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Abstract

In this paper we present a theory of qualitative
probability. Work in the area goes back at least to
de Finetti. The usual approach is to specify a bi-
nary operator � with φ � ψ having the intended
interpretation that φ is not more probable than ψ.
We generalise these approaches by extending the
domain of the operator � from the set of events to
the set of finite sequences of events. If Φ and Ψ
are finite sequences of events, Φ � Ψ has the in-
tended interpretation that the summed probabilities
of the elements of Φ is not greater than the sum of
those of Ψ. We provide a sound and complete ax-
iomatisation for this operator over finite outcome
sets, and show that this theory is sufficiently pow-
erful to capture the results of axiomatic probability
theory. We argue that our approach is simpler and
more perspicuous than previous accounts. As well,
we prove that our approach generalises the two ma-
jor accounts for finite outcome sets.

1 Introduction
In qualitative probabilistic reasoning, one may assert that
some event is more probable than another without specifying
the exact numerical probabilities of the events in question.
Consequently, this approach offers a pragmatic, intuitive, and
practical counterpoint to classical probability theory, both in
commonsense reasoning in particular, and in Artificial Intelli-
gence in general. While classical probability theory provides
a formal framework for reasoning under uncertainty, in some
cases it may be too fine-grained. Assigning exact numerical
probabilities is often difficult or impossible, combining prob-
abilities can be complex, and often one simply wants to com-
pare the likelihood of two events without having to give exact
probabilities.1 As well, a full account of qualitative proba-
bility may shed light on the division in AI (and perhaps sci-
ence as a whole) between what Kyburg [1994] calls the prob-
abilist and the logicist way of thinking about the world; this is

1For example, without using exact probabilities, someone might
believe that her second-choice candidate is more likely to win than
her first-choice candidate and cast her vote accordingly.

the difference between making hedged claims (as with proba-
bilistic reasoning) and making categorical claims in a hedged
way (as in Nonmonotonic Logic).2

The central issue is to provide a satisfactory formal char-
acterisation of qualitative probability. More precisely, the is-
sue is to specify the principles that a binary sentential oper-
ator � must satisfy in order to exactly capture the intended
interpretation “is no more probable than”. This has been a
surprisingly difficult and subtle problem. Work in this area
goes back at least to de Finetti [1937; 1951] who provided
a number of principles and conjectured that they were suffi-
cient. While obviously necessary, Kraft et al. [1959] showed
that they were not sufficient and gave a condition that must
be added to obtain a necessary and sufficient set of princi-
ples. A shorter version of their result was given by Scott
[1964]. Building on Scott’s work, Segerberg [1971] provided
an axiomatisation of a Boolean-complete theory with the op-
erator � that was sound and complete for the probability in-
terpretation with events drawn from a possibly infinite out-
come set. Gärdenfors [1975] provided a simplified account
for finite outcome sets. A drawback to these approaches is
that the condition identified by Kraft et al. is complicated
and non-finite. In the case of Segerberg’s and Gärdenfors’
axiomatisations, this condition is represented by a countable
sequence of axiom schemes in which scheme size (number
of symbols) grows exponentially with a scheme’s position in
the sequence. In later work on quantitative probabilistic rea-
soning, Fagin et al. [1990] avoid the scheme by adopting an
alternative scheme (Ineq) that calls for “all instances of valid
formulas about linear inequalities.” This powerful principle,
which is not stated in the language of the logic, assumes num-
bers and arithmetic, and encompasses infinitely many princi-
ples of inequality involving finite sums of unbounded length.

In this paper, which is part of a renewed interest in log-
ics of qualitative and quantitative probability [Halpern, 2003;
Narens, 2007; Holliday and Icard, 2013; van Eijck and
Renne, 2014], we address these problems and generalise pre-
vious approaches by extending the domain of the operator �
from the set of events to the set of finite sequences of events.

2In fact, an original motivation for this work is the following
interpretation for weak or “nonmonotonic” conditionals: φ ⇒ ψ
means that φ∧ψ is more probable than φ∧¬ψ. This is the fragment
of our logic consisting of the derivable statements having the form
φ ∧ ¬ψ ≺ φ ∧ ψ.
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We do this both for perspicuity (simpler axioms) and expres-
siveness (our language is more expressive). If Φ and Ψ are
finite sequences of events, Φ � Ψ has the intended inter-
pretation that the summed probabilities of the elements of Φ
is not greater than the summed probabilities of the events of
Ψ. We provide a sound and complete axiomatisation for this
extended notion of qualitative probabilistic comparison over
finite outcome sets.

