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Abstract
Justification logic originated from the study of the
logic of proofs. However, in a more general set-
ting, it may be regarded as a kind of explicit epis-
temic logic. In such logic, the reasons why a fact
is believed are explicitly represented as justifica-
tion terms. Traditionally, the modeling of uncertain
beliefs is crucially important for epistemic reason-
ing. While graded modal logics interpreted with
possibility theory semantics have been successfully
applied to the representation and reasoning of un-
certain beliefs, they cannot keep track of the rea-
sons why an agent believes a fact. The objective of
this paper is to extend the graded modal logics with
explicit justifications. We introduce a possibilistic
justification logic, present its syntax and semantics,
and investigate its meta-properties, such as sound-
ness, completeness, and realizability.

1 Introduction
Since the seminal work by Hintikka [1962], modal logic has
been a standard approach for reasoning about knowledge and
belief of intelligent agents [Fagin et al., 1996]. In the epis-
temic/doxastic reading of modal logics1, the formula �ϕ is
interpreted as “ϕ is believable” or “ϕ is knowable”. How-
ever, without explicit justifications, the reasons why ϕ is be-
lieved or known are not represented in the logic. By con-
trast, justification logics (JL) supply the missing component
by adding justification terms to epistemic formulas [Arte-
mov and Nogina, 2005; Artemov, 2008; Artemov and Fitting,
2012; Fitting, 2005]. The first member of the JL family is the
logic of proofs (LP) proposed in [Artemov, 2001]. Although
the original purpose of LP is to formalize the Brouwer-
Heyting-Kolmogorov semantics for intuitionistic logic and
establish the completeness of intuitionistic logic with respect
to this semantics, in a more general setting, LP may be re-
garded as a device that makes reasoning about knowledge ex-
plicit and keeps track of the justifications [Artemov, 2008;
Artemov and Nogina, 2005].

1For the purpose of the paper, the difference between belief and
knowledge is not important. Hence, hereafter, we use epistemic rea-
soning to denote reasoning about any kind of informational attitude
for an agent.

One key issue in epistemic reasoning is the modeling of un-
certain beliefs [Halpern, 2003]. While there exist many dif-
ferent uncertainty representation formalisms, the possibility
theory-based approach [Zadeh, 1978] is the most appropriate
one to be integrated into modal logics, because the necessity
measure bears a striking similarity to the epistemic modal-
ity. In particular, graded modalities with possibility theory
semantics have been successfully applied to the representa-
tion and reasoning of uncertain beliefs [Dubois et al., 2013;
Esteva et al., 1997; Liau and Lin, 1992; 1996]. However, as
in the case of classical epistemic logic, graded modal logics
cannot keep track of the reasons of uncertain beliefs. Hence,
the objective of the paper is to extend the graded modal logics
with explicit justifications. We introduce a possibilistic justi-
fication logic (PJL) which is regarded as the explicit version
of the quantitative modal logic (QML) proposed in [Liau and
Lin, 1992]. We present the syntax and semantics of PJL and
investigate its meta-properties, such as soundness, complete-
ness, and realizability.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the basic ideas of justification logic and
quantitative modal logic. In Section 3, we introduce possi-
bilistic justification logic and investigate its meta-properties.
In Section 4, we discuss application of PJL to inconsistency-
tolerant reasoning and compare PJL with related logical sys-
tems. In Section 5, we present the conclusions and indicate
future research directions.

2 Preliminaries
2.1 Modal logic and justification logic
We start with the syntax and semantics of classical modal
logic [Blackburn et al., 2001]. Let PV denote the set of
propositional variables. Then, the well-formed formulas
(wffs) of the propositional modal logic are defined as follows:

ϕ ::= p | ⊥ | ϕ ⊃ ϕ | �ϕ,
where p ∈ PV ,⊥ is the logical constant representing falsum ,
⊃ is the material implication, and � is the epistemic modality.
Other logical connectives such as >,¬,∧,∨,≡ and modality
♦ are defined as abbreviations as usual. We use L� and L to
denote the propositional modal language and the underlying
propositional language respectively.

