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Abstract

We study confidentiality enforcement in ontologies
under the Controlled Query Evaluation framework,
where a policy specifies the sensitive information
and a censor ensures that query answers that may
compromise the policy are not returned. We focus
on censors that ensure confidentiality while max-
imising information access, and consider both Dat-
alog and the OWL 2 profiles as ontology languages.

1

As semantic technologies are becoming increasingly mature,
there is a need for mechanisms to ensure that confidential data
is only accessible by authorised users.

Controlled Query Evaluation (CQE) is a prominent confi-
dentiality enforcement framework, in which sensitive infor-
mation is declaratively specified by means of a policy and
confidentiality is enforced by a censor. When given a query,
the censor checks whether returning the correct answer may
lead to a policy violation, in which case it returns a distorted
answer. The CQE framework was introduced in [Sicher-
man et al., 1983], and studied in [Biskup and Bonatti, 2001;
2004; Bonatti ef al., 1995; Biskup and Weibert, 2008] for
propositional databases. It has been recently extended to
ontologies, where different formalisations have been pro-
posed [Bonatti and Sauro, 2013; Cuenca Grau et al., 2013;
Studer and Werner, 2014].

We study CQE for ontologies expressed in the rule lan-
guage Datalog as well as in the lightweight description log-
ics (DLs) underpinning the profiles of OWL 2 [Motik et al.,
2012]. We assume that data is hidden and that users access
the system by means of a query interface. An ontology, which
is known to users, provides the vocabulary and background
knowledge needed for users to formulate queries, as well as
to enrich query answers with implicit information. Policies,
formalised as conjunctive queries, are available to system ad-
ministrators, but not to ordinary users. The role of the censor
is to preserve confidentiality by filtering out those answers to
user queries that could lead to a policy violation.

In this setting, there is a danger that confidentiality enforce-
ment may over-restrict the access of the user. Thus, we focus
on optimal censors, which maximise answers to queries while
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ensuring confidentiality of the policy. We are especially inter-
ested in censors that can be realised by off-the-shelf reason-
ing infrastructure. To fullfil this requirement, we introduce in
Section 4 view and obstruction censors.

View censors return only answers that follow from the on-
tology and an anonymised dataset (a view) where some oc-
currences of constants may have been replaced with labelled
nulls. The censor answers faithfully all queries against the
view; thus, any information not captured by the view is inac-
cessible by default. View censors may require materialisation
of implicit data, and hence are well-suited for applications
where materialisation is feasible.

Obstruction censors are defined by a set of “forbidden
query patterns” (an obstruction), where all answers instan-
tiating such patterns are not returned to users. These censors
do not require data modification and are well-suited for appli-
cations such as Ontology Based Data Access (OBDA), where
data is managed by an RDBMS. Obstruction censors are dual
to view censors in the sense that they specify the information
that users are denied access to. We formally characterise this
duality, and show that their capabilities are incomparable.

In Section 5 we investigate the limitations of view censors
and show that checking existence of a view realising an op-
timal censor is undecidable for Datalog ontologies. We then
study fragments of Datalog for which such views always exist
and extend our results to OWL 2 profile ontologies.

In Section 6 we focus on obstruction censors, and pro-
vide sufficient and necessary conditions for an optimal censor
based on an obstruction to exist. Then, we propose a polyno-
mial time algorithm for computing such obstructions realis-
ing optimal views for linear Datalog ontologies, and apply
our results to OWL 2 QL ontologies.

Compete proofs of all our results are delegated to an ex-
tended version (see [Cuenca Grau et al., 2015]).

2 Preliminaries

We adopt standard notions in first order logic over function-
free finite signatures. Our focus is on ontologies, so we as-
sume signatures with constants a, . . ., unary predicates A, .. .,
and binary predicates R, .... We treat equality ~ as an ordi-
nary predicate, but assume that any set of formulae containing
~ also contains all the axioms of ~ for its signature.