Our approach offers several advantages over previous
work. First, we claim that our axiomatisation is simpler
and more perspicuous than previous accounts. In particular,
unlike Segerberg’s and Gärdenfors’ axiomatisations, ours is
schematically finite and it avoids the use of exponentially-
large schemes. Unlike Fagin et al., we do not require a
scheme like their (Ineq) that calls for all valid formulas about
linear inequalities; instead we axiomatise this set of formulas
from first principles. Further, our approach is sufficiently ex-
pressive to capture the results of axiomatic probability theory,
as expressed by the Kolmogorov axioms. (For example, the
relation P (φ) + P (ψ) = P (φ ∨ ψ) + P (φ ∧ ψ) is a theorem
of our system, expressed as φ ⊕ ψ ≈ (φ ∨ ψ) ⊕ (φ ∧ ψ).)
As well, our framework expressively and axiomatically gen-
eralises the two major approaches for finite outcome sets due
to Gärdenfors and Fagin et al. An extension to infinite out-
come sets (and a more complete comparison to Segerberg’s
approach) is left for future work.

The next section gives some background, while Section 3
presents our approach. Section 4 relates our approach to those
of Gärdenfors and Fagin et al. and provides a preliminary
comparison with Segerberg’s work. We then conclude, com-
menting on future work.

2 Background
Consider the problem of specifying a relation � between for-
mulas, where φ � ψ is to have the interpretation that φ is
not more probable than ψ. That is, the problem is to provide
conditions on � such that for a collection of such assertions
there is guaranteed to be a realizing probability measure P (·)
on formulas; this means that for all formulas φ and ψ,

φ � ψ iff P (φ) ≤ P (ψ).

De Finetti [1937; 1951] conjectured that the following condi-
tions were necessary and sufficient: for each φ, ψ, and γ,

1. ⊥ � ψ;
2. φ � ψ and ψ � γ implies φ � γ;
3. φ � ψ or ψ � φ;
4. if φ ∧ γ and ψ ∧ γ are each inconsistent, then

φ � ψ iff ψ ∨ γ � φ ∨ γ.
While these conditions are clearly sound, [Kraft et al.,

1959] shows that they are not complete. For our purposes,
their counterexample is most easily phrased in terms of pos-
sible worlds. Let W = {w1, w2, w3, w4, w5} be a set of pos-
sible worlds; a set of worlds can be thought of as representing
a proposition. Consider the relations:

{w3} � {w1, w2}, {w2, w4} � {w1, w3},
{w1, w5} � {w2, w3}, {w1, w2, w3} � {w4, w5}.

Kraft et al. show that this set of relations can be extended to an
ordering on all subsets of W that satisfies de Finetti’s condi-
tions but for which there does not exist a realizing probability
measure. (In the counterexample, an assignment of probabil-
ity of .2 to each world is easily seen to be inconsistent.) Kraft
et al. also provide criteria so as to ensure a realizing probabil-
ity measure always exists.

Scott [1964] reformulated and simplified these results in an
algebraic form. Segerberg [1971] developed a logic of qual-
itative probability that made use of Scott’s results; this logic
had a binary operator� and a unary modal operator of neces-
sity. Gärdenfors [1975] subsequently simplified Segerberg’s
approach by restricting to finite sets and defining necessity by
�φ

.
= (1 � φ). Segerberg’s and Gärdenfors’ axiomatisations

both use the following schematic abbreviation:

φ1, . . . φmEψ1, . . . ψm
.
= �(C0 ∨ · · · ∨ Cm), (1)

where m ≥ 1 and for 0 ≤ i ≤ m, the scheme Ci is the
disjunction of all conjunctions

δ1φ1 ∧ · · · ∧ δmφm ∧ ε1ψ1 ∧ · · · ∧ εmψm,

where exactly i of the δ’s and i of the ε’s are the negation sign
and the rest are the empty string. The overall import is that
φ1, . . . φmEψ1, . . . ψm, which we write as (φi)

m
i=1E(ψi)

m
i=1,

says, “At every probabilistically possible outcome, the num-
ber of true φ’s is equal to the number of true ψ’s.” Notice
that the size of the scheme abbreviated by (φi)

m
i=1E(ψi)

m
i=1

is Ω(2m).3
Gärdenfors gives the following axiomatisation for his logic

QP of qualitative probability:

(PC) All instances of propositional tautologies

(A0) �(φ1≡φ2)∧�(ψ1≡ψ2)⊃ ((φ1 � ψ1)≡(φ2 � ψ2))

(A1) 0 � φ
(A2) (φ � ψ) ∨ (ψ � φ)

(A3) 0 ≺ 1

(A4)m (φi)
m
i=1E(ψi)

m
i=1 ∧

∧m−1
k=1 (φk � ψk) ⊃ (ψm � φm)

(MP) From φ ⊃ ψ and φ infer ψ

(Nec) From φ infer �φ

This logic is shown to be sound and complete with respect to
finite possible worlds models in which a probability measure
is associated with each world.

The scheme (A4)m is non-ideal for several reasons. First,
it is difficult to understand (Segerberg calls it “formidable”).
Second, (A4)m specifies infinitely many axiom schemes, one
for each positive integer m; consequently, the above axioma-
tisation for QP is not schematically finite. Third, the size of
(i.e., number of symbols in) the scheme abbreviated by (A4)m
is Ω(2m) (i.e., at least exponential).

