with vague or imprecise knowledge in
a formal way. Fuzzy Description Logics (FDLs) [Straccia,
2001; Hájek, 2005] were introduced with this goal in mind.
The main premise of fuzzy logics is the use of more than

1http://www.w3.org/TR/owl2-overview/
2http://www.ihtsdo.org/snomed-ct/
3http://geneontology.org/

two truth degrees to allow a more fine-grained analysis of
dependencies between concepts. Usually, these degrees are
arranged in a totally ordered algebra, or chain, in the inter-
val [0, 1]. A patient having a body temperature of 37.5 ◦C
can have a degree of fever of 0.5, whereas a temperature of
39.2 ◦C may be interpreted as a fever with degree of 0.9. Con-
sidering the GCI (1), the severity of the symptoms certainly
influences the severity of the disease, and thus truth degrees
can be transferred between concepts. Depending on the gran-
ularity one wants to have, one can choose to allow 10 or 100
truth degrees, or even admit the whole interval [0, 1]. Another
degree of freedom in FDLs comes from the choice of possible
semantics for the logical constructors. The most general se-
mantics are based on triangular norms (t-norms) that are used
to interpret conjunctions. Among these, the most prominent
ones are the Gödel, Łukasiewicz, and product t-norms. All
(continuous) t-norms over chains can be expressed as combi-
nations of these three basic ones.

Unfortunately, reasoning in many infinitely valued FDLs
becomes undecidable [Baader and Peñaloza, 2011; Cerami
and Straccia, 2013]. For a systematic study on this topic,
see [Borgwardt et al., 2015b]. On the other hand, every
finitely valued FDL that has been recently studied has not
only been proved to be decidable, but even to belong to
the same complexity class as the corresponding classical
DL [Borgwardt and Peñaloza, 2013; 2014; Bou et al., 2012].

A question that naturally arises is whether the finitely val-
ued fuzzy framework always yields the same computational
complexity as the corresponding classical formalisms. A
common opinion is that everything that can be expressed in
finitely valued FDLs can be reduced to the corresponding
classical DLs without any serious loss of efficiency. Indeed,
although some known direct translations of finitely valued
FDLs into classical DLs are exponential [Bobillo and Strac-
cia, 2011], more efficient reasoning can be achieved through
direct algorithms [Borgwardt and Peñaloza, 2013]. The prob-
lem of finding a complexity gap between classical and finitely
valued logics has already been considered. In [Cerami and
Straccia, 2014], the authors analyze different constructors
that could cause an increase in the complexity, but no specific
answer is found. In [Borgwardt et al., 2014] it is shown that
the Łukasiewicz t-norm is a source of nondeterminism able
to cause a significant increase in expressivity in very simple
propositional languages. In this work, we build on the meth-
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ods of [Borgwardt et al., 2014] to show even more dramatic
increases in complexity for finitely valued extensions of EL.

The question about the computational complexity of EL
under infinitely valued semantics has been already consid-
ered. Borgwardt and Peñaloza show that reasoning in EL
under semantics including the Łukasiewicz t-norm is CO-NP-
hard [2013], but the proof does not apply to the finitely valued
case. In contrast, infinitely valued Gödel semantics do not in-
crease the complexity of reasoning [Mailis et al., 2012].

In this work, we prove that EL under finitely valued seman-
tics is EXPTIME-complete whenever the Łukasiewicz t-norm
is included in the semantics. This proves a dichotomy simi-
lar to one that exists for infinitely valued FDLs [Borgwardt et
al., 2015b] since, for all other finitely valued chains of truth
values, reasoning in fuzzy EL can be shown to be in PTIME
using the methods from [Mailis et al., 2012]. The relevance of
our result goes beyond the computational aspect. Indeed, this
is so far the first instance of a finitely valued DL that is more
complex than the same language under classical semantics. In
this way, we obtain an answer to the open problem whether
finitely valued FDLs and classical DLs are equally powerful,
at least from a computational complexity point of view. As
a side benefit, we obtain the same (EXPTIME) lower bound
for the complexity of infinitely valued fuzzy extensions of EL
that use the Łukasiewicz t-norm, improving the lower bound
from [Borgwardt and Peñaloza, 2013]. Full proofs of all re-
sults appear in the technical report [Borgwardt et al., 2015a].