The wffs of modal logic are semantically interpreted in a
Kripke model (possible world model), which is defined as a
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triple M = 〈W,R, V 〉, where W is a set of possible worlds,
R ⊆ W ×W is a binary accessibility relation on W , and
V : PV → 2W assigns to each propositional symbol in PV
a subset of W . Given a model M, we can define a forcing
relation 
M between W and L� by the semantic rules (we
usually omit the subscript M for simplicity). In addition to
the standard rules for classical connectives, we have w 
 �ϕ
iff for any u such that (w, u) ∈ R, u 
 ϕ. For a given Kripke
model M = 〈W,R, V 〉 and a wff ϕ, we can define the truth
set of ϕ with respect to M by

|ϕ|M = {w | w ∈W,w 
 ϕ}.

We usually drop the subscript and simply write |ϕ| for the
truth set of ϕ when the model M is clear from the context.
Let Σ be a set of wffs. Then, we use w 
M Σ to denote that
w 
M ψ for all ψ ∈ Σ. Furthermore, a wff ϕ is a logical
consequence of Σ, denoted by Σ |= ϕ, if, for any M and w,
w 
M Σ implies w 
M ϕ. A wff ϕ is valid, denoted by
|= ϕ, if it is a logical consequence of the empty set.

In JL, in addition to the category of formulas, there is
a second category of justifications, which are formal terms
built up from constants and variables using various operation
symbols. Constants represent justifications for commonly ac-
cepted truths—-typically axioms, whereas variables denote
unspecified justifications. Different JL’s allow different op-
eration symbols. However, most of them contain application
and sum. Specifically, the justification terms and wffs of the
basic JL are formalized as follows:

t ::= a | x | t · t | t+ t,

ϕ ::= p | ⊥ | ϕ ⊃ ϕ | t : ϕ,

where p ∈ PV , a is a justification constant, and x is a justi-
fication variable. We use LJ to denote the basic JL language.
The set of variables appearing in a term t is denoted by V(t)
and for a set S of terms, we define V(S) as

⋃
t∈S V(t). A

term is ground if V(t) = ∅.
JL furnishes an evidence-based foundation for the logic of

knowledge with assertions of format t : ϕ, which denotes “t
is a justification of ϕ”, or more strictly, “t is accepted as a jus-
tification of ϕ” [Artemov, 2008]. Semantically, the formula
t : ϕ can be regarded as that t is an admissible evidence for ϕ
and based on the evidence, ϕ is believed. Thus, the model of
JL is the Kripke model of modal logics enriched with an ad-
ditional evidence component [Artemov, 2008; Fitting, 2005].
This kind of model, called Kripke-Fitting model, is formally
defined as a quadruple M = 〈W,R,E, V 〉, where 〈W,R, V 〉
is a Kripke model and E is an admissible evidence function
such that E(t, ϕ) ⊆ W for any justification term t and wff
ϕ. Intuitively, E(t, ϕ) specifies the set of possible worlds in
which t is regarded as admissible evidence for ϕ. In this pa-
per, we consider the minimal justification logic J . For J , it
is required that E must satisfy the closure condition with re-
spect to the application and sum operations:

1. Application: E(s, ϕ ⊃ ψ) ∩ E(t, ϕ) ⊆ E(s · t, ψ).
2. Sum: E(s, ϕ) ∪ E(t, ϕ) ⊆ E(s+ t, ϕ).

The first condition states that an admissible evidence for
ϕ ⊃ ψ, which can be regarded as a function that transforms a

justification of ϕ to a justification of ψ, can be applied to an
admissible evidence for ϕ to obtain an admissible evidence
for ψ. The second condition guarantees that adding a piece
of new evidence does not defeat the original evidence. That
is, s+ t is still an admissible evidence for ϕ whenever either
s or t is an admissible evidence for ϕ. Note that conflicting
evidence is allowed in JL. For example, if s is an admissi-
ble evidence for ϕ and t is an admissible evidence for ¬ϕ,
then by the second condition above, s + t is an admissible
evidence for both ϕ and ¬ϕ. In this case, it means that s
and t are in conflict with each other, and we do not exclude
such evidence. The forcing relation 
M between W and the
justification formula t : ϕ then follows the rule:
• w 
 t : ϕ iff w ∈ E(t, ϕ) and for any u such that

(w, u) ∈ R, u 
 ϕ.