A different (and independent) approach to reasoning about
probability is the theory AXmeas of quantitative probability of
[Fagin et al., 1990]. Their language permits Boolean combi-
nations of linear inequalities of the form a � b1w(φ1)+ · · ·+
bnw(φn), where a and the bi’s are integers and the φi’s do not

3Ci has
(
m
i

)2 disjuncts, and
∑m

i=0

(
m
i

)2 ≥∑m
i=0

(
m
i

)
= 2m.
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contain�’s or w(χ)’s. The expression w(φ) is mapped in the
semantics to a real number called the weight of φ. This ends
up being the probability of event φ. The axiomatisation of
AXmeas is given as follows:

(PC) All instances of propositional tautologies

(Ineq) All instances of valid formulas about linear
inequalities4

(W1) 0 � w(φ)

(W2) 1 ≈ w(1)

(W3) w(φ ∧ ψ) + w(φ ∧ ¬ψ) ≈ w(φ)

(W4) w(φ) ≈ w(ψ), where φ ≡ ψ is a tautology

(MP) From φ ⊃ ψ and φ infer ψ

An (Ineq)-derivable formula is a Boolean combination of
valid inequalities b � a1w(φ1) + · · · + anw(φn) consisting
of integers b, a1, . . . , an and real numbersw(φ1), . . . , w(φn).
However, as per the other axioms, each w(φi) ends up being
a probability.

(Ineq), which is not stated in the language of the logic,
is a powerful scheme. It assumes numbers and arithmetic,
and it encompasses infinitely many principles of inequality
involving finite sums of unbounded length. Although a deci-
sion procedure can effectively compute the principles encom-
passed in (Ineq), it is our view that this scheme assumes too
much. In particular, it would be preferable to replace (Ineq)
by some finite set of schemes in the language of the logic such
that every (Ineq)-principle is derivable.

3 A Logic of Qualitative Probability
We now specify the syntax and semantics of our theory LQP,
the Logic of Qualitative Probability.

3.1 Language and Semantics
The central intuition and innovation of our approach is that�
is most profitably regarded not as a binary operator on formu-
las, but rather as an operator on finite sequences of formulas.5
We use ⊕ as suggestive notation for separating formulas in a
sequence. Thus our goal is to use

φ1 ⊕ · · · ⊕ φn � ψ1 ⊕ · · · ⊕ φm (2)

in our language to assert that
∑n
i=1 P (φi) ≤

∑m
i=1 P (ψi).

To be clear, � as in (2) is strictly speaking a n,m-ary oper-
ator. There is nothing that a priori lets us interpret ⊕ as any
sort of a sum; rather we later axiomatically characterise such
formulas so that ⊕ can be consistently interpreted as a sum-
ming operator.

4This means: all members of the smallest set of formulas that
(1) is closed under Classical Propositional Logic-derivable Boolean
combinations and (2) contains for each n ≥ 1 all formulas of the
form b � a1w(φ1) + · · · + anw(φn) for which the inequality b ≤
a1x1 + · · ·+ anxn holds for all real numbers x1, . . . , xn.

5It would be possible to use multisets instead of sequences; how-
ever, sets cannot be used because repetition is meaningful.

Definition 3.1 (Language LLQP). Fix a nonempty set P of
propositional atoms. The language LLQP consists of the for-
mulas φ and the sequences Φ formed by the following recur-
sion:

φ ::= p | ¬φ | (φ ∨ φ) | (Φ � Φ) p ∈ P
Φ ::= φ | φ⊕ Φ

Formulas occurring in sequences are called elements, and
expressions Φ � Ψ are called inequalities. We use the sym-
bols φ, ψ, and χ, possibly with subscripts or superscripts, as
metavariables for formulas. We use Φ, Ψ, and ∆ similarly for
sequences. Sequences may be written using indexed prefix
notation so that, for example,

⊕3
i=1 φi denotes φ1⊕φ2⊕φ3.

We may write φ ∈ Φ to indicate that φ occurs as an element
of Φ. We will often drop parentheses when no ambiguity of
meaning results; hence we might write simply φ1 ∨ φ2 ∨ φ3.

We use the standard definitions for the Boolean connec-
tives ∧,⊃, and≡. We define 1 to be some arbitrary fixed tau-
tology, and define 0 as¬1. φ ≈ ψ abbreviates (φ � ψ)∧(ψ �
φ), and φ ≺ ψ abbreviates (φ � ψ) ∧ ¬(ψ � φ). Last, we
define �φ to be (1 � φ).

As described, the intuitive meaning of the formula Φ � Ψ
is that the sum of the probability of the elements on the left
of the inequality is less than or equal that on the right. Note
that this means that either side of the inequality may exceed
1; for example, a theorem in our approach is 1 ≺ 1 ⊕ 1. In
Section 3.3 we will show how such inequalities enable us to
capture aspects of quantitative probability.