2 Preliminaries
Fuzzy DLs extend classical DLs by allowing more than two
truth degrees in the semantics. We first introduce the classes
of truth degrees relevant for this paper and then recall the log-
ics ELU and L-EL.

2.1 Chains of Truth Values
A chain is an algebra L whose elements are linearly ordered;
that is, for every x, y ∈ L it holds that either x 6 y or y 6 x.
We consider here chains of the form (L, ∗L,⇒L), where

• L is a subset of [0, 1] that contains 0 and 1;

• the t-norm ∗L is a binary operator on L that is associative,
commutative, monotone, and has 1 as unit element; and

• the residuum ⇒L of ∗L is a binary operator on L that
satisfies (x∗L y) 6 z iff y 6 (x⇒L z) for all x, y, z ∈ L.

An element x ∈ L is idempotent if x∗Lx = x. For ease of pre-
sentation, we will often identify L and (L, ∗L,⇒L) and omit
the subscript L if the chain we use is clear from the context.

We consider in particular the two cases where (i) L is de-
fined over the interval [0, 1] of real numbers, or (ii) L is a
finite chain. In the former case, we always make the as-
sumption that the operator ∗L is continuous as a function from
[0, 1] × [0, 1] to [0, 1]. One reason for this assumption is that
it ensures that the residuum is uniquely determined by the
t-norm [Klement et al., 2000]. In case (ii), we similarly as-
sume that ∗L is smooth, i.e. for every x, y, z ∈ L, whenever
x and y are direct neighbors in L, with x < y, then there
is no w ∈ L such that x ∗L z < w < y ∗L z [Mayor and

Table 1: Basic t-norms and their residua

t-norm x ∗ y residuum x⇒ y

Gn/ G min(x, y)

{
1 if x 6 y

y if x > y
Łn/ Ł max(x+ y − 1, 0) min(1− x+ y, 1)

Π x · y
{

1 if x 6 y
y
x if x > y

Torrens, 1993]. If ∗L is continuous (smooth), then we call L
continuous (smooth).

By restricting the algebra of truth values to two ele-
ments, the classical Boolean algebra of truth and falsity
B = ({0, 1}, ∗B,⇒B) is obtained. In this case, ∗B and ⇒B
are the classical conjunction and the material implication, re-
spectively.

The most interesting chains with continuous or smooth
t-norms are the ones given by the Gödel (G), Łukasiewicz (Ł),
and product (Π) t-norms. The finitely valued versions of the
former two, denoted by Łn and Gn for n > 2, are defined
over the n-element chain 0 < 1

n−1 < · · · <
n−2
n−1 < 1. These

operators and their residua are defined in Table 1. Notice that
a finitely valued version of the product t-norm Π cannot exist:
the chain L needs to be closed under the t-norm, but for any
x ∈ (0, 1), the set {xm | m > 0} is infinite.

The following properties, which are crucial for our reduc-
tions, follow directly from the previous definitions.

Fact 1. For all x, y ∈ L and T ⊆ L, it holds that

• x⇒L y = 1 iff x 6 y;

• 1⇒L x = x;

• x⇒L y > y;

• if L = Łn, then x∗Łn
y > n−2

n−1 iff either x = 1 or y = 1;

• if L = Łn and x < 1, then for all m > n − 1 we have
x ∗Łn

. . . ∗Łn
x︸ ︷︷ ︸

m times

= 0.

The t-norms defined so far can be used to build all other
continuous t-norms over [0, 1], and all smooth t-norms over
finite chains, using the following construction.

Definition 2. Let L be a chain, (Li)i∈I be a family of chains,
and (λi)i∈I be isomorphisms between intervals [ai, bi] ⊆ L
and Li such that the intersection of any two intervals con-
tains at most one element. L is the ordinal sum of the family
(Li, λi)i∈I if, for all x, y ∈ L,

x ∗L y =

{
λ−1
i

(
λi(x) ∗Li

λi(y)
)

if x, y ∈ (ai, bi),
min{x, y} otherwise.

Intuitively, the ordinal sum of the chains Li is a chain
whose domain is built up by appending the domains of the
chains Li and whose operation ∗L is ∗Li

when the operands
belong to the same chain Li and it is min otherwise.