Datasets and Ontologies A dataset is a finite set of facts
(i.e., ground atoms). An ontology is a finite set of rules, that



1) A(@)AR(z, y )AB(y1)AR(z, y2)AB(y2) = y1 = y2,

(

(2) R(z,y) = S(z,y), (3) A(z) — Jy.[R(z, y)AB(y)],
(4) A(z) » z~a, (5) R(z,y)A\S(y, 2) = T(z, 2),
(6) A(x)AB(z) = C(z), (7) A(z) A R(z,y) — B(y),
(8) R(z,y) = S(y,z), (9) R(z,a) — B(x),

(10) R(z,y) — A(y), (11) A(z) — R(z,a),

(12) A(z) — B(x) (13) R(z,y) A B(y) — A(x).

Table 1: OWL 2 profile axioms as rules

is, universally quantified sentences of the form
o(¥) = 3y.P(Z, ),

where the body ¢(Z) and the head (&, ) are conjunctions
of atoms, and variables & are implicitly universally quantified.
We restrict ourselves to ontologies O and datasets D such that
OUD is satisfiable, which ensures that answers to queries are
meaningful. A rule is

— Datalog if the head has a single atom and ¢/ is empty;

— guarded if the body has an atom (guard) with all z;

linear if the body has a single atom;

multi-linear if the body contains only guards; and
tree-shaped if the undirected multigraph with an edge
{t1,t2} for each binary body atom R(¢1,t2) is a tree.

An ontology is of a type above if so are all the rules in it.

OWL 2 Profiles Table 1 provides the types of rules sufficient
to capture the axioms in the OWL 2 RL, EL, and QL profiles.
We treat the T concept in DLs as a unary predicate and as-
sume that each ontology contains the rule S(Z) — T (x) for
each predicate .S and variable x from . An ontology consist-
ing of rules in Table 1 is

— RL if it has no rules of type (3);
— QL if it only has rules of types (2), (3), (8), (10), and (12);
— EL if it has no rules of types (1), (7), (8).

Queries A conjunctive query (CQ) with free variables ¥ is
a formula of the form 37.¢ (&, ¥), with the body ¢(Z,¥) a
conjunction of atoms. A union of CQs (UCQ) is disjunc-
tion of CQs with same free variables. Queries with no free
variables are Boolean. A tuple of constants a is a (certain)
answer to a (U)CQ Q(&) over ontology O and dataset D if
O UD E Q(d). The set of answers to Q(&) over O and D is
denoted by cert(Q, O, D).

3 Basic Framework

We assume that data D is hidden while the ontology O is
known to all users. It is assumed that system administrators
are in charge of specifying policies (i.e., sensitive informa-
tion) as CQs, and that policies are assigned to (groups of)
users by standard mechanisms such as role-based access con-
trol [Sandhu er al., 1996]. To simplify the exposition, we
assume that all users are assigned with the same policy; and
the lifting to the general case is straightforward.

Definition 1. A CQE instance I is a triple (O, D, P), with O
an ontology, D a dataset, and P a CQ, which is called policy.
The instance 1 is Datalog, guarded, etc. if so is the ontology
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O U{o(Z, ) = Ay(Z)}, where o(Z, ) is the body of P and
Apa fresh predlcate

Example 2. Consider the following ontology and dataset that
describe an excerpt of a social network:

O ={ Likes(xz,y) A Thriller(y) — ThrillerFan(x),
Suspense(x) A Crime(x) — Thriller(x),
FrOf (z,y) — FrOf (y,x)  },

FrOf (John, Bob), FrOf (Bob, Mary),
Crime(Seven), Suspense(Seven),
Likes(John, Seven), Likes(Bob, Seven) }.

Here, the ontology Oe states, for example, that people who
like thrillers are thriller fans, or that friendship is a symmet-
ric relation; the dataset Dey states, for example, that Bob is
John’s friend. Then, a policy Pex = FrOf(Bob, x) forbids
access to Bob’s friend list. O

Dex:{

A key component of a CQE system is the censor, whose
goal is to decide according to the policy which query answers
can be safely returned to users.

