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Abstract
Argumentation is an inherently dynamic process.
Consequently, recent years have witnessed tremen-
dous research efforts towards an understanding of
how the seminal AGM theory of belief change can
be applied to argumentation, in particular for Dung’s
abstract argumentation frameworks (AFs). However,
none of the attempts has yet succeeded in handling
the natural situation where the revision of an AF is
guaranteed to be representable by an AF as well. In
this work, we present a generic solution to this prob-
lem which applies to many prominent I-maximal
argumentation semantics. In order to prove a full
representation theorem, we make use of recent ad-
vances in both areas of argumentation and belief
change. In particular, we utilize the concepts of re-
alizability in argumentation and the notion of com-
pliance as used in Horn revision.

1 Introduction
Argumentation has become a major research area in Artificial
Intelligence (AI) over the last two decades [Bench-Capon and
Dunne, 2007; Rahwan and Simari, 2009]. This is not only
because of the intrinsic interest of this topic and recent appli-
cations (e.g. in legal reasoning [Bench-Capon et al., 2009]
and E-Governance [Cartwright and Atkinson, 2009]) but also
because there are fundamental connections between argumen-
tation and other areas of AI, mainly non-monotonic reasoning.

The work by Dung [1995] on abstract argumentation, in
particular, is usually seen as a significant landmark in the
consolidation of the field of argumentation in AI. The central
concern of abstract argumentation is the evaluation of a set
of arguments and their relations in order to be able to extract
subsets of the arguments, so called “extensions”, that can all
be accepted together from some point of view. Dung’s argu-
mentation frameworks (AFs), which are still the most widely
used and investigated among the several argumentation for-
malisms, are directed graphs where nodes represent arguments
and links correspond to one argument attacking another. The
criteria or methods used to settle the acceptance of arguments,
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on the other hand, are called “semantics” (see [Baroni et al.,
2011] for a recent overview).

Given that argumentation can be viewed as a process as well
as a product, recent years have seen an increasing number of
studies on different problems in the dynamics of argumentation
frameworks [Baumann, 2012; Bisquert et al., 2011; 2013;
Boella et al., 2009; Booth et al., 2013; Cayrol et al., 2010;
Doutre et al., 2014; Kontarinis et al., 2013; Krümpelmann et
al., 2012; Nouioua and Würbel, 2014; Sakama, 2014]. The
problem we tackle here is how to revise an AF when some new
information is provided. Along the lines of the AGM theory
[Alchourrón et al., 1985; Gärdenfors, 1988], by revision we
mean an operation that incorporates the new information while
bringing minimal change to the extensions of the original AF.

To the best of our knowledge, this has first been considered
for AFs explicitly in [Coste-Marquis et al., 2014a], where
the problem of revision of AFs is defined as follows: given
a semantics, an AF and a revision formula expressing how
the status of some arguments has to be changed, find a set of
AFs which satisfy the revision formula and whose extensions
are as close as possible to the extensions of the input AF.
Following the AGM approach, rationality postulates for a
revision operator on AFs can be formulated and Coste-Marquis
et al. [2014a] also provide a representation theorem. Such a
result establishes a close link between obeying the postulates
and exploiting a particular type of ranking on extensions of
AFs in order to compute the output of revision. This approach
is thus similar to the one by Katsuno and Mendelzon [1991].

In this work we study revision operators that produce a
single AF as output. First, this is in accordance with the
standard way of defining revision in the AGM theory where
the result of revising an input theory by a revision formula
is another theory. Second, revision yielding a single AF also
makes concepts of iterated revision [Darwiche and Pearl, 1997;
Spohn, 1988] amenable to argumentation. More specifically,
we study two types of revision operators. The first type consid-
ers the new information represented as a propositional formula
expressing the desired change in the extensions of the original
AF. The second type is revision by an AF. Hence, the new
information is restricted in the sense that it can only stem from
another AF’s outcome. While the first type follows the frame-
work of [Coste-Marquis et al., 2014a], the latter assumes that
the knowledge to be incorporated (e.g. another agent’s beliefs)
is in the form of an AF. It is more in line with work on Horn
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revision [Delgrande and Peppas, 2015] where all involved
formulas stem from the same fragment.
Our main contributions are as follows:
•We derive full representation theorems for both mentioned
types of revision; our results are, moreover, generic in the
sense that they hold for a wide range of semantics including
preferred, semi-stable, stage, and stable semantics.
• For the revision-by-formula approach, we give novel no-
tions of compliance [Delgrande and Peppas, 2015] in order
to restrict the rankings. This is required to guarantee that the
outcome of the corresponding operators can be expressed by
an AF under a given semantics. To this end, exact knowl-
edge about the expressiveness of argumentation semantics is
needed. For most of the standard semantics, [Dunne et al.,
2014] provides the necessary results.
• In the revision-by-AF approach, we show that the concept of
compliance can be dropped, thus standard revision operators
satisfying all postulates like Dalal’s [1988] operator can be
directly applied to revision of AFs. However, an additional
postulate (again borrowed from [Delgrande and Peppas, 2015])
is needed for the representation theorem.

2 Preliminaries
We first recall basic notions of Dungs’s abstract frameworks
(the reader is referred to [Dung, 1995; Baroni et al., 2011] for
further background), then present recent results from [Dunne
et al., 2014] which we require for our results and finally define
rankings as used in belief change in terms of extensions.