Every chain over [0, 1] with a continuous t-norm is iso-
morphic to an ordinal sum of infinitely valued Łukasiewicz

2813



and product chains [Hájek, 2001; Mostert and Shields, 1957].
Similarly, every smooth finite chain is an ordinal sum of
chains of the form Łn with n > 3 [Mayor and Torrens, 2005].
All elements that are not contained strictly within one such
Łukasiewicz or product component are idempotent and can
be thought of as belonging to a (finite or infinite) Gödel chain.
We say that a (finite or infinite) chain contains the Łukasie-
wicz t-norm if its ordinal sum representation contains at least
one Łukasiewicz component; similarly, it starts with the Łu-
kasiewicz t-norm if it contains a Łukasiewicz component in
an interval [0, b]. Note that every chain that contains the Łu-
kasiewicz t-norm can be represented as the ordinal sum of an
arbitrary chain L1 and another chain L2 that starts with the
Łukasiewicz t-norm.

Another way to view these characterizations is to observe
that every smooth finite chain is either a Gödel chain or con-
tains at least one Łukasiewicz component, and every contin-
uous chain over [0, 1] is either a Gödel chain or contains at
least one Łukasiewicz or product component. As we will see,
analyzing the properties of the basic t-norms from Table 1
provides an insight into the general case, with arbitrary (con-
tinuous or smooth) t-norms.

2.2 ELU and L-EL
A description signature is a tuple (NC,NR), where NC

and NR are disjoint countable sets of concept names and
role names, respectively. EL concepts are built inductively
from concept and role names through the grammar rule
C,D ::= A | > | C uD | ∃r.C where A ∈ NC and r ∈ NR.
ELU concepts are formed by adding the option C tD to the
previous rule. In the rest of the paper we will use the abbre-
viation Cm, m > 1, for the m-ary conjunction; i.e. C1 := C
and Cm+1 := Cm u C.

There is often no difference between the syntax of classical
and fuzzy languages. The differences between both frame-
works begin when the semantics of concepts and roles is in-
troduced. As remarked in Section 2.1, it suffices to restrict
the semantics to the two-element chain B to obtain the clas-
sical semantics. However, we define both semantics to aid
understanding and readability of the proofs.

Fuzzy Semantics of L-EL.
Consider an arbitrary but fixed chain L = (L, ∗,⇒). An L-in-
terpretation is a pair I = (∆I , ·I) consisting of:

• a nonempty (classical) set ∆I (called domain), and

• a fuzzy interpretation function ·I that assigns

– to each A ∈ NC a fuzzy set AI : ∆I → L, and
– to each r ∈ NR a fuzzy relation rI : ∆I×∆I → L.

The interpretation function is extended to EL concepts induc-
tively by defining, for all x ∈ L,

>I(x) := 1,

(C uD)I(x) := CI(x) ∗DI(x),

(∃r.C)I(x) := sup
y∈∆I

rI(x, y) ∗ CI(y).

Classical semantics of ELU .
A classical interpretation is a pair I = (∆I , ·I), where
• ∆I is a nonempty (classical) set (called domain), and
• ·I is an interpretation function that assigns:

– to each A ∈ NC a set AI ⊆ ∆I , and
– to each r ∈ NR a binary relation rI ⊆ ∆I ×∆I .

This function is extended to ELU concepts by setting

>I := ∆I ,

(C uD)I := CI ∩DI ,
(C tD)I := CI ∪DI ,

(∃r.C)I := {x ∈ ∆I | ∃ y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}.

Clearly, by replacing the relation ∈ by its characteristic func-
tion χ∈ : ∆I → {0, 1}, we obtain a special case of fuzzy se-
mantics. Whenever L is one of the specific chains introduced
in the previous section, e.g. Łn, then we denote the resulting
logic by Łn-EL instead of L-EL.

In infinite chains, interpretations are often restricted to be
witnessed [Hájek, 2005], which means that for every existen-
tial restriction ∃r.C and x ∈ ∆I there is an element y ∈ ∆I

that realizes the supremum in the semantics of ∃r.C at x,
i.e. (∃r.C)I(x) = rI(x, y) ∗ CI(y). Under finitely valued
and classical semantics this property is always satisfied, and
it corresponds to the intuition that an existential restriction
actually forces the existence of a single domain element that
satisfies it, instead of infinitely many that only satisfy the re-
striction in the limit. We also adopt the restriction to wit-
nessed interpretations in what follows.