2.2 Possibilistic reasoning and modal logic
Possibility theory is developed from fuzzy set theory by
Zadeh [1978]. Given a universe W , a possibility distribution
on W is a function π : W → [0, 1]. For a given π, we can de-
fine possibility and necessity measures Π, N : 2W → [0, 1]
respectively as Π(X) = supw∈X π(w) and N(X) = 1 −
Π(X), where X is the complement of X with respect to W .
Dubois and Prade [1988; 1991] propose the possibilistic logic
(PL) based on possibility theory. The wffs of PL based on a
propositional languageL are of the forms (ϕ Nα) or (ϕ Πα),
where ϕ ∈ L and α ∈ (0, 1]. Informally, (ϕ Nα) (resp.
(ϕ Πα)) means that the necessity (resp. possibility) of ϕ is at
least α. Although PL is useful in reasoning about an agent’s
uncertain beliefs, it is not suitable for introspective agents,
i.e., the agents reasoning about the beliefs of itself. However,
by the analogy between necessity (resp. possibility) measure
and the modal operator � (resp. ♦) indicated in [Dubois
and Prade, 1988], it is quite easy to extend PL to a graded
modal logic that can model uncertain epistemic reasoning
[Dubois et al., 2013; Esteva et al., 1997; Liau and Lin, 1992;
1996]. In this paper, we employ the formalism of quantita-
tive modal logic (QML) proposed in [Liau and Lin, 1992;
1996].

To represent nested necessity and possibility measures,
QML uses a less cumbersome notation that is compatible with
modal operators. In fact, QML can be viewed as a logic with
multiple modal operators. Let [α] and [α]+ denote modal op-
erators for any rational α ∈ [0, 1]. Then, the formation rules
of QML wffs are as follows:

ϕ ::= p | ⊥ | ϕ ⊃ ϕ | [α]ϕ | [α]+ϕ,

where p ∈ PV . We also abbreviate ¬[1 − α]¬ϕ and
¬[1− α]+¬ϕ as 〈α〉+ϕ and 〈α〉ϕ respectively. The intuitive
interpretation of [α]ϕ (resp. [α]+ϕ) is that an agent believes
ϕ with certainty at least (more than) α. We use LΠ to denote
the QML language.

A QML model is a triple M = 〈W,R, V 〉, whereW and V
are defined as those for modal logic, andR : W×W → [0, 1]
is a fuzzy relation on W . For each w ∈ W , a possibility
distribution πw can be defined as πw(u) = R(w, u) for all
u ∈ W . Let Nw denote the necessity measure corresponding
to πw for each w ∈ W . Then, the forcing relation between
W and LΠ includes the following two rules:
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• w 
 [α]ϕ iff Nw(|ϕ|) ≥ α;

• w 
 [α]+ϕ iff Nw(|ϕ|) > α.

3 Possibilistic Justification Logic
As JL provides an evidence-based foundation to epistemic
logic, we can also combine justification terms with graded
modalities in QML to represent uncertain beliefs justified by
a piece of evidence. The situations often occur when the ev-
idence is not strong enough to fully support the belief. The
resultant logic is called possibilistic justification logic(PJL).
The formation rules of PJL wffs are as follows:

ϕ ::= p | ⊥ | ϕ ⊃ ϕ | t :α ϕ | t :+α ϕ,

where p ∈ PV , α ∈ [0, 1] is a rational number, and t is a
justification term formed by the same rules as those in JL.
We use LΠ

J to denote the PJL language. A rational number
α appearing in a wff is called a grade or a degree and we
use G(ϕ) to denote the set of grades appearing in a wff ϕ.
Also, for a set Σ of wffs, we define G(Σ) as

⋃
ϕ∈Σ G(ϕ).