We now consider the semantic theory underlying our ap-
proach. We restrict attention to models based on finite out-
come spaces; such structures are well-known in the literature
(see, e.g., [Halpern, 2003]).

Definition 3.2 (Model). A model is a structure M =
(W,P, V ) where:

1. W is a finite nonempty set (of possible worlds).

2. P maps each world w ∈ W to a probability measure
Pw : ℘(Ωw) → [0, 1] on a nonempty set Ωw ⊆ W of
“outcomes.”

3. V : W → ℘(P) is a propositional valuation assigning
to each world w ∈W a set V (w) of propositional letters
taken to be true at w.

A pointed model is a pair (M,w) consisting of a model M
and a world w in M that we call the point.

Definition 3.3 (Satisfaction, Validity). The semantic func-
tion J·K : LLQP → ℘(W ) and the satisfaction relation |=
between pointed models and LLQP-formulas are defined as
follows.

JφKM
.
= {w ∈W |M,w |= φ}, where φ ∈ LLQP.

JφKwM
.
= JφKM ∩ Ωw.

1. M,w |= p iff p ∈ V (w), where p ∈ P .

2. M,w |= ¬φ iff M,w 6|= φ.

3. M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ.
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4. M,w |= Φ � Ψ iff∑
φ∈Φ Pw(JφKwM ) ≤

∑
ψ∈Ψ Pw(JψKwM ).

We say that φ is valid in M , written M |= φ, to mean that
M,w |= φ for each world w ∈ M . We say that φ is valid,
written |= φ, to mean that M |= φ for every model M .

3.2 Axiomatic Theory
LQP is axiomatised as follows:

(PC) All instances of propositional tautologies6

(Triv) 0 ≺ 1

(Tran) (Φ � Ψ) ⊃ ((Ψ � ∆) ⊃ (Φ � ∆))

(Tot) (Φ � Ψ) ∨ (Ψ � Φ)

(Sub) �(φ1 ≡ φ2) ∧�(ψ1 ≡ ψ2) ⊃
((φ1 ⊕ Φ � ψ1 ⊕Ψ) ≡ (φ2 ⊕ Φ � ψ2 ⊕Ψ))

(Com) (Φ1 ⊕ Φ2 � Ψ) ≡ (Φ2 ⊕ Φ1 � Ψ)

(Φ � Ψ1 ⊕Ψ2) ≡ (Φ � Ψ2 ⊕Ψ1)

(Add) (Φ1 � Ψ1) ∧ (Φ2 � Ψ2) ⊃ (Φ1 ⊕ Φ2 � Ψ1 ⊕Ψ2)

(Succ) (Φ⊕ 1 � Ψ⊕ 1) ⊃ (Φ � Ψ)

(K1) 0 � φ
(K3) �¬(φ ∧ ψ) ⊃ (φ⊕ ψ ≈ φ ∨ ψ)

(MP) From φ ⊃ ψ and φ infer ψ

(Nec) From φ infer �φ

(Triv) avoids triviality, while (Tran) and (Tot) give proper-
ties of�. (Sub) is substitution of necessary equivalents, while
(Com) expresses that sequences are commutative. (Add) al-
lows one to “concatenate” items to a sequence, while (Succ)
allows one to “remove” 1 from both sides of �. (K1) and
(K3) correspond to the first and third Kolmogorov axioms;
the second Kolmogorov axiom, which essentially says that a
valid proposition has probability 1, is expressed by (Nec) and
the abbreviation �φ

.
= (1 � φ). (PC) and (MP) are standard.

We can derive a rich set of results in our theory. The next
theorem pertains to properties of sequences.

Theorem 3.4 (Sequences). LQP derives:

1. Principle (Ref): Φ � Φ.

2. Substitution principle for length-1 sequences:
�(φ1≡φ2)∧�(ψ1≡ψ2) ⊃ ((φ1 � ψ1) ≡ (φ2 � ψ2)).

3. Replacement principles:
(Φ1 ≈ Φ2) ⊃ ((Φ1 ⊕ Φ � Ψ) ≡ (Φ2 ⊕ Φ � Ψ)),

(Ψ1 ≈ Ψ2) ⊃ ((Φ � Ψ1 ⊕Ψ) ≡ (Φ � Ψ2 ⊕Ψ)).

4. Cancellation principle:
(Φ′ ⊕ Φ � Φ′ ⊕Ψ) ⊃ (Φ � Ψ).

5. Ordering principle:
(Φ1 � Ψ1)⊃((Ψ1 ⊕Ψ2 � Φ1 ⊕ Φ2)⊃(Ψ2 � Φ2)).

6We use (PC) for brevity. (PC) can be replaced by a finite number
of axiom schemes, as is explained in any logic text.

(Ref) is a simple consequence of (Tot). Item 2 is differ-
ent than (Sub) because our language assumes nonempty se-
quences. Item 3 extends substitution to equivalence under ≈.
Item 4 extends (Succ) to arbitrary sequences. The Ordering
Principle, Item 5, which we will subsequently generalise, is a
key for many later results.