We assume an arbitrary but finite domain A of arguments.
An argumentation framework (AF) is a pair F = (A,R) where
A ⊆ A is non-empty, and R ⊆ A × A is the attack relation.
The collection of all AFs is given as AFA.

Given F = (A,R), an argument a ∈ A is defended (in F )
by a set S ⊆ A if for each b ∈ A such that (b, a) ∈ R, there is
a c ∈ S with (c, b) ∈ R. A set T of arguments is defended (in
F ) by S if each a ∈ T is defended by S (in F ). A set S ⊆ A
is conflict-free (in F ), if there are no arguments a, b ∈ S, such
that (a, b) ∈ R. We denote the set of all conflict-free sets in
F as cf(F ). A set S ∈ cf(F ) is called admissible (in F ) if S
defends itself. We denote the set of admissible sets in F as
adm(F ). For S ⊆ A, the range of S (wrt. F ), denoted S+

F , is
the set S ∪ {a | ∃s ∈ S : (s, a) ∈ R}.

A semantics maps each F ∈ AFA to a set of extensions
S ⊆ 2A. For the stable, preferred, stage, and semi-stable
semantics respectively, the extensions are defined as follows:

• S ∈ stb(F ), if S ∈ cf(F ) and S+
F = A;

• S ∈ prf(F ), if S ∈ adm(F ) and @T ∈ adm(F ) s.t. T ⊃ S;

• S ∈ stg(F ), if S ∈ cf(F ) and @T ∈ cf(F ) with T+
F ⊃ S

+
F ;

• S ∈ sem(F ), if S∈adm(F ) and @T∈adm(F ) s.t. T+
F ⊃S

+
F .

The signature Σσ of a semantics σ is defined as Σσ =
{σ(F ) | F ∈ AFA} , containing exactly those sets of exten-
sion which can be realized under σ. Exact characterizations of
those sets for the aforementioned semantics have been given in
[Dunne et al., 2014]. If S1 and S2 are two extensions such that
S1 6= S2, we say that S1 and S2 are⊆-comparable if S1 ⊆ S2

or S2 ⊆ S1. We say that S1 and S2 are ⊆-incomparable if

they are not ⊆-comparable. Some of our results will apply to
semantics for which the following properties hold in terms of
realizability:
Definition 1. A semantics σ is called proper I-maximal if for
each S ∈ Σσ it holds that (i) for any S1, S2 ∈ S, S1 ⊆ S2

implies S1 = S2; (ii) S′ ∈ Σσ for any S′ ⊆ S with S′ 6= ∅;
and (iii) for any ⊆-incomparable S1, S2 ∈ 2A it holds that
{S1, S2} ∈ Σσ .

In words, an I-maximal [Baroni and Giacomin, 2007] se-
mantics σ is proper if, for any AF F , we can realize any
non-empty subset of σ(F ) under σ and on the other hand, for
any pair of ⊆-incomparable sets of arguments, we can find an
AF having exactly these as extensions under σ.

The next observation follows from [Dunne et al., 2014].
Proposition 1. Preferred, stable, semi-stable and stage se-
mantics are proper I-maximal.
Definition 2. Given a semantics σ, we define the function
fσ : 22

A 7→ AFA mapping sets of extensions to AFs such that
fσ(S) = F with σ(F ) = S if S ∈ Σσ and fσ(S) = (∅, ∅)
otherwise.

Note that S ∈ Σσ guarantees that we can find an AF which,
when evaluated under σ results in S. We leave the exact spec-
ifications of such AFs open; canonical constructions for the
semantics we consider can be found in [Dunne et al., 2014].
Such constructions may result in AFs with additional argu-
ments to those contained in a S ∈ Σσ, although recent work
on realizability in compact AFs [Baumann et al., 2014] could
pave the way for constructions of AFs without new arguments.
In general, fσ is not unique. Nevertheless, throughout the
paper we assume fσ to be fixed for every σ.

By PA we denote the set of propositional formulas over A,
where the arguments in A represent propositional variables.
A set of arguments E ⊆ A can be seen as an interpretation,
where a ∈ E means that a is assigned true and a /∈ E means
that a is assigned false. If a formula ϕ ∈ PA evaluates to true
under an interpretation E, E is a model of ϕ. [ϕ] denotes the
set of models of ϕ. Moreover, ϕ1 ≡ ϕ2 if [ϕ1] = [ϕ2].

A pre-order� on 2A is a reflexive, transitive binary relation
on 2A. If E1 � E2 or E2 � E1 for any E1, E2 ∈ 2A, the
pre-order � is total. Moreover, for E1, E2 ∈ 2A, E1 ≺ E2

denotes the strict part of �, i.e. E1 � E2 and E2 6� E1. We
write E1 ≈ E2 the case E1 � E2 and E2 � E1. An I-total
pre-order on 2A is a pre-order on 2A such that E1 � E2 or
E2 � E1 for any pair E1, E2 of ⊆-incomparable extensions.
Finally, for a set of sets of arguments S ⊆ 2A and a pre-order
�, min(S,�) = {E1 ∈ S | @E2 ∈ S : E2 ≺ E1}.