Definition 3. A censor for a CQE instance (O,D,P)
is a function cens mapping each CQ @ to a subset of
cert(Q, O, D). The theory Theens of cens is the set

{Q(@) | @ € cens(Q) and Q(Z) is a CO}.

Censor cens is confidentiality preserving if for any tuple of

constants @ it holds that O U Theens = P(@). It is optimal if

— it is confidentiality preserving, and

— no confidentiality preserving censor cens’ # cens exists
such that cens(Q) C cens'(Q) for every CQ Q.

Intuitively, the theory Thcens represents all the information
that a user can gather by asking CQs to the system. If the
censor is confidentiality preserving, then no information can
be obtained about the policy, regardless of the number of CQs
asked. In this way, optimal censors maximise information
accessibility without compromising the policy.

4 View and Obstruction Censors

As already mentioned, we are interested in censors imple-
mentable by off-the-shelf tools. In this section we discuss
view and obstruction censors, which satisfy this requirement.

The idea behind view censors, is as follows. First, the
dataset is modified by anonymising occurrences of constants
as well as by adding or removing facts, whenever needed.
Such modified dataset constitutes an (anonymisation) view.
Then, the view censor returns only the answers that follow
from the ontology and view; in this way, the main workload
of the censor amounts to the computation of certain answers,
which can be delegated to a query answering engine.

Definition 4. A view V for a CQE instance I = (O, D, P) is
a dataset over the signature of 1 extended with a set of fresh
constants. The view censor vcensy based on 'V is the censor
mapping each CQ Q(Z) to cert(Q, O, D) N cert(Q, O, V).
The view is optimal if so is its corresponding censor.

Clearly, for a view censor to be confidentiality preserving
O UV must not entail any answer to the policy. On the other
hand, to ensure optimality a view must encode as much infor-
mation from the hidden dataset as possible.



Example 5. Consider the view V., obtained from D, in Ex-
ample 2 by replacing Bob with a fresh any. Intuitively, Ve, is
the result of “anonymising” the constant Bob, while keeping
the structure of the data intact. Since V., contains no infor-
mation about Bob, we have cert(Pey, Ocx, Vex) = 0 and the
censor based on Ve is confidentiality preserving. View Ve,
however, is not optimal: for instance, OexUVex does not entail
the fact Likes(Bob, Seven), which can be added to the view
without violating confidentiality. O

The idea behind obstruction censors is to associate to a
CQE instance a Boolean UCQ U such that the censor returns
an answer @ to a CQ Q(Z) only if no CQ in U follows from
Q(d). Thus, the obstruction can be seen as a set of forbidden
query patterns, which should not be disclosed.

Definition 6. An obstruction U for a CQE instance I =
(0, D, P) is a Boolean UCQ. The obstruction censor ocenst
based on U is the censor that maps each CQ Q(Z) to the set

(@] d € cert(Q, O, D) and Q(@) W U}.

U
T-

Similarly to view censors, obstruction censors do not re-
quire dedicated algorithms: checking whether Q(d) = U
can be delegated to an RDBMS. Obstructions can be virtu-
ally maintained and do not require data materialisation.

The obstruction is optimal if so is its censor ocens

Example 7. The censor based on Ve, from Example 5 can
also be realised with the following obstruction Us,:

Jz. FrOf (z, Bob) V 3z. FrOf (Bob, x) V
Jz.Likes(Bob, ) V ThrillerFan(Bob).

Intuitively, Uex “blocks” query answers involving Bob; and
all other answers are the same as over Og, U Dey. O

Examples 5 and 7 show that the same censor may be based
on both a view and an obstruction. These censors, however,
behave dually: a view explicitly encodes the information ac-
cessible to users, whereas obstructions specify information
which users are denied access to. It is not obvious whether
(and how) a view can be realised by an obstruction, or vice-
versa. We next focus on Datalog ontologies and characterise
when a view V and obstruction U yield the same censor. We
start with few definitions.