We now consider some results of qualitative probability.
Theorem 3.5 (Qualitative Probability). LQP derives:

1. φ ≈ φ⊕ 0.
2. (φ⊕ Φ ≈ 0) ⊃ (φ ≈ 0).
3. φ ≈ (φ ∧ ψ)⊕ (φ ∧ ¬ψ).
4. φ⊕ ψ ≈ (φ ∨ ψ)⊕ (φ ∧ ψ).
5. φ � 1.
6. φ ∨ ψ � φ⊕ ψ.
7. (φ � ψ) ⊃ (¬ψ � ¬φ).

These results are familiar from classical probability. For
example, Item 2 says that if the probability of φ plus that of
some sequence Φ is 0, then the probability of φ is 0.

The next theorem concerns the operator �ϕ .
= (1 � φ).

Theorem 3.6 (Modal Logic). LQP derives:
1. �(φ ⊃ ψ) ⊃ (φ � ψ).
2. �(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ).
3. ¬�0.
4. �φ ⊃ (φ ∧ ψ ≈ ψ).
Items 1 and 4 relate � to �, while Items 2 and 3 show that

the underlying modal logic for � is KD. As a result, � is
a normal modal operator, and so we may use results about
normal modal reasoning freely.

We now generalise some of the above results.
Theorem 3.7 (Extended Principles). For n ≥ 1, formulas
φi and ψi and sequences Φi and Ψi for each i ∈ {1, . . . , n},
taking k ∈ {1, . . . , n}, LQP derives:

1.
∧
i6=j �¬(φi ∧ φj) ⊃ (

⊕n
i=1 φi ≈

∨n
i=1 φi).

2. ((⊕ni=1Φi≈⊕ni=1 Ψi)∧
∧n
i=1(Φi � Ψi))⊃ (Ψk � Φk).

3. ((⊕ni=1Φi≈⊕ni=1 Ψi)∧
∧n−1
i=1 (Φi � Ψi))⊃(Ψn � Φn).

4. (φi)
n
i=1E(ψi)

n
i=1 ⊃ (

⊕n
i=1 φi ≈

⊕n
i=1 ψi).

5. (φi)
n
i=1E(ψi)

n
i=1 ∧

∧n−1
k=1(φk � ψk) ⊃ (ψn � φn).

Item 1 generalises (K3) to an arbitrary number of pairwise-
inconsistent formulas. Items 2 and 3 generalise Theo-
rem 3.4(5). Items 4 and 5 relate our⊕-notation and sequences
to Segerberg and Gärdenfors’ E-notation.

Last, turning to the metatheory, we have:
Theorem 3.8 (Soundness and Completeness). For φ ∈
LLQP:

`LQP φ if and only if |= φ.

Proof. For convenience, write ` to mean `LQP. Sound-
ness follows by a straightforward induction on the length of
derivation. From soundness, we conclude that LQP is consis-
tent (i.e., 0 0).
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Completeness makes use of Thm. 1.2 from [Scott, 1964].7
Preliminaries: for a finite nonempty set S, letL(S) be the real
vector space with coordinates in S; this is just like Rn but
with coordinate set S instead of {1, . . . , n}. A linear func-
tional on L(S) is a function f : L(S) → R that is linear,
meaning f(ax+ by) = af(x) + bf(y) for each a, b ∈ R and
x, y ∈ L(S). Given N ⊆ X ⊆ L(S), a linear functional f
on L(S) realizes N in X iff N = {x ∈ X | f(x) ≥ 0}.
X ⊆ L(S) is rational iff each x ∈ X has its range in Q, and
X is symmetric iff each x ∈ X implies −x ∈ X .

Scott’s Theorem 1.2 [Scott, 1964]: for a finite nonempty
set S and a finite, rational, and symmetric X ⊆ L(S), there
exists a linear functional on L(S) that realizes N in X iff the
following items obtain:

1. for each x ∈ X , we have x ∈ N or −x ∈ N ; and
2. for each n ≥ 1 and x1, . . . , xm ∈ N :∑m

i=1 xi = 0 implies −x1 ∈ N .
To prove completeness, assume 0LQP θ. It suffices for

us to construct a pointed model for ¬θ. For φ ∈ LLQP, let
sub(φ)

.
= {ψ ∈ LLQP | ψ occurs in φ} be the set of sub-

formulas of φ. For S ⊆ LLQP, let sub(S)
.
=

⋃
φ∈S sub(φ).

Given S ⊆ LLQP and E ⊆ ℘(LLQP), define

±S .
= S ∪ {¬φ | φ ∈ S},

�S
.
= ±sub(S)∪±sub{(Ψ � Φ) | (Φ � Ψ) ∈ ± sub(S)},

Ed
.
=

∨
S′∈E

∧
S′.