3 Representation Theorems
A key insight in belief change is the realization that any belief
revision operator can be characterized using rankings on the
possible worlds described by the language. Intuitively, the
rankings can be thought of as plausibility relations on possible
worlds. Revision by a formula ϕ then amounts to choosing
the most plausible worlds among the models of ϕ. The fact
that this strategy is sound with respect to the postulates is
guaranteed by a representation result [Katsuno and Mendelzon,
1991].
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In our approach, subsets of 2A play the role both of exten-
sions for AFs and models of propositional formulas, and will
be the possible worlds that a revision operator chooses from.
Consequently, we use rankings on 2A to characterize the class
of revision operators for AFs. We employ two main types of
rankings, introduced below.

Definition 3. Given a semantics σ, an (I-)faithful assignment
maps every F ∈ AFA to an (I-)total pre-order �F on 2A such
that, for any (⊆-incomparable) E1, E2 ∈ 2A and F, F1, F2 ∈
AFA, it holds that:

(i) if E1, E2 ∈ σ(F ), then E1 ≈ E2,

(ii) if E1 ∈ σ(F ) and E2 /∈ σ(F ), then E1 ≺F E2,

(iii) if σ(F1) = σ(F2), then �F1
=�F2

.

The pre-order �F assigned to F by an (I-)faithful assignment
is referred to as the (I-)faithful ranking associated with F .

Faithful assignments approximate the notion with the same
name introduced by Katsuno and Mendelzon [1991]. I-faithful
assignments differ in that they require the rankings to be I-
total, thus allowing (but not requiring) them to be partial with
respect to ⊆-comparable pairs of extensions. Section 3.2
explains why we need to introduce this second type.

3.1 Revision by Propositional Formulas
We first consider revision of an AF by a propositional formula.
Hence we are interested in operators of the form ?σ : AFA ×
PA 7→ AFA mapping an AF F and a consistent1 propositional
formula ϕ to a revised AF F ?σ ϕ. Intuitively, ϕ describes
information which should be incorporated in F . To this end,
the operator revises F such that the σ-extensions of F change
according to the models of ϕ. We define the revision postulates
adjusted to the AF scenario in a similar manner to [Coste-
Marquis et al., 2014a].

(P?1) σ(F ?σ ϕ) ⊆ [ϕ].

(P?2) If σ(F ) ∩ [ϕ] 6= ∅ then σ(F ?σ ϕ) = σ(F ) ∩ [ϕ].

(P?3) If [ϕ] 6= ∅ then σ(F ?σ ϕ) 6= ∅.
(P?4) If ϕ ≡ ψ then σ(F ?σ ϕ) = σ(F ?σ ψ).

(P?5) σ(F ?σ ϕ) ∩ [ψ] ⊆ σ(F ?σ (ϕ ∧ ψ)).

(P?6) If σ(F ?σ ϕ) ∩ [ψ] 6= ∅ then σ(F ?σ (ϕ ∧ ψ)) ⊆
σ(F ?σ ϕ) ∩ [ψ].

P?1 says that when we revise by ϕ, the extensions of the
revision output should be among the interpretations that sat-
isfy ϕ. P?2 specifies that if ϕ is consistent with F (in the
sense that they share models), revision amounts to nothing
more than taking the common models. P?3 says that if ϕ
is a consistent formula, then revision by ϕ should also be
consistent. P?4 guarantees irrelevance of syntax. P?5 and
P?6 ensure that revision is performed with minimal change
to the AF F . For further discussion on the motivation of the

1The restriction to consistent formulas is due to the fact that
argumentation semantics usually are not capable of expressing the
empty set of extensions. For semantics which can realize the empty
set, such as the stable semantics, our results in this section apply even
without this restriction.

postulates, see [Alchourrón et al., 1985; Gärdenfors, 1988;
Katsuno and Mendelzon, 1991].

Due to reasons pointed out in the introduction we require
the result of the revision to be a single AF. For this reason we
face a similar challenge to that encountered in Horn revision
[Delgrande and Peppas, 2015]. Specifically, it may be the
case that a set of extensions S that is the desired outcome of
the revision under a semantics σ cannot be realized under σ.
To overcome this problem we use Σσ to define the following
restriction on pre-orders, which we will need to obtain our
representation theorem:
Definition 4. A pre-order � is σ-compliant if for every con-
sistent formula ϕ ∈ PA it holds that min([ϕ],�) ∈ Σσ .
Example 1. Consider the pre-order � defined as {a, b, c} ≺
{a, b} ≈ {a, c} ≈ {b, c} ≺ {a} ≈ {b} ≈ {c} ≺ ∅.
Now let ϕ = ¬(a ∧ b ∧ c) and observe that min([ϕ],�
) = {{a, b}, {a, c}, {b, c}}. From the results in [Dunne
et al., 2014] we know that for σ ∈ {stb, prf, stg, sem},
{{a, b}, {a, c}, {b, c}} /∈ Σσ , hence � is not σ-compliant.

On the other hand let �′ be the pre-order defined as
{a, b, c}≺′{a}≈′{b}≈′{c}≺′{a, b}≺′{a, c}≺′{b, c}≺′∅ fol-
lowed by an arbitrary ≺′-chain of the remaining elements
of 2A. One can check that �′ is σ-compliant. For instance,
min([ϕ],�′) = {{a}, {b}, {c}} ∈ Σσ .