In DLs, the domain knowledge is represented by axioms
that restrict the class of interpretations under consideration.
In the fuzzy framework, these axioms are assigned a mini-
mum degree of truth to which they must be satisfied. Graded
general concept inclusions (GCIs) are expressions of the form
〈C v D > `〉, where ` ∈ L. The L-interpretation I satisfies
this axiom if CI(x)⇒DI(x) > ` holds for all x ∈ ∆I . As
usual, a TBox is a finite set of GCIs, and an L-interpretation I
satisfies a TBox if it satisfies every axiom in it.

We consider the problem of deciding whether a con-
cept C is `-subsumed by another concept D with respect to
a TBox T for a value ` ∈ L \ {0}. That is, whether every
L-interpretation I that satisfies T also satisfies 〈C v D > `〉.
In the classical case, we talk simply about subsumption, and
for ` = 1 the problem simplifies to the question whether
CI ⊆ DI holds in all interpretations I that satisfy T .

In the particular case of Gn-EL, subsumption is decidable
in polynomial time. This can be shown by generalizing the
proof from [Baader et al., 2005] (for n = 2), as it was done
in [Mailis et al., 2012] for the infinitely valued G-EL.
Proposition 3. Deciding `-subsumption with respect to a
TBox in Gn-EL is PTIME-complete.

In this paper, we show that for all other finite chains the
subsumption problem becomes EXPTIME-complete. As a
first step, we show that this problem is EXPTIME-hard for
all finite Łukasiewicz chains with at least three elements, and
then use this result in Section 4 to show EXPTIME-hardness
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0 a b 1

0 0.5 1

false true

L-EL

Ł/Ł3-EL

ELU

Ł or Ł3

Figure 1: Illustration of the reductions

under any finite chain that contains a Łukasiewicz compo-
nent, i.e. is not of the form Gn (see Definition 2). A match-
ing EXPTIME upper bound was shown in [Borgwardt and
Peñaloza, 2013]. In Section 5, we adapt our reduction to show
EXPTIME-hardness of Ł-EL, and even for every continuous
chain over [0, 1] containing a Łukasiewicz component.

The idea behind the reductions is illustrated in Figure 1 for
chains L containing either an Ł3-component or an infinitely
valued Ł-component. To simulate the semantics of ELU , the
values 0.5 and 1 in Ł3-EL (or Ł-EL) are used to simulate the
truth values false and true, respectively. The chain Ł3 (Ł) is
then embedded into L as depicted.

3 Finite Łukasiewicz Chains
We now reduce the subsumption problem of the classi-
cal DL ELU to the subsumption problem of Łn-EL, where
n > 3. Since concept subsumption in ELU is EXPTIME-
complete [Baader et al., 2005], this reduction shows that the
subsumption problem is EXPTIME-hard already for Ł3-EL;
i.e. for Łukasiewicz chains containing three truth degrees.

Note that it suffices to consider subsumption problems be-
tween two concept names since an ELU concept C is sub-
sumed by another ELU concept D w.r.t. an ELU TBox T
iff A is subsumed by B w.r.t. T ∪ {〈A v C〉, 〈D v B〉}, for
two new concept names A,B [Baader et al., 2005]. Further-
more, we can restrict our attention to ELU TBoxes in normal
form, which only contain axioms of the form

A1 uA2 v B, ∃r.A v B, A v ∃r.B, or A v B1 tB2,

where A,A1, A2, B,B1 and B2 are concept names or >. As
shown in [Baader et al., 2005], every ELU TBox can be trans-
formed in linear time into an equivalent one (w.r.t. the original
signature) in normal form.

The main idea of our reduction is to simulate a classi-
cal concept name in Łn-EL by considering all values below
n−2
n−1 to be equivalent to 0, and thus only the value 1 can be
used to express that a domain element belongs to the con-
cept name. We can then express a classical disjunction of
the form B1 t B2 by restricting the value of the fuzzy con-
junction B1 u B2 to be > n−2

n−1 : according to Fact 1, the lat-
ter is equivalent to B1 or B2 having value 1. Furthermore,
we reformulate classical subsumption between C and D as

1-subsumption between Cn−1 and Dn−1: again by Fact 1,
the latter two concepts can take only the values 0 or 1. No-
tice that the conjunctions Cn−1 and Dn−1 are fundamental
for this reduction to work; their purpose is to produce a crisp
version of the concepts C and D.