Note: ∅d .
= 1. Given S ⊆ T ⊆ LLQP, to say S maxcons in T

means S is consistent (i.e., for no finite S′ ⊆ S do we have
` (

∧
S′) ⊃ 0) and adding to S any φ ∈ T not already present

would produce a set that is inconsistent. Define

A
.
= �{θ},

B
.
= �{(0 � Ed), (Ed � 1), (Ed � Ed) | E ⊆ A},

C
.
= �{(

⊕n
i=0E

d
i ≈

∨n
i=0E

d
i ) | n ≤ 2|A|, Ei ⊆ A},

W
.
= {w ⊆ A ∪B ∪ C | w is maxcons in A ∪B ∪ C},

w� .
= {φ ∈ A ∪B ∪ C | ` (

∧
w) ⊃ (1 � φ)},

Ωw
.
= {v ∈W | w� ⊆ v} for w ∈W,

V (w)
.
= w ∩ P for w ∈W.

Note that in the definition of C, we take each positive integer
n ≤ 2|A|, choose subsets E1, . . . , En ⊆ A, and then include
all formulas of the indicated form. It is easy to see that A ∪
B ∪ C and W are finite and W 6= ∅. By modal reasoning,
we have for each w ∈W that w� is consistent and so may be
extended to v ∈W satisfying w� ⊆ v. Hence Ωw 6= ∅.

For χ ∈ LLQP, define [χ]
.
= {v ∈ W | χ ∈ v} and

[χ]w
.
= [χ] ∩ Ωw. For E ⊆ W , let ι(E) ∈ L(W ) be the

characteristic function of E: ι(E)(v)
.
= 1 if v ∈ E, and

ι(E)(v)
.
= 0 if v ∈W − E. For w ∈W , define:

Nw
.
= {

∑
ψ∈Ψ ι([ψ]w)−

∑
φ∈Φ ι([φ]w) | (Φ � Ψ) ∈ w},

Xw
.
= Nw ∪ (−Nw).

7Interestingly, Gärdenfors and Segerberg instead use Thm. 4.1
from [Scott, 1964].

We have Nw ⊆ Xw; also, Xw is a finite, rational, symmet-
ric subset of L(W ). It is obvious that Nw satisfies Item 1
of Scott’s Thm. 1.2. We prove Nw also satisfies Item 2. So
assume we have x1, . . . , xn ∈ Nw satisfying

∑n
i=1 xi = 0.

Vector xi has the form
∑
ψ∈Ψi

ι([ψ]w)−
∑
φ∈Φi

ι([φ]w). By
linearity, ι([χ]w) =

∑
v∈[χ]w

ι({v}), so the assumption im-
plies
n∑
i=1

∑
φ∈Φi

∑
v∈[φ]w

ι({v}) =
n∑
i=1

∑
ψ∈Ψi

∑
v∈[ψ]w

ι({v}).

So writing out the sums in full without combining any sum-
mands, the equation above says that a coordinate v ∈ W has
exactly the same number of appearances in a summand on the
left as on the right. So by (Ref) (from Thm. 3.4) and (Com),
we obtain

`
n⊕
i=1

⊕
φ∈Φi

⊕
v∈[φ]w

{v}d ≈
n⊕
i=1

⊕
ψ∈Ψi

⊕
v∈[ψ]w

{v}d. (3)

One can show that for each χ ∈ A ∪B ∪ C, we have

`
⊕

v∈[χ]w
{v}d ≈ χ ∧ Ωdw, and (4)

` (
∧
w) ⊃ (χ ∧ Ωdw ≈ χ). (5)

(4) is proved by deriving ` (χ ∧ Ωdw) ≈
∨
v∈[χ]w

{v}d using
Thm. 3.7(1), separately proving `

∨
v∈[χ]w

{v}d ≡ (χ ∧Ωdw)

by a reductio and then applying (Nec), and combining the
two results using Thm. 3.4(2). (5) is proved by first showing
` (

∧
w) ⊃ �Ωdw and then applying Thm. 3.6(4).

It follows from (3), (4), and (5) by Thm. 3.4(3) and the
equality

⊕
φ∈Φ φ = Φ that

` (
∧
w) ⊃ (

⊕n
i=1 Φi ≈

⊕n
i=1 Ψi). (6)

Since (Φi � Ψi) ∈ w for each i ∈ {1, . . . , n}, it follows
from (6) by Thm. 3.7(2) that (Ψ1 � Φ1) ∈ w. That is,−x1 ∈
Nw. Therefore, Nw satisfies 1 and 2 of Scott’s Thm. 1.2.
Applying the theorem, there exists a linear functional fw on
L(W ) that realizes Nw in Xw. By (Triv) and linearity, it
follows that 0 = fw(ι(∅)) < fw(ι(Ωw)). So we may define
Pw : ℘(Ωw)→ [0, 1] by

Pw(E)
.
= fw(ι(E)) / fw(ι(Ωw)).