Moreover, for any subset F ⊆ [0, 1], we use LΠ
J (F ) to denote

the fragment of LΠ
J in which only grades in F occur.

As the Kripke-Fitting model is an extension of the Kripke
model, a PJL model is defined as a quadruple M =
〈W,R,E, V 〉, where 〈W,R, V 〉 is a QML model and the ad-
missible evidence function E is the same as in the Kripke-
Fitting model. The forcing relation 
M between W and the
uncertain justification formulas t :α ϕ and t :+α ϕ are defined
as follows:

• w 
 t :α ϕ iff w ∈ E(t, ϕ) and Nw(|ϕ|) ≥ α
• w 
 t :+α ϕ iff w ∈ E(t, ϕ) and Nw(|ϕ|) > α

The intuitive interpretation of t :α ϕ is that, according to the
evidence t, ϕ is believed with certainty at least α, and t :+α ϕ
can be interpreted analogously. The validity of wffs and the
notion of logical consequence are defined in the same way as
in modal logic. We use |=JΠ to denote the validity and logical
consequence in PJL.

The validity in PJL can be characterized by the following
Hilbert-style axiomatization JΠ.

1. Axiom schemata:

(a) The standard set of axioms for classical proposi-
tional logic

(b) s :α (ϕ ⊃ ψ) ⊃ (t :α ϕ ⊃ s · t :α ψ)

(c) s :+α (ϕ ⊃ ψ) ⊃ (t :+α ϕ ⊃ s · t :+α ψ)

(d) s :α ϕ ⊃ s+ t :α ϕ and t :α ϕ ⊃ s+ t :α ϕ

(e) s :+α ϕ ⊃ s+ t :+α ϕ and t :+α ϕ ⊃ s+ t :+α ϕ

(f) (s :0 ϕ ∧ t :α ϕ) ⊃ s :α ϕ
(s :0 ϕ ∧ t :+α ϕ) ⊃ s :+α ϕ

(g) t :α ϕ ⊃ t :+β ϕ, if α > β

(h) t :+α ϕ ⊃ t :α ϕ

(i) ¬t :+1 ϕ

2. Rules of inference:

(a) Modus Ponens: from ϕ and ϕ ⊃ ψ, infer ψ;

(b) Axiom Internalization Rule2: from any instance
ϕ of the axiom schemata above and any sequence
of justification constants c1, c2, . . . , cn, infer cn :1
cn−1 :1 · · · c1 :1 ϕ.

Let Σ be a subset of PJL wffs. Then, an axiomatic proof
(or derivation) from Σ is a finite sequence of wffs, each of
which is an instance of an axiom schema, an element of Σ,
or follows from earlier items by one of the rules of inference;
and a wff ϕ is derivable from Σ, denoted by Σ `JΠ ϕ, if ϕ is
the last line of a proof from Σ. Moreover, ϕ is an axiomatic
theorem of the system JΠ, denoted by `JΠ ϕ, if it is derivable
from the empty set. A set Σ is inconsistent if Σ `JΠ ⊥,
otherwise, Σ is consistent.

The axiom internalization rule behaves like the necessita-
tion rule in modal logic or QML. For the soundness of the
rule, we impose a further restriction on the admissible evi-
dence function:

• for any instance ϕ of the axiom schemata above and any
sequence of justification constants c1, c2, . . . , cn(n ≥
1), E(cn, cn−1 :1 · · · c1 :1 ϕ) = W .

Note that the premises of the axiom internalization rule are re-
stricted to instances of axioms instead of any theorems. The
main reason of such restriction is that in JL or PJL, justifica-
tion terms can track the derivation of a theorem. Because jus-
tification constants represent atomic derivations which cannot
be analyzed further, an axiom that holds without resorting to
any deduction process can be simply justified by any justifica-
tion constant. However, a theorem that is not an axiom must
be derived through a complex deduction process whose struc-
ture is reflected by justification terms of the theorem. Thus,
justification constants are not necessarily applicable to any
theorem. Despite the restriction on the axiom internalization
rule, internalization of any proof is possible via the following
result.