Each Datalog ontology O and dataset D have a unique least

Herbrand model Ho p that is the finite structure satisfying
a € cert(Q, 0, D) if and only if Ho p = Q(a) for every CQ
Q. Thus, this model captures all the information relevant to
CQ answering. A natural specification of the duality between
views and obstructions is then as follows: U and V implement
the same censor if and only if U captures the structures not
homomorphically embeddable into Hep y. To formalise this
statement, we recall the central problem in the (non-uniform)
constraint satisfaction theory.
Definition 8 (Kolaitis and Vardi, 2008). Ler C be a class
of finite structures and let C' be a subset of C. A first-order
sentence ¢ defines C' in C if T € C' is equivalent to T |=
for every structure T € C.

Let 7 < J’ denote the fact that there is a homomorphism
from a structure 7 to a structure 7. The correspondence is
given in the following theorem.
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Theorem 9. Let I = (O, D, P) be a Datalog CQE instance
and let C consist of all finite T such that L — Ho p. Then,
Y = ocensY iff U defines C\ {Z | T — Ho,v} in C.

vcensy =

Using this theorem together with definability results in Fi-
nite Model Theory, we can show that views and obstructions
cannot simulate one another in general.

Theorem 10. The following statements hold.

1. There is a Datalog CQE instance admitting a confidential-
ity preserving view censor not based on any obstruction.
Conversely, there is a Datalog CQFE instance admitting
a confidentiality preserving obstruction censor that is not
based on any view.

2.

5 Optimal View Censors

Our discussion in Section 4 suggests that view and obstruc-
tion censors must be studied independently. In this section we
focus on view censors and start by establishing their theoret-
ical limitations. The following example shows that optimal
view censors may not exist, even if we restrict ourselves to
empty ontologies.

Example 11. Consider a CQE instance with an empty on-
tology, a dataset consisting of a fact R(a,a), and a policy
P =3z 3y3z.R(x,y) AR(y, z) A R(z, z). Consider also the
family of Boolean CQs @, = Jz1...3zn. \,; R(zi, x;),
which represent strict total orders on n elements. Answering
these queries positively is harmless: V U {Q,, }n>1 = P for
any confidentiality preserving view V. Assume now that V is
optimal, and let m be the number of constants in V. Then,
V ¥ Q41 since otherwise V would entail Jz. R(x, x) and
violate the policy. This contradicts the optimality of V), and
hence no optimal view exists.

Furthermore, determining the existence of an optimal view
is undecidable even for Datalog CQE instances.

Theorem 12. The problem of checking whether a Datalog
CQE instance admits an optimal view is undecidable.

Proof (idea). The proof is by reduction to the undecidable
problem of checking whether a deterministic Turing machine
without a final state has a repeated configuration in a run
on the empty tape. For each such machine we construct a
CQE instance such that the run corresponds to an infinite
grid-like “view” with axes for the tape and time. The on-
tology of the instance is constructed to guarantee that repre-
sentations of adjacent configurations agree with the transition
function, while the policy forbids invalid configurations (e.g.,
with many symbols in a cell). Then, coinciding configura-
tions appear in the run if and only if the grid can be “folded”
to a finite view on all sides (i.e., if the representations of these
configurations can be merged). If the first pair of such con-
figurations is merged, then the view is optimal. O

In what follows we identify classes of CQE instances that
guarantee existence of optimal view censors. We start by
studying restrictions on Datalog ontologies and then adapt the
obtained results to the OWL 2 profiles.



(JOh n{MavzeFan}] (JOh N{ MovieFan, ThrillerFan }]

~ 7

[BOb { MovieFan, ThrillerFan }]

Figure 1: Part of optimal view in Example 13 (labels of nodes
coincide to subscripts and omitted, same as labels of arrows,
which represent FrOf relation)

5.1 Guarded Tree-Shaped Datalog

The idea behind view censors is to anonymise information

in the original data in such a way that the policy cannot

be violated. For instance, in Example 5 we replaced the
atom FrOf (John, Bob) with FrOf (John, any), where any, is

a fresh anonymised copy of Bob. In general, however, many

such anonymous copies may be required for each data con-

stant to encode all the information required for ensuring opti-
mality. The limit case is illustrated by Example 11, where no
finite number of fresh constants suffices for optimality.