Note that for semantics considered in [Dunne et al., 2014],
their results imply that checking whether a given pre-order is
σ-compliant can be done in polynomial time. Using the notion
of σ-compliance enables us to extend the AGM approach
to capture the revision of argumentation frameworks under
proper I-maximal semantics by propositional formulas.
Theorem 1. Let σ be a proper I-maximal semantics, F ∈
AFA and �F a σ-compliant and faithful ranking associated
with F . Define an operator ?σ : AFA × PA 7→ AFA by

F ?σ ϕ = fσ(min([ϕ],�F )).

Then ?σ satisfies postulates P?1 – P?6.

Proof. First of all, by the definition of fσ and due to the fact
that�F is σ-compliant, we have that σ(fσ(min([ϕ],�F ))) =
min([ϕ],�F ), hence σ(F ?σ ϕ) = min([ϕ],�F ). Therefore
postulates P?1 and P?4 follow immediately.

If σ(F ) ∩ [ϕ] 6= ∅, it follows from �F being faithful that
min([ϕ],�F ) = σ(F ) ∩ [ϕ], satisfying P?2.

P?3 follows since �F is transitive and A is finite and
therefore if [ϕ] 6= ∅ then [ϕ] has minimal elements, hence
min([ϕ],�F ) 6= ∅.

P?5 and P?6 are trivially satisfied if σ(F ?σ ϕ) ∩ [ψ] = ∅.
Assume σ(F ?σϕ)∩[ψ] 6= ∅ and, towards a contradiction, that
there is some E ∈ min([ϕ],�F ) ∩ [ψ] with E /∈ min([ϕ ∧
ψ],�F ). Since E ∈ [ϕ ∧ ψ] there must be some E′ ∈ [ϕ ∧
ψ] with E′ ≺F E, a contradiction to E ∈ min([ϕ],�F ).
Therefore σ(F ?σ ϕ) ∩ [ψ] ⊆ σ(F ?σ (ϕ ∧ ψ)). To show that
also σ(F ?σ(ϕ∧ψ)) ⊆ σ(F ?σϕ)∩[ψ], assumeE ∈ min([ϕ∧
ψ],�F ) and E /∈ min([ϕ],�F ) ∩ [ψ]. Since E ∈ [ψ], E /∈
min([ϕ],�F ). Let E′ ∈ min([ϕ],�F ) ∩ [ψ] (assumed to
be nonempty). Then E′ ∈ [ϕ ∧ ψ] holds. As E ∈ min([ϕ ∧
ψ],�F ) and�F is total,E �F E′. HenceE ∈ min([ϕ],�F )
follows from E′ ∈ min([ϕ],�F ), a contradiction.
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Theorem 2. Let ?σ : AFA×PA 7→ AFA be an operator satis-
fying postulates P?1 – P?6 for a proper I-maximal semantics
σ. Then, there exists a faithful assignment mapping every
F ∈ AFA to a faithful ranking �F on 2A such that �F is σ-
compliant and σ(F ?σ ϕ) = min([ϕ],�F ) for every ϕ ∈ PA.

Proof. For a set of interpretations S, we denote by φ(S) a
formula with [φ(S)]=S. If the elements of S = {E1, . . . , En}
are given explicitly we also write φ(E1, . . . , En) for φ(S).

We define the binary relation �F on 2A as follows:

E �F E′ iff E ∈ σ(F ?σ φ(E,E′)).

We begin by showing that�F is a total pre-order. It follows
from P?1 and P?3 that σ(F?σφ(E,E′)) is a non-empty subset
of {E,E′}. Therefore �F is total. Moreover, if E = E′

then σ(F ?σ φ(E)) = {E}. Hence E �F E holds for each
E ∈ 2A, i.e., �F is reflexive.

In order to show transitivity of �F , let E1, E2, E3 ∈ 2A

and assume E1 �F E2 and E2 �F E3. By P?1 and P?3,
σ(F?σφ(E1, E2, E3)) is a non-empty subset of {E1, E2, E3}.
First assume σ(F ?σ φ(E1, E2, E3)) ∩ {E1, E2} = ∅. Then
σ(F ?σ φ(E1, E2, E3)) = {E3}. Knowing that φ(E2, E3) ≡
φ(E2, E3)∧φ(E1, E2, E3), we obtain from P?5 and P?6 that
σ(F ?σ φ(E1, E2, E3)) ∩ {E2, E3} = σ(F ?σ φ(E2, E3)).
But this implies σ(F ?σ φ(E2, E3)) = {E3}, a contradiction
to E2 �F E3.

On the other hand assume σ(F ?σ φ(E1, E2, E3)) ∩
{E1, E2} 6= ∅. Since E1 �F E2 we know that E1 ∈ σ(F ?σ
φ(E1, E2)) holds. Considering the fact that φ(E1, E2) ≡
φ(E1, E2)∧φ(E1, E2, E3), we obtain from P?5 and P?6 that
σ(F ?σ φ(E1, E2, E3)) ∩ {E1, E2} = σ(F ?σ φ(E1, E2)).
Thus, E1 ∈ σ(F ?σ φ(E1, E2, E3)) ∩ {E1, E2}. Also E1 ∈
σ(F ?σ φ(E1, E2, E3)) ∩ {E1, E3} holds. By φ(E1, E3) ≡
φ(E1, E3)∧φ(E1, E2, E3), we obtain from P?5 and P?6 that
σ(F ?σ φ(E1, E2, E3)) ∩ {E1, E3} = σ(F ?σ φ(E1, E3)).
Therefore E1 ∈ σ(F ?σ φ(E1, E3)), meaning that E1 �F E3.