More formally, let n > 3, T be an ELU TBox in normal
form, and C,D ∈ NC. We construct an Łn-EL TBox ρn(T )
such that C is subsumed by D w.r.t. T if and only if Cn−1

is 1-subsumed by Dn−1 w.r.t. ρn(T ). Since T is in normal
form, we can define the reduction ρn for each of the four
kinds of axioms listed above:

ρn(A1 uA2 v B) := 〈A1 uA2 v B > 1〉
ρn(∃r.A v B) := 〈∃r.A v B > 1〉
ρn(A v ∃r.B) := 〈A v (∃r.B)n−1 > 1

n−1 〉
ρn(A v B1 tB2) := 〈A v B1 uB2 > n−2

n−1 〉

Finally, we set ρn(T ) := {ρn(α) | α ∈ T }. Notice that
ρn(T ) has as many axioms as T , and the size of each axiom
is increased by a factor of at most n. Hence, the translation
ρn(T ) can be performed in polynomial time. The translation
of the axiom A v ∃r.B deserves special attention. Notice
that ρn(A v ∃r.B) uses a conjunction of the concept ∃r.B
on the right-hand side. This is necessary to guarantee that we
consider cases where both, the role relation, and the mem-
bership to B have degree 1. We show that this translation
satisfies the properties described above.

First we show that if C is subsumed by D w.r.t. T , then
Cn−1 is 1-subsumed by Dn−1 w.r.t. ρn(T ). In order to
achieve this result, for any Łn-interpretation I = (∆I , ·I) we
define the classical interpretation Icr = (∆I , ·Icr ), where:

• x ∈ AIcr iff AI(x) = 1 for every A ∈ NC and x ∈ ∆I ,

• (x, y) ∈ rIcr iff rI(x, y) = 1 for every r ∈ NR and
x, y ∈ ∆I .

Recall that for every x ∈ ∆I it holds that x ∈ >Icr and
>I(x) = 1. This means that> behaves exactly like a concept
name in this reduction.

It can be shown that if the Łn-interpretation I satisfies
ρn(E v F ) for some ELU GCI E v F in normal form,
then Icr satisfies E v F .

Lemma 4. Let I be an Łn-interpretation that satisfies ρn(T ).
Then Icr satisfies T .

Proof Sketch. We consider only the two most interesting
kinds of axioms here. Take first any A v ∃r.B ∈ T
and assume that 〈A v (∃r.B)n−1 > 1

n−1 〉 is satis-
fied by I. For every element x ∈ AIcr , we need to
show that x ∈ (∃r.B)Icr . By the definition of Icr, we
have AI(x) = 1. By our assumption, this implies that
((∃r.B)n−1)I(x) > 1

n−1 , and thus (∃r.B)I(x) = 1 by
Fact 1. Hence, 1 = supz∈∆I rI(x, z) ∗Łn

BI(z), i.e. there
exists y ∈ ∆I such that rI(x, y) = 1 and BI(y) = 1. Again
by the definition of Icr, we have (x, y) ∈ rIcr and y ∈ BIcr ,
and hence x ∈ (∃r.B)Icr .

Consider now any A v B1 t B2 ∈ T and assume that
〈A v B1 u B2 > n−2

n−1 〉 is satisfied by I. If x ∈ AIcr ,
then AI(x) = 1. By our assumption, this implies that
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(B1 u B2)I(x) > n−2
n−1 , and hence either BI1 (x) = 1 or

BI2 (x) = 1 must hold by Fact 1. Again by the definition
of Icr, we get that either x ∈ BIcr1 or x ∈ BIcr2 .

Suppose now that Cn−1 is not 1-subsumed by Dn−1 w.r.t.
ρn(T ). Then, there exists an Łn-interpretation I that satisfies
ρn(T ) and an x ∈ ∆I such that (Cn−1)I(x) > (Dn−1)I(x).
By Fact 1, (Cn−1)I(x) = 1 and (Dn−1)I(x) = 0. This in
particular means that x ∈ CIcr\DIcr , yielding the following.

Proposition 5. If C is subsumed by D w.r.t. T , then Cn−1 is
1-subsumed by Dn−1 w.r.t. ρn(T ).