Observe that the CQE instance used in Example 11 is nei-
ther guarded nor tree-shaped due to the form of the policy.
In what follows we show that an optimal view can always
be constructed using at most exponentially many anonymous
constants if we restrict ourselves to Datalog CQE instances
that are guarded and tree-shaped.

We next provide an intuitive idea of the construction. Con-
sider the view for a CQE instance (O, D, P) consisting of the
following three components V;—Vs.

(1) Component V; is any maximal set of unary atoms in
‘Ho,p that does not compromise the policy.

(2) To construct Vs, we consider an anonymised copy ap of
each constant ¢ and each set 3 of unary predicates B such
that Ho p = B(a). The corresponding set of all unary
atoms B(ap) for B € B is a part of Vs if and only if it is
“safe”, that is, neither discloses the policy nor entail new
facts together with O U V.

(3) Finally, V3 consists of a maximal set of binary atoms on
all the constants (including the copies) that are justified
by Ho,p and do not disclose the policy.

Optimality of this view follows immediately from the con-

struction. The view, however, may require exponentially

many anonymised copies of data constants. The need for
them is illustrated by the following example.

Example 13. Consider the CQE instance with ontology con-
sisting of rules

ThrillerFan(y) A FrOf (z,y)
ThrillerFan(x)

—  MovieFan(z) and
—  MovieFan(z),

dataset consisting of facts
FrOf (John, Bob), ThrillerFan(John), ThrillerFan(Bob),

and policy MovieFan(xz). The essential part of the opti-
mal view obtained using the aforementioned construction
is given in Figure 1. According to the construction, V; is
empty, V-, contains unary atoms over the anonymised copies

JOhn{MovieFan} and JOhn{MouieFan, ThrillerFan} of John, and
Bob{ rovieFan, ThrilierFany Of Bob, while Vs contains the

FrOf atoms represented by arrows. Note that at least two
anonymised copies of John are necessary in any optimal view
to answer correctly “harmless” queries such as

3z 3y 3z. ThrillerFan(z) A FrOf (z,y) A
ThrillerFan(y) A FrOf (z,y) A
MovieFan(z) A FrOf(z,Bob). &

This example shows that, in order to avoid the exponen-
tial blow up in the number of anonymised copies, we need
further restrictions on the ontology. In particular, in the case
of multi-linear CQE instances we can guarantee that just one
copy suffices for every constant.

The following theorem formalises the intuition above.

Theorem 14. Let I be a Datalog tree-shaped CQE instance.

1. If 1 is guarded, then it admits an optimal view that can
be computed in time exponential in |1| and polynomial in
data size.

2. If1is multi-linear, then it admits an optimal view that can
be computed in time polynomial in |1|.

Additionally, if 1 is linear the it has a unique optimal censor.

5.2 OWL 2 Profiles

The result in Theorem 14 is immediately applicable to RL
ontologies, with the only restriction that they do not contain
rules of types (1), (4), or (5) in Table 1. In contrast to RL, the
QL and EL profiles provide means for capturing existentially
quantified knowledge. To bridge this gap, we show that every
(guarded) QL or EL CQE instance I = (O, D, P) can be
polynomially trasformed into a Datalog CQE instance I’ =
(O, D, P) by rewriting O into a (guarded and tree-shaped)
Datalog ontology O such that optimal views for I can be
directly obtained from those for I'. We start by specifying
what constitutes an acceptable rewriting O’ of O.

Definition 15. Let o be a set of constants.! A Datalog ontol-
ogy O' is a o-rewriting of an ontology O if cert(Q, O, D) =
cert(Q, O, D) for each tree-shaped CQ Q and dataset D

over Constantsfrom ag.