Having shown that �F is total, reflexive and transitive, it
follows that �F is a total pre-order. The following lemmata
show that ?σ can indeed be simulated by �F .

Lemma 1. Let E1, E2 ∈ 2A such that E1 �F E2. Then for
all formulas ϕ ∈ PA, if E1 ∈ [ϕ] and E2 ∈ σ(F ?σ ϕ) then
E1 ∈ σ(F ?σ ϕ).

Proof. Let ϕ be a formula such that E1 ∈ [ϕ] and E2 ∈
σ(F ?σ ϕ). Then from P?5 and P?6 it follows that σ(F ?σ
(ϕ ∧ φ(E1, E2))) = σ(F ?σ ϕ) ∩ [φ(E1, E2)]. Moreover,
from E2 ∈ σ(F ?σ ϕ) and P?1 we derive that E2 ∈ [ϕ],
hence [φ(E1, E2)] ⊆ [ϕ]. By P?4 we now get σ(F ?σ (ϕ ∧
φ(E1, E2))) = σ(F ?σ φ(E1, E2)). Therefore, by P?5 and
P?6, σ(F ?σ φ(E1, E2)) = σ(F ?σ ϕ) ∩ [φ(E1, E2)]. This,
together with the assumption that E1 �F E2 (and therefore
E1 ∈ σ(F ?σ φ(E1, E2))), entails E1 ∈ σ(F ?σ ϕ).

Lemma 2. For ϕ ∈ PA, min([ϕ],�F ) = σ(F ?σ ϕ) holds.

Proof. ⊆: Let ϕ ∈ PA. Towards a contradiction assume that
there is some E1 ∈ min([ϕ],�F ) such that E1 /∈ σ(F ?σ ϕ).
Since [ϕ] 6= ∅ it follows by P?3 that σ(F ?σ ϕ) 6= ∅. Let E2 ∈
σ(F ?σ ϕ). Lemma 1 entails that E1 6�F E2. This also means,
recalling that E1 ∈ min([ϕ],�F ), that E2 6�F E1. But this

means by the definition of �F that σ(F ?σ φ(E1, E2)) = ∅, a
contradiction to ?σ satisfying P?3.
⊇: Let ϕ ∈ PA and E1 ∈ σ(F ?σ ϕ). We show that

for all E2 ∈ [ϕ] it holds that E1 �F E2. To this end let
E2 ∈ [ϕ]. From E1 ∈ σ(F ?σ ϕ) we know that σ(F ?σ
ϕ) ∩ [φ(E1, E2)] 6= ∅. By P?5 and P?6 we get σ(F ?σ ϕ) ∩
[φ(E1, E2)] = σ(F ?σ (ϕ∧φ(E1, E2))). Since E1, E2 ∈ [ϕ]
it follows by P?4 that σ(F ?σ (ϕ ∧ φ(E1, E2))) = σ(F ?σ
φ(E1, E2)). Now as E1 ∈ σ(F ?σ ϕ) by assumption, also
E1 ∈ σ(F ?σ φ(E1, E2)), meaning that E1 �F E2. Since E2

was chosen arbitrarily, E1 ∈ min([ϕ],�F ) follows.

From Lemma 2 it follows that �F is σ-compliant. It re-
mains to show that �F is faithful wrt. F . If σ(F ) = ∅ this
is trivially the case. Therefore assume σ(F ) 6= ∅. By P?2
we get σ(F ?σ >) = σ(F ) (note that [>] = 2A). Hence
σ(F ) = min([>],�F ) = min(2A,�F ), meaning that for
E1, E2 ∈ 2A, E1 ≈F E2 if E1, E2 ∈ σ(F ) and E1 ≺F E2

if E1 ∈ σ(F ) and E2 /∈ σ(F ). Therefore conditions (i) and
(ii) from Definition 3 are fulfilled. Condition (iii) holds since
�F is defined with respect to the extensions of F , hence �F
is faithful wrt. F .

The attentive reader might have noticed that we did not
make explicit use of the restriction to proper I-maximal se-
mantics in the proofs above. It is rather used implicitely since,
in general, rankings which are both faithful and σ-compliant
only exist if σ fulfills property (ii) of proper I-maximality.

We can use the representation results obtained from The-
orems 1 and 2 to define concrete operators via faithful and
compliant rankings. For instance, the ranking �F where the
σ-extensions of F are the minimal elements and the remaining
candidates in 2A are ordered as a≺-chain leads to a simple but
natural operator for any semantics σ. The concrete contents of
Σσ will be the crucial aspect to consider when defining more
refined operators under a certain semantics σ.

3.2 Revision by Argumentation Frameworks
In this section we investigate operators ∗σ : AFA × AFA 7→
AFA. Such operators map an AF F and an AF G to an AF
F ∗σ G. The underlying concept of a model is given by the
argumentation semantics σ. As before, we show a correspon-
dence between a set of postulates and a class of rankings on
2A. The revision postulates, in the manner of [Katsuno and
Mendelzon, 1991], are formulated as follows:
(A∗1) σ(F ∗σ G) ⊆ σ(G).
(A∗2) If σ(F )∩σ(G) 6= ∅, then σ(F ∗σG) = σ(F ) ∩ σ(G).
(A∗3) If σ(G) 6= ∅, then σ(F ∗σ G) 6= ∅.
(A∗4) If σ(G) = σ(H), then σ(F ∗σ G) = σ(F ∗σ H).
(A∗5) σ(F ∗σ G) ∩ σ(H) ⊆ σ(F ∗σ fσ(σ(G) ∩ σ(H))).
(A∗6) If σ(F ∗σ G) ∩ σ(H) 6= ∅, then