Theorem 1 (Internalization) The system JΠ enjoys inter-
nalization. That is, for any wff ϕ1, . . . , ϕn, ψ ∈ LΠ

J , if

{ϕ1, . . . , ϕn} `JΠ ψ

then for any terms t1, . . . , tn, rational numbers α1 . . . , αn ∈
[0, 1], and I ⊆ {1, 2, . . . , n}, there exists a term t such that
V(t) ⊆ V({t1, . . . , tn}) and

{ti :αi
ϕi | i ∈ I} ∪ {ti :+αi

ϕi | i 6∈ I} `JΠ t :α ψ

where α = min1≤i≤n αi. Furthermore, if mini∈I αi > α,
then the conclusion of the derivation above can be strength-
ened to t :+α ψ.

Proof. The theorem can be easily proved by induction on the
length of the derivation {ϕ1, . . . , ϕn} `JΠ ψ.

A special case of the internalization theorem shows that
any proof of an axiomatic theorem can be internalized.

Corollary 1 For any wff ϕ ∈ LΠ
J , if `JΠ ϕ then there exists

a ground term t such that `JΠ t :1 ϕ.

2The rule corresponds to using total constant specification [Arte-
mov, 2008]. For brevity, we do not introduce the notion of constant
specification in this paper.
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The system JΠ is sound and complete with respect to PJL
models. Nevertheless, because of the failure of the compact-
ness theorem, the strong completeness of the system is re-
stricted. For example, let Σ = {c :1− 1

n
ϕ | n > 1}. Then,

c :1 ϕ is a logical consequence of Σ. However, because
any finite subset of Σ ∪ {¬c :1 ϕ} is obviously satisfiable
and any deduction must be finitary, c :1 ϕ is not derivable
from Σ. Let us consider a set of wffs Σ ∪ {ϕ} ⊆ LΠ

J such
that G(Σ ∪ {ϕ}) is finite and let F = {α, 1 − α | α ∈
G(Σ ∪ {ϕ})} ∪ {0, 1} . Then, we can define the world-
alternative functions AL,AL+ : 2L

Π
J (F ) × F → 2L

Π
J (F ) as

follows:

AL(Γ, α) = {ϕ | ∃α′, t(α′ ≥ α, t :α′ ϕ ∈ Γ or t :+α′ ϕ ∈ Γ)}

AL+(Γ, α) = {ϕ | ∃α′, t(α′ > α, t :α′ ϕ ∈ Γ)}
∪ {ϕ | ∃α′, t(α′ ≥ α, t :+α′ ϕ ∈ Γ)}.

Informally, AL(Γ, α) (resp. AL+(Γ, α)) contains all wffs
ϕ such that N(|ϕ|) ≥ α (resp. N(|ϕ|) > α) is implied by
formulas in Γ. To establish completeness, we use the standard
canonical model construction. A model M = 〈W,R,E, V 〉
is called a canonical model for LΠ

J (F ) if

• W is the set of all maximal consistent subsets of LΠ
J (F ).

We use Γ,∆, etc. to denote elements of W .
• R satisfies the following two conditions for all Γ,Γ′ ∈
W and α ∈ F :

– if α > 0, thenAL(Γ, α) ⊆ Γ′ iffR(Γ,Γ′) > 1−α;
– AL+(Γ, α) ⊆ Γ′ iff R(Γ,Γ′) ≥ 1− α.

• E(t, ϕ) = {Γ ∈W | ∃α(t :α ϕ ∈ Γ or t :+α ϕ ∈ Γ)}.
• V (p) = {Γ ∈W | p ∈ Γ}.

The following lemma shows that canonical models indeed ex-
ist.
Lemma 1 There existsR satisfying the two conditions for the
accessibility relation of a canonical model.
Proof. The result relies on that F is finite. Let us assume
that the elements of F are enumerated decreasingly as 1 =
α1 > α2 > · · · > αk = 0. Then, for any Γ ∈ W , we have
AL+(Γ, α1) = ∅ and for any 1 ≤ i < k,

AL+(Γ, αi) ⊆ AL(Γ, αi) ⊆ AL+(Γ, αi+1).