The following proposition provides the mechanism to re-
duce optimal view computation for arbitrary ontologies to the
case of Datalog.

Proposition 16. Ler I = (O,D,P) be a CQE instance
over constants o with P tree-shaped, and O' a o-rewriting
of O such that O' = O. If V' is an optimal view for
I' = (O, D, P), then Hor - is an optimal view for 1.

With this proposition at hand, we just need to devise a tech-
nique for rewriting any QL (or guarded EL) ontology into
a stronger Datalog ontology, which, however, preserves the
answers to all tree-shaped queries. To this end, we exploit
techniques developed for the so-called combined approach to
query answering [Kontchakov et al., 2011; Lutz et al., 2009;
2013; Stefanoni et al., 2013]. The idea is to transform rules
of type (3) into Datalog by Skolemising existentially quan-
tified variables into globally fresh constants. Such transfor-
mation strengthens the ontology; however, if applied to a QL

!The role of the set o is purely technical—it allows us to pick
fresh constants in Definition 17.
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or guarded EL ontology, it preserves answers to tree-shaped
CQs for any dataset over o [Stefanoni e al., 2013].

Definition 17. Let O be an ontology and o be a set of con-
stants. The ontology 2, (QO) is obtained from O by replacing
each rule A(x) — Jy.[R(x,y) A B(y)] with

A(x) =R (z,a), R'(z,y) > R(x,y), R (z,y)=B(y),

where R’ is a fresh binary predicate, uniquely associated to
the original rule, and a is a globally fresh constant not from
o, uniquely associated to A and R.

Theorem 18. For any ontology O we have Z,(0) = O.
Furthermore, if O is either a QL or guarded EL ontology,
then E,(0) is a o-rewriting of O.

Proposition 16 and Theorem 18 ensure that Hz_(0),y is
an optimal view for I whenever V is such a view for I' =
(E6(0), D, P). The transformation of O to =, (O) preserves
linearity, guardedness, and tree-shapedness, so the results of
Section 5.1 are applicable to I'.

Theorem 19. Every guarded EL CQE instance admits an op-
timal view that can be computed in exponential time. Every
QL instance admits a unique optimal censor, which is imple-
mentable by a view of polynomial size.

6 Optimal Obstruction Censors

Similarly to Section 5, we start the study of optimal obstruc-
tion censors with their limitations. The following example
shows that such a censor may not exist even if we restrict
ourselves to ontologies with only one rule.

Example 20. Consider a CQE instance with an ontology
{R(z,y)NA(y) — A(x)}, dataset { R(a, a), A(a)}, and pol-
icy A(a). Let @y, for n > 0, be a family of Boolean CQs

dzq...3dx,.
R(a,z1) AN R(z1,22) A+ AN R(xp—1,2n) N A(zy).

With the help of the ontology each of @,, discloses the policy.
Thus, each @,, should entail a Boolean CQ in any optimal ob-
struction. Consider now the set of all CQs that are entailed by
queries (), but not equivalent to any of them. On the one
hand, this set is “harmless”, that is, any obstruction censor
should answer all these queries positively. On the other hand,
the CQs @,, do not entail each other. Hence, any optimal ob-
struction should contain a CQ equivalent to every (), which
is however not possible, because n is unbounded. O

We leave the question of decidability of checking the
existence of an optimal obstruction for a CQE instance
open. In fact, answering this question positively would im-
ply a solution to a long-standing open problem on uniform
boundedness for Datalog programs over binary signatures
(see [Marcinkowski, 1999] for details of the problem and the
extended version [Cuenca Grau et al., 2015] of this paper for
the reduction).

In the rest of this section we give a characterisation of opti-
mal obstructions for Datalog instances in terms of resolution
proofs and identify restrictions for which this characterisation
guarantees existence of such obstructions.
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6.1 Characterisation of Optimal Obstructions

We first recall the standard notion of SLD resolution.