σ(F ∗σ fσ(σ(G) ∩ σ(H))) ⊆ σ(F ∗σ G) ∩ σ(H).
(Acyc) If for 0 ≤ i ≤ n, σ(F ∗σ Gi+1) ∩ σ(Gi) 6= ∅ and

σ(F ∗σG0)∩σ(Gn) 6= ∅ then σ(F ∗σGn)∩σ(G0) 6= ∅.
Postulate Acyc is borrowed from [Delgrande and Peppas,

2015]. Its addition to the set of postulates is motivated by
the following problem. Suppose that for an AF F we have a

2929



ranking ≺F on 2A which behaves as in the following figure
for the extensions {a}, {b, c}, {a, c} and {b}, and as a faithful
ranking otherwise.

{a}

{b, c}

{a, c}

{b}

The arrow means that the relation is strict: thus {a} �F
{b, c} and {b, c} �F {a}. The relation ≺F , then, contains a
non-transitive cycle and is not a pre-order. However, quick
inspection of the figure shows that for any non-empty subset S
of extensions that can be represented by an AF under a proper
I-maximal semantics σ, min(S,≺F ) is still well defined and
non-empty. Thus it is possible to define an operator ∗σ in the
usual way: F ∗σ G = fσ(min(σ(G),≺F )), and – crucially –
the operator ∗σ satisfies postulates A∗1 – A∗6.

Additionally, there is no transitive ranking �?F which is
transitive and yields the same revision operator. To see
this, notice that if �?F existed, it would have to satisfy
min({{a}, {b, c}},�?F ) = {{a}}, because we know that
σ(F ∗σ fσ({{a}, {b, c}})) = {{a}}. Thus it would hold that
{a} ≺∗F {b, c}. Similarly, we get that {b, c} ≺∗F {a, c} ≺∗F
{b} ≺∗F {a}, and the cycle is reiterated.

Nonetheless, non-transitive cycles are something we want
to avoid: since a natural reading of the rankings on 2A is
as plausibility relations, we would like these rankings to be
transitive, and it is thus undesirable to have revision operators
that characterize non-transitive rankings. In order to prevent
this situation we make use of Acyc.

The second detail that needs to be mentioned is our use of
I-faithful assignments, motivated by the way in which proper
I-maximal semantics work. Given a revision operator ∗σ and
F ∈ AFA, the natural way to rank two extensions E1 and
E2 is by appeal to F ∗σ fσ({E1, E2}): if E1 ∈ σ(F ∗σ
fσ({E1, E2})), then E1 is considered ‘more plausible’ than
E2 and it should hold that E1 �F E2. However, by proper
I-maximality of σ, fσ({E1, E2}) exists only if E1 and E2

are ⊆-incomparable. Thus if E1 and E2 are ⊆-comparable,
∗σ might not have any means to adjudicate between E1 and
E2, hence it is natural to allow them to be incomparable with
respect to �F .

Given these preliminaries, we can now state our main repre-
sentation results.

Theorem 3. Let σ be a proper I-maximal semantics, F ∈
AFA and �F an I-faithful ranking associated with F . Define
an operator ∗σ : AFA × AFA 7→ AFA by:

F ∗σ G = fσ(min(σ(G),�F )).

Then ∗σ satisfies postulates A∗1 – A∗6 and Acyc.

Proof. Since σ is proper I-maximal, any non-empty subset
of σ(G) (in particular, min(σ(G),�F )) is realizable under σ.
Thus ∗σ is well-defined and we do not need to add any extra
condition on�F , such as σ-compliance. Keeping this in mind,
the proof that A∗1 – A∗6 hold is entirely similar to Theorem 1.
In the following we show that Acyc also holds.

Let G0, G1, . . . , Gn be a sequence of AFs such that for
all i ∈ {1, . . . , n}, (F ∗σ Gi) ∩ σ(Gi−1) 6= ∅ and (F ∗σ
G0) ∩ σ(Gn) 6= ∅ holds. From (F ∗σ G1) ∩ σ(G0) 6= ∅
we derive by proper I-maximality of σ that min(σ(G1),�F
)∩σ(G0) 6= ∅. Hence there is an extension E′0 ∈ σ(G0) such
that E′0 �F E1 for all E1 ∈ σ(G1). Likewise we get from
(F ∗σG2)∩σ(G1) 6= ∅ that there is an extension E′1 ∈ σ(G1)
such that E′1 �F E2 for all E2 ∈ σ(G2), . . . , and from
(F ∗Gn) ∩ σ(Gn−1) 6= ∅ that there is an extension E′n−1 ∈
σ(Gn−1) such that E′n−1 �F En for all En ∈ σ(Gn). From
transitivity of �F we get E′0 �F En for all En ∈ σ(Gn).
Finally, from (F ∗σ G0) ∩ σ(Gn) 6= ∅ it follows that there
is some E′′0 ∈ σ(G0) with E′′0 �F E0 for all E0 ∈ σ(G0)
and E′′0 ∈ σ(Gn). Now from E′′0 �F E′0 �F En (for all
En ∈ σ(Gn)) it follows that E′′0 ∈ min(σ(Gn),�F ). Hence
σ(F ∗σ Gn) ∪ σ(G0) 6= ∅.