To prove the converse, we construct from a classical inter-
pretation I = (∆I , ·I) the Łn-interpretation In = (∆I , ·In),
where:

• AIn(x) := 1 if x ∈ AI and AIn(x) := n−2
n−1 otherwise,

for every A ∈ NC and x ∈ ∆I ,

• rIn(x, y) := 1 if (x, y) ∈ rI and rIn(x, y) := n−2
n−1

otherwise, for every r ∈ NR and x, y ∈ ∆I .

As before, this transformation preserves the satisfaction of the
TBox w.r.t. the operator ρn.

Lemma 6. If a classical interpretation I satisfies T , then In
satisfies ρn(T ).

Proof Sketch. We again consider only two cases. Consider
first any 〈A v (∃r.B)n−1 > 1

n−1 〉 ∈ ρn(T ) and x ∈ ∆I . If
((∃r.B)n−1)In(x) = 0, then

1 > (∃r.B)In(x) = sup
z∈∆In

rIn(x, z) ∗Łn
BIn(z).

Therefore, every y ∈ ∆I must satisfy either rIn(x, y) < 1
or BIn(y) < 1. By the definition of In, we get
x /∈ (∃r.B)I , and thus x /∈ AI by assumption. Again by
the definition of In, we have AIn(x) = n−2

n−1 , and hence
AIn(x)⇒Łn

((∃r.B)n−1)In(x) = 1
n−1 .

In the case that ((∃r.B)n−1)In(x) > 0, Fact 1 yields that
((∃r.B)n−1)In(x) = 1 and

AIn(x)⇒Łn
((∃r.B)n−1)In(x) = 1 > 1

n−1 .

Consider now any 〈A v B1 u B2 > n−2
n−1 〉 ∈ ρn(T ). If

(B1uB2)In(x) < n−2
n−1 , then by the definition of In we have

BIn1 (x) = BIn2 (x) = n−2
n−1 , and thus x /∈ BI1 ∪ BI2 . Since

I satisfies T , this implies x /∈ AI . Again by the definition
of In, AIn(x) = n−2

n−1 . Since (B1 u B2)In(x) = n−3
n−1 , we

can conclude that AIn(x)⇒Łn
(B1 uB2)In(x) = n−2

n−1 .
In the case that (B1 uB2)In(x) > n−2

n−1 , we also have

AIn(x)⇒Łn
(B1uB2)In(x) > (B1uB2)In(x) > n−2

n−1 .

Using arguments analogous to those sketched above, we
obtain the following proposition.

Proposition 7. IfC is not subsumed byD w.r.t. T , thenCn−1

is not 1-subsumed by Dn−1 w.r.t. ρn(T ).

We have thus reduced classical subsumption in ELU to
1-subsumption in Łn-EL. Since the former is EXPTIME-
hard [Baader et al., 2005], we obtain an EXPTIME lower
bound for the complexity of the latter. An exponential-time
algorithm for solving subsumption in the more expressive
language Łn-ALC, which provides a matching upper bound,
was presented in [Borgwardt and Peñaloza, 2013].
Theorem 8. For any n > 3, deciding `-subsumption with
respect to a TBox in Łn-EL is EXPTIME-complete.

4 Arbitrary Finite Chains
We now show that the complexity result from the previous
section can be transferred to almost all logics of the form
L-EL where L is a finite chain. More precisely, subsump-
tion in L-EL is EXPTIME-complete for all finite chains ex-
cept those of the form Gn. For the latter, this problem can be
shown to be tractable.

As detailed in Section 2, any finite chain L that is not of
the form Gn must contain a finite Łukasiewicz chain in an
interval [a, b] with at least three elements. We use this fact to
reduce subsumption in Łn-EL to subsumption in L-EL, where
n is the cardinality of the interval [a, b] in L that is isomorphic
to Łn. We extend the bijection λ : [a, b]→ Łn to the chain L:
• λ(x) := 0 if x < a and
• λ(x) := 1 if x > b.

We also use the inverse λ−1 : Łn → 2L of this function, for
which we have λ−1(0) = [0, a], and λ−1(1) = [b, 1]. When
it is clear from the context, we will also use λ−1 to denote the
inverse of the original bijection; i.e. λ−1 : Łn → [a, b]. As
shown in the following lemma, these operators are compati-
ble with all the operators that are relevant to fuzzy EL.
Lemma 9. 1. For all p, q ∈ L, we have

• λ(p ∗L q) = λ(p) ∗Łn
λ(q), and

• if q > a, then λ(p⇒L q) = λ(p)⇒Łn
λ(q).