A goal is a conjunction of atoms. An SLD resolution step
takes a goal 8 A ¢ with a selected atom (8 and a sentence 7
that is either a Datalog rule 1) — ¢ or a fact §, and produces
a new goal w8 A 16, where 6 is a most general unifier of 3
and § (assuming that ) is empty in the case when r is a fact).
An (SLD) proof of a goal Gy in a Datalog ontology O and
dataset D is a sequence of goals Gy, G1, ..., Gy, where G,
is empty, and each G; is produced from G;_; and a sentence
(rule or fact) in © U D by an SLD resolution step.

Resolution is sound and complete: for any Datalog ontol-
ogy O, dataset D, and goal G (such that O U D is satisfiable)
there is a proof of G in O and D if and only if OUD = 3*G
for the existential closure 3*G of G.

We next characterise optimal obstructions using SLD
proofs. Intuitively, if an obstruction censor answers posi-
tively sufficient number of Boolean CQs 3*G for goals G
in a proof of a policy, then a user could reconstruct (a part
of) this proof and compromise the policy. Also, there can
be many proofs, and a user may compromise the policy by
reconstructing any of them. Thus, to ensure that a censor
is confidentiality preserving, we must guarantee that the ob-
struction contains enough CQs to prevent reconstruction of
any proof. If we also want the censor to be optimal, the ob-
struction should not block too many CQs. As we will see later
on, these requirements may be in conflict and lead to an infi-
nite “obstruction”. Next definitions formalise this intuition.

Definition 21. Ler I = (O, D, P) be a Datalog CQE in-
stance, Q be the set of all Boolean CQs 3*G for goals G
in proofs of P(a@) in O and D for some tuple of constants a,
and S be a maximal subset of Q such that O US = P(a) for
any d. Then, a pseudo-obstruction for I is a subset of Q \ S

that contains a CQ Q' for any Q in Q \ Swith Q E Q'

The next theorem establishes the connection between
pseudo-obstructions and optimality.

Theorem 22. Let I be a Datalog CQE instance.

1. If Y is a finite pseudo-obstruction for I, then \/QeT Qis
an optimal obstruction for 1.

2. Ifeach pseudo-obstruction for 1 is infinite, then no optimal
obstruction censor for 1 exists.

This theorem has implications on the expressive power of
obstructions. In particular, we can now extend the result in
Theorem 10, which applies to censors that are not necessarily
optimal, to capture also optimality.

Theorem 23. The following statements hold.

1. There is a CQE instance, which is both RL and EL, admit-
ting an optimal view, but no optimal obstruction.

2. Conversely, there exists an RL CQE instance that admits
an optimal obstruction, but no optimal view.

6.2 Linear Datalog and OWL 2 QL

We now show how to apply resolution-based techniques to
compute optimal obstructions for linear Datalog CQE in-
stances and then adapt the results to QL. In fact, we can
guarantee not only existence of optimal obstructions for such



MovieFan(John)  Movie(Seven)  MovieFan(x)
v
Likes(John,y)  Likes(x,Seven) Movie(y)
v v
Likes(John, Seven) \ T Likes(z,y)

Figure 2: Fragment of proof graph from Example 24

instances, but also uniqueness and polynomiality of corre-
sponding censors.

Our solution for linear Datalog instances is based on the
computation of the set Q of existential closures of goals in
the proofs of policies. However, since all the rules in the on-
tology are linear and the body of the policy is an atom (recall
that the rule corresponding to the policy should be linear as
well), each of these goals consists of a single atom, except
the last goal in each proof, which is empty. There are only
polynomial number of such atoms (up to renaming of vari-
ables). So, all the proofs can be represented by a single finite
proof graph with atoms and the empty conjunction (denoted
by T) as nodes, and SLD resolution steps as edges. This is
illustrated by the following example.