Theorem 4. Let ∗σ : AFA×AFA 7→ AFA be an operator sat-
isfying postulates A∗1 – A∗6 and Acyc for a proper I-maximal
semantics σ. Then, there exists an I-faithful assignment map-
ping every F ∈ AFA to an I-faithful ranking �F on 2A such
that F ∗σ G = fσ(min(σ(G),�F )) for any G ∈ AFA.

Proof. Assume there is ∗σ : AFA × AFA 7→ AFA satisfying
postulates A∗1-A∗6 and Acyc, and take an F ∈ AFA. We
construct �F in two steps. First we define a relation �′F on
2A by saying that for any two ⊆-incomparable E,E′ ∈ 2A:

E �′F E′ iff E ∈ σ(F ∗σ fσ({E,E′})).

The relation �′F is reflexive, as A∗1 and A∗3 imply that E ∈
σ(F ∗σ fσ({E})), but not necessarily total. In the next step
we take �F to be the transitive closure of �′F . In other words:

E �F E′ iff there exist E1, . . . , En such that:

E1 = E,En = E′ and E1 �′F · · · �′F En.

The remainder of the proof shows that �F is the desired
I-faithful ranking. First, notice that if E1 �′F E2 then E1 �F
E2. Hence�F is reflexive and, by construction, it is transitive,
which makes it a pre-order on 2A. Additionally, for any two
⊆-incomparable extensions E1, E2, proper I-maximality of
σ guarantees that fσ({E1, E2}) exists. By A∗1 and A∗3,
σ(F ∗σ fσ({E1, E2})) is a non-empty subset of {E1, E2},
thus E1 �′F E2 or E2 �′F E1 and �′F is I-total. Next we
argue that � is an I-faithful ranking.

Due to proper I-maximality of σ, a set {E1, E2} is real-
izable whenever E1 and E2 are ⊆-incomparable. Thus, we
usually write simply {E1, E2} instead of σ(fσ({E1, E2})).

Lemma 3. If E1, E2 ∈ σ(F ), then E1 ≈F E2.

Proof. From A∗2 and proper I-maximality of σ, we get
σ(F ∗fσ({E1, E2})) = σ(F )∩{E1, E2} = {E1, E2}. Thus
E1 �′F E2 and E2 �′F E1, which implies E1 ≈F E2.

Lemma 3 shows that �F satisfies property (i) of I-faithful
assignments. For property (ii) we make use of the following
lemmas. It is in this context that Acyc proves crucial.

Lemma 4. IfE1, . . . , En are pairwise distinct extensions with
E1 �′F E2 �′F · · · �′F En �′F E1, then E1 �′F En.
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Proof. If n = 2 the conclusion follows immediately. In
the following we assume that n > 2. From the hypothe-
sis we have that Ei ∈ σ(F ∗σ fσ({Ei, Ei+1})), for i ∈
{1, n − 1}, and En ∈ σ(F ∗σ fσ({En, E1})). It fol-
lows that E1 ∈ σ(F ∗σ fσ({E1, E2})) ∩ {En, E1}, Ei ∈
σ(F ∗σfσ({Ei, Ei+1}))∩{Ei−1, Ei}, for i ∈ {2, . . . , n−1},
and En ∈ σ(F ∗σ fσ({En, E1})) ∩ {En−1, En}. Applying
Acyc, we get that σ(F ∗σ fσ({En, E1})) ∩ {E1, E2} 6= ∅.
From A∗5 and A∗6 it follows that σ(F ∗σ fσ({En, E1})) ∩
{E1, E2} = σ(F ∗σ fσ({En, E1} ∩ {E1, E2})). Since
{En, E1} ∩ {E1, E2} = {E1} we get by A∗4 that σ(F ∗σ
fσ({En, E1}∩{E1, E2})) = σ(F ∗σ fσ(E1)). Finally, using
A∗1 and A∗3 we conclude that σ(F ∗σ fσ(E1)) = {E1}, and
thus E1 ∈ σ(F ∗σ fσ({En, E1})), implying E1 �′F En.

Lemma 5. For any extensions E and E′, if E ≺′F E′ then
E ≺F E′.

Proof. Suppose, on the contrary, that E′ �F E. Then
there exist E1, . . . , En such that E1 = E′, En = E and
E1 �′F · · · �′F En. Since we also have E ≺′F E′, we can
apply Lemma 4 to get E1 �′F En, a contradiction.

Lemma 6. If E1 and E2 are ⊆-incomparable extensions and
E1 ∈ σ(F ), E2 /∈ σ(F ), then E1 ≺F E2.

Proof. By proper I-maximality of σ and A∗2 we get σ(F ∗σ
fσ({E1, E2})) = σ(F ) ∩ {E1, E2} = {E1}. This implies
that E1 ≺′F E2 and by Lemma 5 E1 ≺F E2.

Lemma 6 gives us property (ii). Property (iii) is true be-
cause �F extends �′F , which is defined solely with respect to
the extensions of F .

Lastly, we show that the extensions of F ∗σ G, for any
G ∈ AFA, are the minimal elements of σ(G) under �F .

Lemma 7. For any two extensions E1, E2 and any G ∈ AFA,
if E1 ∈ σ(G), E2 ∈ σ(F ∗σ G) and E1 �′F E2, then E1 ∈
σ(F ∗σ G).