For E,E1, . . . , En ⊆ Ωw, since fw realizes Nw in Xw:
• Pw(E) ≥ 0 because (0 � Ed) ∈ w by (K1);
• if the Ei’s are pairwise disjoint, then Pw(

⋃n
i=1Ei) =∑n

i=1Ei because (
∨n
i=1E

d
i ≈

⊕n
i=1E

d
i ) ∈ w can be

shown using Thm. 3.7(1);
• Pw(Ωw) = 1 by definition.

So Pw is a probability measure on ℘(Ωw), and thereforeM .
=

(W,P, V ) is a model. By induction on formula construction,
one may prove the following Truth Lemma: for each w ∈ W
and χ ∈ A ∪ B ∪ C, we have χ ∈ w iff M,w |= χ. (The
right-to-left direction for χ = (Φ � Ψ) uses (Tot).) So since
0LQP θ, there exists wθ ∈ W such that ¬θ ∈ wθ. Applying
the Truth Lemma, M,wθ 6|= θ. Completeness follows. Note:
(Sub), (Add), and (Succ) are used in the proof of Thm. 3.4(2);
(Tran) and (K3) are used in the proof of Thm. 3.7(1).
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3.3 Quantitative Aspects of the Theory
The results of the previous subsections are qualitative in na-
ture.8 In this subsection we show how we can nonetheless
encode quantitative notions, culminating with rational linear
inequalities.

Positive Integer Coefficients: define k · φ (also kφ) by

0 · φ .
= 0 and (k + 1) · φ .

= φ⊕ (k · φ).

For example, 2φ � 3ψ abbreviates φ⊕ φ � ψ ⊕ ψ ⊕ ψ.

Negative Coefficients: if k < 0, then replace kφ in a se-
quence by 0 and add−kφ to the sequence on the other side of
�. For example, −3ψ ⊕ 2φ � χ denotes 0 ⊕ 2φ � 3ψ ⊕ χ,
which is provably equivalent to 2φ � 3ψ ⊕ χ.

Rational Coefficients: if piqi ,
rj
sj
∈ Q and t .=

∏
i,j qisj , let⊕

i≤n(pi/qi) · φi �
⊕

j≤m(rj/sj) · ψj

abbreviate⊕
i≤n(t · pi/qi) · φi �

⊕
j≤m(t · rj/sj) · ψj ,

where t · pi/qi and t · rj/sj are computed arithmetically. For
example, 0 � (1/2)ψ ⊕ −(1/3)φ denotes (1/3)φ ⊕ 0 �
(1/2)ψ ⊕ 0. The latter denotes 2 · φ ⊕ 6 · 0 � 3 · ψ ⊕ 6 · 0,
which, with some work, is provably equivalent to 2φ � 3ψ.

Rational Numbers: identify 0 ∈ Q with 0 ∈ LLQP and
nonzero x ∈ Q with (p/q) · 1 ∈ LLQP, where p/q = x
and gcd(p, q) = 1. For example, (2/3) � 1 and 0 �
(1/2)⊕−(1/3) are derivable.

It follows that LLQP can express inequalities⊕na

i=1 ai ⊕
⊕nb

i=1(bi · φi) �
⊕nc

i=1 ci ⊕
⊕nd

i=1(di · ψi)

between finite sums of rational numbers and rational-
coefficient formulas. We refer to these expressions as ratio-
nal linear inequalities. Based on the definition of LLQP, both
sides of a rational linear inequality must be nonempty, though
we could take either side to be 0.

Theorem 3.9 (Quantitative Probability Principle). For ra-
tional numbers a1, . . . , an, b1, . . . , bm ∈ Q, we have:∑n

i=1 ai ≤
∑m
i=1 bi ⇔ `LQP

⊕n
i=1 ai �

⊕m
i=1 bi.

4 Comparisons with Related Work
In this section we compare our approach with that of
[Gärdenfors, 1975] and [Fagin et al., 1990]; see Section 2 for
axiomatisations. We also provide a preliminary comparison
with [Segerberg, 1971].

4.1 Gärdenfors’ Logic of Qualitative Probability
Informally, the language LQP of Gärdenfors’ QP is that of
LLQP restricted to length-1 sequences, and so � is a binary
relation on formulas only. It is not surprising then that LQP is
less expressive than LLQP:

8This is an informal claim, appealing to intuitions rather than any
technical distinction.

Theorem 4.1. LLQP is strictly more expressive thanLQP over
our class of models.

For example p ≈ 1/3 denotes a satisfiable LLQP-formula
that is inexpressible in LQP. Moreover, noting that LQP ⊂
LLQP and making use of the fact that QP and LQP are both
sound and complete with respect to our class of models, we
obtain:
Theorem 4.2. For all φ ∈ LQP, if `QP φ then `LQP φ.

Consequently, LQP is a conservative extension of QP.