2. For all values p, q ∈ Łn, p′ ∈ λ−1(p) ∩ [a, 1], and
q′ ∈ λ−1(q) ∩ [a, 1], we have
• p′ ∗L q

′ ∈ λ−1(p ∗Łn
q) ∩ [a, 1], and

• p′⇒L q
′ ∈ λ−1(p⇒Łn

q) ∩ [a, 1].
We can now describe the reduction from Łn-EL to L-EL.

Let T be an Łn-EL TBox, ` ∈ Łn\{0}, andA,B two concept
names for which we want to check whether A is `-subsumed
by B w.r.t. T . We define the L-EL TBox T ′ as follows.

T ′ := {〈C v D > λ−1(p)〉 | 〈C v D > p〉 ∈ T } ∪
{〈> v D > a〉 | 〈C v D > p〉 ∈ T } ∪
{〈> v B > a〉}.

Restricting all right-hand side of GCIs in T to have values
> a is necessary in light of Lemma 9.

We prove that ifA is λ−1(`)-subsumed byB w.r.t. T ′, then
A is `-subsumed by B w.r.t. T . Given an Łn-interpretation I,
we define the L-interpretation IL = (∆I , ·IL) for allC ∈ NC,
r ∈ NR, and x, y ∈ ∆I as follows:
• CIL(x) := λ−1(CI(x)) and
• rIL(x, y) := λ−1(rI(x, y)).
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Using the properties from Lemma 9, it is easy to see that if I
satisfies T , then IL satisfies T ′.

Suppose now that A is not `-subsumed by B w.r.t. T .
Then there is an Łn-interpretation I that satisfies T , and an
x ∈ ∆I such that AI(x) ⇒Łn

BI(x) < `. But then also
AIL(x)⇒Łn

BIL(x) < λ−1(`) since λ−1 is strictly mono-
tone. Since IL is a model of T ′, this proves the claim.
Proposition 10. IfA is λ−1(`)-subsumed byB w.r.t. T ′, then
A is `-subsumed by B w.r.t. T .

Conversely, given an L-interpretation I, we can construct
the Łn-interpretation In = (∆I , ·In) where
• CIn(x) := λ(CI(x)) for all C ∈ NC and x ∈ ∆I , and
• rIn(x, y) := λ(rI(x, y)) for all r ∈ NR and x, y ∈ ∆I .

Using arguments similar to those presented before, it is pos-
sible to prove that if I satisfies T ′, then In satisfies T . Thus,
subsumption w.r.t. T ′ can be decided by checking the sub-
sumption w.r.t. the original TBox T .
Proposition 11. If A is `-subsumed by B w.r.t. T , then A is
λ−1(`)-subsumed by B w.r.t. T ′.

This shows that subsumption in Łn-EL is polynomially re-
ducible to subsumption in L-EL, for any finite chain L con-
taining an interval Łn. By Theorem 8, the latter problem is
EXPTIME-hard. A matching upper bound is also a conse-
quence of the results from [Borgwardt and Peñaloza, 2013].
As discussed before, every finite chain L is either of the
form Gn or contains an interval isomorphic to Łn, for some n.
Overall, this yields the desired complexity result.
Theorem 12. Let L be a finite chain that is not of the
form Gn. Deciding `-subsumption with respect to a TBox
in L-EL is EXPTIME-complete.

Together with Proposition 3, we thus obtain a full charac-
terization of the complexity of reasoning in fuzzy EL over
finite chains, depending on the t-norm that defines the se-
mantics. If all elements of the chain are idempotent w.r.t.
the t-norm, then subsumption can be decided in PTIME. Oth-
erwise (i.e. if there is at least one non-idempotent element),
this problem becomes EXPTIME-hard. In the following sec-
tion, we show that the exponential lower bound holds also for
infinite chains that contain a Łukasiewicz component.

5 The Infinite Łukasiewicz T-norm
We now consider the infinite chain [0, 1], and show EXP-
TIME-hardness for deciding subsumption in L-EL, for any t-
norm that contains a Łukasiewicz component (Definition 2).
As shown in [Borgwardt and Peñaloza, 2013], it suffices to
prove this result for any t-norm that starts with the Łukasie-
wicz t-norm. Thus, for the rest of this section we consider a
continuous t-norm that is isomorphic to the infinitely valued
Łukasiewicz t-norm in the interval [0, b] for some b ∈ (0, 1].