Proof. SinceE2 ∈ σ(F ∗σG), by A∗1 we get thatE2 ∈ σ(G).
Thus E1 and E2 are both σ-extensions of G, and by proper
I-maximality of σ, fσ({E1, E2}) exists. Given this, the rest
of the proof is similar to the one for Lemma 1.

Lemma 8. For anyG ∈ AFA, min(σ(G),�′F ) = σ(F ∗σG).

Proof. Keeping in mind that for any two σ-extensions E1, E2

of G, by proper I-maximality of σ), E1 �′F E2 or E2 �′F E1,
the proof is similar to the one for Lemma 2.

Lemma 9. For any argumentation framework G ∈ AFA, it
holds that min(σ(G),�F ) = min(σ(G),�′F ).

Proof. ⊆: Let E1 ∈ min(σ(G),�F ) and suppose there exists
E2 ∈ σ(G) with E2 ≺′F E1. By Lemma 5, this implies
that E2 ≺F E1, a contradiction to E1 ∈ min(σ(G),�F ). It
follows that E1 �′F E2, thus E1 ∈ min(σ(G),�′F ).
⊇: Take E1 ∈ min(σ(G),�′F ) and any E2 ∈ σ(G). If

E2 = E1, it follows that E1 �′F E2. If E2 6= E1, then by
proper I-maximality of σ, E1 and E2 are ⊆-incomparable
and thus E1 �′F E2 or E2 �′F E1. We cannot have that
E2 ≺′F E1, since this would contradict the hypothesis that

E1 ∈ min(σ(G),�′F ), therefore E1 �′F E2. In both cases it
follows that E1 �F E2, hence E1 ∈ min(σ(G),�F ).

Lemmata 8 and 9 imply that for any G ∈ AFA, σ(F ∗G) =
min(σ(F ),�F ). This concludes the proof.

Finally, notice that any faithful assignment on 2A can
be used, via Theorem 3, to construct a revision operator
σ∗ : AFA × AFA → AFA. The reason why revision by argu-
mentation frameworks is easier than revision by propositional
formulas is the fact that any subset of σ(F ) is realizable un-
der σ, for any proper I-maximal semantics σ and F ∈ AFA.
Also, any faithful assignment is an I-faithful assignment in our
sense, which implies, by Theorem 3, that ∗σ satisfies A∗1 –
A∗6 and Acyc. Thus, any model-based revision operator from
the standard literature on belief change (e.g., Dalal’s operator
[Dalal, 1988]) can be used as a revision operator of AFs by
AFs.

4 Discussion
Related Work As we already indicated in the introduction
to this work, there has been a substantial amount of research
in the dynamics of argumentation frameworks although the
problems investigated and approaches that have been devel-
oped to tackle these differ considerably. We briefly discuss
the most closely related work.

Booth et al. [2013] develop a general AGM-like framework
for modelling the dynamics of AFs based on a labelling ap-
proach. Particularly relevant for their work is the notion of
“fall back beliefs” which represent the most rational outcome
of the input AF given a constraint. Their revision operator is
defined in terms of conflict free labellings and their notion of
“fall back beliefs” is developed only for complete semantics.

We have already mentioned the work presented in [Coste-
Marquis et al., 2014a] which is the starting point of our in-
vestigation. On the semantic side, their revision functions are
defined following a two step process: first a counter-part to
the notion of faithful assignment on the models of the revision
operators is defined; secondly, a set of AFs that generate such
extensions is constructed using different criteria, e.g. mini-
mizing the changes in the attack relation of the input AF vs.
minimizing the number of AFs generated. The main difference
between the work presented in [Coste-Marquis et al., 2014a]
to our work is that we consider the issue of revision of AFs as
minimal change in the arguments statuses under the constraint
that a single AF has to be produced. The price we pay is that
in our solution the revised AF may have new arguments while
in [Coste-Marquis et al., 2014a] only the attack relation can
be modified. Recent work on realizability in compact AFs
[Baumann et al., 2014] could pave the way for revision in
the setting where, the result is a single AF, but no additional
arguments are allowed to come into play.

Finally, in [Coste-Marquis et al., 2014b] the revision prob-
lem for AFs is translated into propositional logic thus enabling
the use of classical AGM revision operators to carry out revi-
sion in the AF setting. On the other hand, the revision formulas
are defined in terms of the skeptical acceptance of arguments.
Nevertheless, the output of revision is still a set of AFs rather
than a single AF.
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Conclusion and Outlook We have presented a generic solu-
tion to the problem of revision for argumentation frameworks
which applies to many prominent I-maximal argumentation
semantics. The key to obtain our AGM-style representation
theorems was the combination of recent advances from ar-
gumentation theory and belief change. We identify several
directions for future work: (1) extend our results to semantics
which are not proper I-maximal; (2) identify operators based
on σ-compliant rankings for specific semantics σ; (3) ana-
lyze whether our insights can be extended to a broader theory
of belief change within fragments; (4) apply our findings to
other belief change operations. In particular, iterated belief
revision seems to have natural applications in the argumenta-
tion domain and we believe that the understanding of revision
yielding a single AF is fundamental for this purpose; (5) take
the syntactic form of the AF into account. One possibility
would be a two-step approach, where our abstract revision is
the first step. Based on this result, a second step would revise
the syntactic structure of the AF.
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