4.2 The Fagin et al. Logic of Quantitative
Probability

The language of [Fagin et al., 1990] is defined as follows:
Definition 4.3. Fix a nonempty set P of propositional atoms.
The language LAXmeas consists of formulas φ and weight terms
W given by the following recursion:

φ ::= p | ¬φ | (φ ∨ φ) | (a �W ) p ∈ P, a ∈ Z
W ::= w(ψ) | a · w(ψ) |W +W a ∈ Z
ψ ::= p | ¬φ | (φ ∨ φ) p ∈ P

LAXmeas does not allow nesting of �’s in formulas; for ex-
ample, 1 � (1 � w(p)) is not a formula in LAXmeas . So to
compare the expressivity of LAXmeas with our language LLQP,
it is useful to consider the fragment L−LQP of our language that
does not allow nesting of �’s.
Theorem 4.4. Over our class of models:

1. LAXmeas and L−LQP are equally expressive; and
2. LLQP is strictly more expressive than LAXmeas .

The proof of Item 2 uses nesting. The proof of Item 1
defines an injective translation H : LAXmeas → L−LQP that re-
cursively maps w(φ) 7→ φ.9 Using the inverse H−1, we find:
Theorem 4.5. AXmeas is the same theory as

LQP−H
.
= {H−1(φ) | φ ∈ L−LQP and `LQP φ}.

Consequently, while AXmeas is a logic of quantitative prob-
ability, we nonetheless can express it in LQP. Among other
things, this implies that we provide a (qualitative) schemati-
cally finite axiomatisation of (Ineq).

4.3 Discussion
Gärdenfors’ and Segerberg’s logics both include an infinite
number of complex counting schemes, as expressed using
their E notation. These are required in order to use Scott’s
theorem for completeness. Fagin et al.’s logic seems quite
simple at first glance—just classical logic, Kolmogorov’s ax-
ioms, and an axiom (Ineq) concerning valid linear inequal-
ities. However, (Ineq) is not stated in the language of the
logic; it assumes numbers and arithmetic; and it encompasses
infinitely many principles of inequality involving sums of un-
bounded length.

Our setting has finitely many axiom schemes, each ar-
guably simple and stated in the language of the logic. The

9We use our abbreviations for rational linear inequalities in order
to ensure that H is well-defined.
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cost of these advantages is that we have more schemes than
the aforecited approaches. Overall, we provide a system that
captures qualitative probabilistic reasoning, axiomatic proba-
bility, the major qualitative system due to [Gärdenfors, 1975]
and the major quantitative system due to [Fagin et al., 1990].
LLQP as it stands is expressively incomparable with the lan-

guage LPK of Segerberg’s logic PK. Like Gärdenfors’ LQP,
Segerberg’s LPK cannot express the LLQP-formula p ≈ 1/3.
On the other hand, LPK includes a Kripke-style necessity op-
erator, which we write as � to distinguish it from our symbol
�. The meaning of M,w |= �p is that we have M, v |= p
at all worlds v contained in some superset R(w) ⊇ Ωw of
the set Ωw of outcomes at w. As a result, it can be shown
that �p is not expressible in LLQP. (Essentially, � allows the
language to “reach outside” of the worlds that are probabilis-
tically possible relative to the given world w, something that
is not possible in LLQP.) Therefore we must extend our lan-
guage LLQP to a language LLQP� containing the � operator
in order to regain expressive comparability. On doing this, we
find that LLQP� is strictly more expressive than both LPK and
LLQP over the class of models to which we add an accessibil-
ity function R : W → ℘(W ) satisfying Ωw ⊆ R(w) for each
world w ∈W .

As for comparing the theories LQP and PK, we have a con-
jectured axiomatisation for the LLQP-validities over a class
of models whose set of worlds (and outcome sets) need not
be finite. If complete, it could easily be extended to a the-
ory LQP� axiomatizing the LLQP� -validities over the class
of possibly infinite models to which we have added the ac-
cessibility function R : W → ℘(W ) satisfying Ωw ⊆ R(w)
for each world w ∈ W . In light of soundness and complete-
ness of both theories with respect to this class and the fact that
LPK ⊂ LLQP� , we would obtain that LQP� is a conservative
extension of PK. However, completeness of the proposed ax-
iomatisation is still to be shown.

5 Conclusion

This paper has addressed the foundations of qualitative prob-
ability. While work in this area goes back many years, we
have argued that no approach has provided a wholly satis-
factory characterisation of qualitative probability. In earlier
work, a binary operator � on formulas (or “events”) is given,
describing the relation “is no more probable than”. The cen-
tral innovation of our approach is that � is regarded not as a
binary operator on formulas but rather as an operator on finite
sequences of formulas.

We showed that the logic LQP of our approach can be used
to reason about qualitative and axiomatic probability using a
finite number of arguably simple axiom schemes. Moreover,
we showed that the approach is rich enough to encode rational
linear inequalities. We compared our approach to the major
previous works, showed that ours subsumes those theories for
finite outcome sets, and argued that our approach is method-
ologically preferable. A question as to the axiomatisation of
the LLQP-validities over a class of models having possibly in-
finite outcome sets is left for future work.
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