Example 24. Consider a CQE instance with an ontology
{Likes(z,y)— Movie(y), Likes(x,y)— MovieFan(x)},

dataset Likes(John, Seven), and policy MovieFan(John). A
fragment of the proof graph is given in Figure 2. O

Using proof graphs we can compute optimal censors.

Theorem 25. Let I = (O, D, P) be a linear Datalog CQE
instance, and let S be the set of all nodes in the proof graph of
OUD on the paths from facts P(&) with any tuple of constants
a to T. Then, the Boolean UCQ

*

U= \/GGS\{T}

is an optimal obstruction computable in polynomial time, and
ocensg is the unique optimal censor for 1.

Example 26. For the instance in Example 24 there is
only one path in the proof graph from the policy to T,
and S = {MovieFan(John), Likes(John,y), T}. Thus,
movieFan(John) V Jy. Likes(John, y) is optimal.

Finally, note that the transformation of a QL ontology O
to an RL ontology Z,(O) given in Definition 17, preserves
linearity of rules. Hence, Proposition 18 with Theorem 25
yield the following result.

Theorem 27. Every QL CQE instance admits a unique opti-
mal censor based on an obstruction that can be computed in
polynomial time.

7 Related Work

The formal study of privacy in databases has received sig-
nificant attention. CQE for propositional databases with
complete information has been studied in [Sicherman et
al., 1983; Bonatti et al., 1995; Biskup and Bonatti, 2001;
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2004]. The framework was extended to (propositional) in-
complete databases in [Biskup and Weibert, 2008]. Mik-
lau and Suciu (2007) studied perfect privacy. Perfect pri-
vacy, however, is very strict and may preclude publishing
of any meaningful information when extended to ontolo-
gies [Cuenca Grau and Horrocks, 2008]. View-based au-
thorisation was investigated in [Rizvi et al.,, 2004; Zhang
and Mendelzon, 2005], while Deutsch and Papakonstantinou
(2005) analysed the implications to privacy derived from pub-
lishing database views.

Privacy in the context of ontologies is a growing area of
research. Information hiding at the schema level was studied
in [Konev et al., 2009; Cuenca Grau and Motik, 2012]. Data
privacy for ££ and ALC DLs was investigated in [Stouppa
and Studer, 2007; Tao et al., 2010], and the notion of a
privacy-preserving reasoner was introduced in [Bao et al.,
2007]. Calvanese ef al. (2012) extended the view-based au-
thorisation framework by Zhang and Mendelzon (2005) to
DL ontologies.

An early work on non-propositional CQE is [Biskup
and Bonatti, 2007]. CQE for ontologies has been stud-
ied in [Cuenca Grau et al., 2013; Bonatti and Sauro, 2013;
Studer and Werner, 2014]. We extend Cuenca Grau et al.
(2013) with a wide range of new results: (i) we consider
arbitrary CQs as policies rather than just ground facts; (ii)
we introduce obstruction censors, compare their expressive
power with that of view censors, characterise their optimal-
ity, and show how to compute obstructions for linear Datalog
and QL ontologies; (iii) we show undecidability of check-
ing existence of an optimal view censor and provide algo-
rithms for guarded Datalog and all the OWL 2 profiles. We
see our work as complementary to Bonatti and Sauro (2013)
and Studer and Werner (2014). The former focuses on situa-
tions where attackers have access to external sources of back-
ground knowledge; they identify vulnerabilities and propose
solutions within the CQE framework. The latter focuses on
meta-properties of general censors that, in contrast to ours,
can also provide unsound answers or refuse queries.

8 Conclusions

In this paper, we have studied CQE in the context of ontolo-
gies. Our results provide insights on the fundamental trade-
off between accessibility and confidentiality of information.
Moreover, they yield a flexible way for system designers to
ensure selective access to data.

We have proposed tractable view based solutions for CQE
instances with tree-shaped and linear Datalog and QL ontolo-
gies, and tractable obstruction based solutions for linear Dat-
alog and QL ontologies. Our solutions can be implemented
using off-the-shelf query answering infrastructure and pro-
vide a starting point for CQE system development.
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