Hence, for any Γ,Γ′ ∈ W , R(Γ,Γ′) can be defined in the
following way:

1. if AL+(Γ, αi) ⊆ Γ′ 6⊇ AL(Γ, αi) for some 1 ≤ i < k,
then R(Γ,Γ′) = 1− αi

2. if AL(Γ, αi) ⊆ Γ′ 6⊇ AL+(Γ, αi+1) for some 1 ≤ i <
k, then R(Γ,Γ′) = 1− α for some α ∈ (αi, αi+1)

3. if AL+(Γ, αk) ⊆ Γ′, then R(Γ,Γ′) = 1.
Then, it is easily verified that R satisfies the requirements.

The key fact for canonical models is the following Truth
Lemma.
Lemma 2 Let M = 〈W,R,E, V 〉 be a canonical model for
LΠ
J (F ). Then, for any ϕ ∈ LΠ

J (F ) and Γ ∈ W , Γ 
M ϕ iff
ϕ ∈ Γ.

Proof. The lemma can be proved by induction on the com-
plexity of ϕ. The atomic cases are covered by the definition
of V and the cases for Boolean connectives and logical con-
stants are standard. The only interesting cases are ϕ = t :α ψ
or ϕ = t :+α ψ. We consider the former case and the latter
one is proved analogously.
(⇐): let us consider two cases:

1. If t :α ψ ∈ Γ for some α > 0, then by definition
Γ ∈ E(t, ψ) and ψ ∈ AL(Γ, α). Hence, ψ ∈ Γ′

for any Γ′ such that R(Γ,Γ′) > 1 − α by the first
condition of R. By the induction hypothesis, this
means that ΠΓ(|¬ψ|) ≤ 1 − α and NΓ(|ψ|) ≥ α,
which leads to Γ 
 t :α ψ.

2. If t :0 ψ ∈ Γ (i.e. α = 0), then Γ ∈ E(t, ψ) is suffi-
cient to show that Γ 
 t :0 ψ because NΓ(|ψ|) ≥ 0
holds trivially.

(⇒): there are also two cases:
1. If t :0 ψ 6∈ Γ, then by axioms (g) and (h), Γ 6∈
E(t, ψ). Hence, Γ 6
 t :0 ψ.

2. If t :α ψ 6∈ Γ for some α > 0, then we must con-
sider whether t :0 ψ ∈ Γ. In the case that t :0
ψ 6∈ Γ, we have seen that Γ 6∈ E(t, ψ) and hence
Γ 6
 t :α ψ. Thus, let us assume that t :0 ψ ∈ Γ.
We first show that AL(Γ, α) ∪ {¬ψ} is consistent.
If this is not the case, then by axioms (b), (c), (g),
(h) and the modus ponens rule, we can find a term s
such that s :α ψ ∈ Γ and by axiom (f), t :α ψ ∈ Γ,
which is contradictory with the assumption. There-
fore, there exists a maximal consistent Γ′ such that
¬ψ ∈ Γ′ and R(Γ,Γ′) > 1 − α, which means that
ΠΓ(|¬ψ|) > 1−α and NΓ(|ψ|) < α by the induc-
tion hypothesis. Consequently, Γ 6
 t :α ψ.

To prove the completeness, let us assume that ϕ is not
derivable from Σ. Then, Σ ∪ {¬ϕ} is consistent and can be
extended to a maximal consistent subset of LΠ

J (F ). Hence,
by the Truth Lemma, we can find a possible world in a canon-
ical model that satisfies Σ ∪ {¬ϕ}. That is, ϕ is not a logical
consequence of Σ. Because the soundness of the system can
be proved in a standard way, we have the following theorem.
Theorem 2 (Soundness and Completeness) For any Σ ∪
{ϕ} ⊆ LΠ

J such that G(Σ ∪ {ϕ}) is finite, we have Σ `JΠ ϕ
iff Σ |=JΠ ϕ.