To obtain the EXPTIME lower bound, we reduce subsump-
tion in ELU to subsumption in L-EL. This reduction is very
similar to the construction from Section 3. The main differ-
ence is that, in order to guarantee that the constructed L-EL
TBox can be used to decide the original ELU subsumption
problem, we need to restrict its models in such a way that all
relevant concepts can only take the values b

2 or > b.

Given a concept C, let TC be the L-EL TBox

TC := {〈C2 v C3 > 1〉, 〈> v C > b
2 〉}.

Every model I of this TBox must satisfy CI(x) > b
2 for

every x ∈ ∆I due to the second axiom. The first ax-
iom additionally guarantees that CI(x) /∈ ( b

2 , b) holds: if
b
2 < CI(x) < b, then (C2)I(x) = CI(x) +CI(x)− b > 0,
and thus (C3)I(x) < (C2)I(x), violating the axiom.

Similar to the reduction in Section 3, we will use the truth
degree b

2 ∈ L to stand for “false” in ELU and any degree
greater or equal to b to represent “true.” We define the func-
tion ρŁ for every ELU GCI in normal form (cf. Section 3):

ρŁ(A1 uA2 v B) := 〈A1 uA2 v B > b〉
ρŁ(∃r.A v B) := 〈∃r.A v B > b〉
ρŁ(A v ∃r.B) := 〈A v (∃r.B)2 > b

2 〉
ρŁ(A v B1 tB2) := 〈A v B1 uB2 > b

2 〉.
Given an ELU TBox T in normal form, let AC(T ) be the
set of all concept names and existential restrictions appearing
in T . We extend the mapping ρŁ to ELU TBoxes as follows:

ρŁ(T ) := {ρŁ(C v D) | C v D ∈ T } ∪
⋃

C∈AC(T )

TC .

Let now A,B ∈ NC. One can show that A is subsumed by
B w.r.t. T iff A is b-subsumed by B w.r.t. ρŁ(T ) ∪ TA ∪ TB .
The proof follows the same ideas presented in Section 3. The
TBoxes TC ensure that only three values are relevant for the
models, and hence L behaves like Ł3 on them.

From the previous arguments, we see that for any con-
tinuous chain L that starts with Łukasiewicz, subsumption
in L-EL is EXPTIME-hard. As shown in [Borgwardt and
Peñaloza, 2013], if L is the ordinal sum of L1 and L2 over the
intervals [0, a] and [a, 1], respectively, for some a ∈ (0, 1),
then subsumption in L-EL is at least as hard as subsumption
in L2-EL. Additionally, every chain L that contains a Łuka-
siewicz component can be described as such an ordinal sum,
where L2 starts with Łukasiewicz. This means that the EXP-
TIME-hardness holds for all such continuous chains.
Theorem 13. If L is defined using any continuous t-norm
over [0, 1] containing a Łukasiewicz component, then decid-
ing `-subsumption w.r.t. a TBox in L-EL is EXPTIME-hard.

This improves the CO-NP lower bound from [Borgwardt
and Peñaloza, 2013]. It is unknown whether a similar lower
bound holds for t-norms containing only product compo-
nents. An upper bound is known only for G-EL, where sub-
sumption can be decided in PTIME [Mailis et al., 2012].

6 Conclusions
We have shown that reasoning in finitely valued extensions
of fuzzy EL becomes exponentially harder than in classical
EL even if only one additional truth value interpreted under
Łukasiewicz semantics is considered. This provides the first
example of a finitely valued DL that exhibits an increased
complexity compared to the underlying classical DL. The
same complexity lower bound holds for any infinitely valued
t-norm over [0, 1] that contains a Łukasiewicz component.
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Although EXPTIME-complete, we believe that subsump-
tion in finitely valued EL can be solved more efficiently than
by the algorithms developed for expressive finitely valued
DLs [Borgwardt and Peñaloza, 2013; 2014]. We plan to look
at adaptations of consequence-based algorithms for classical
DLs [Baader et al., 2005; Kazakov, 2009]. On the theoretical
side, we will investigate whether other inexpressive DLs like
FL0 [Baader, 1990] or DL-Lite [Calvanese et al., 2005] also
exhibit an increase in complexity under Łukasiewicz seman-
tics. We also want to study the effect of the product semantics
on the complexity of these logics.
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