Obviously, the logic JΠ is a conservative extension of
the logic J . In other words, we can embed the language
LJ into LΠ

J by using a straightforward translation mapping
τ : LJ → LΠ

J that maps each propositional variable into
itself, respects the Boolean connectives, and satisfies the fol-
lowing condition:

τ(t : ϕ) = t :1 τ(ϕ).

Then, we have the following result.
Theorem 3 (Conservative extension) For any wff ϕ ∈ LJ ,
we have |=J ϕ iff |=JΠ τ(ϕ).
Proof. Because all axioms and inference rules of J are in-
stances of axioms and inference rules of JΠ under the trans-
lation, |=J ϕ implies |=JΠ τ(ϕ) by the soundness and com-
pleteness of both systems. On the other hand, if 6|=J ϕ, then
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there exists a Kripke-Fitting model M = 〈W,R,E, V 〉 and
a possible world w such that w 6
 ϕ. However, a Kripke-
Fitting model can be regarded as a special case of PJL model
and w 
 ϕ in a Kripke-Fitting model iff w 
 τ(ϕ) in the cor-
responding PJL model. Therefore, |=JΠ τ(ϕ) implies |=J ϕ.

It is well-known that JL can be regarded as an explicit epis-
temic logic. Thus, the connection between these two log-
ics is that the epistemic formula �ϕ can be informally inter-
preted as “there exists some justification x such that x : ϕ”.
This observation leads to the notion of forgetful projection
from LJ to L� which replaces each occurrence of t : ϕ by
�ϕ. The forgetful projection always maps valid formulas
of JL to valid formula of epistemic logic; and the converse
also holds: any valid formulas of epistemic logic is a forget-
ful projection of some valid formula of JL [Artemov, 2008;
Artemov and Fitting, 2012; Fitting, 2013]. This kind of cor-
respondence theorem also generalizes to PJL and QML. A
forgetful projection from LΠ

J to LΠ replaces each occurrence
of t :α ϕ with [α]ϕ for any α > 0, each occurrence of t :0 ϕ
with >, and each occurrence of t :+α ϕ with [α]+ϕ for any
α ≥ 0. For each wff ϕ ∈ LΠ

J , let ϕ0 denote its forgetful pro-
jection and for any subset Σ ⊆ LΠ

J , let Σ0 = {ϕ0 | ϕ ∈ Σ}.
Then, we have the following result.

Theorem 4 (Correspondence theorem) Let JΠ denote the
set of all PJL theorems and let KΠ

+ denote the set of all QML
theorems in which the modality [0] does not appear. Then,
(JΠ)0 = KΠ

+ .

Proof. (Sketch) The easy part is to show that (JΠ)0 ⊆ KΠ
+

because the forgetful projection of the system JΠ is deriv-
able from the basic QML system. The hard part is to prove
a Realization Theorem which essentially claims that, for any
theorem ϕ in KΠ

+ , there is some way of replacing [α] and
[α]+ symbols with justification terms t :α and t :+α re-
spectively to produce a theorem of JΠ. There are essen-
tially two methods of establishing realization theorems: the
constructive syntactic method due to Artemov [2001] that
makes use of cut-free sequent systems for modal logics and
the non-constructive semantic method due to Fitting [2005;
2013]. We will use the semantic method in our proof. In
the proof, negative occurrences of modalities become justi-
fication variables and positive occurrences of modalities be-
come justification terms that may involve those variables. The
modality [0] must be specially treated because [0]ϕ is a QML
theorem but t :0 ϕ is not. Note that each QML wff can be
equivalently transformed into one wff without any occurrence
of the [0] modality by replacing each outermost occurrence of
[0]ϕ with >.

4 Discussion and Related Work
4.1 Discussion
As QML is a modal formulation of PL, it inherits the advan-
tage of PL to allow inconsistency-tolerant reasoning [Dubois
et al., 1994]. More specifically, let Σ denote a knowledge
base (i.e. a set of wffs) in QML. Then, the inconsistency level
of Σ, denoted by Inc(Σ), is the maximum number α such
that Σ ` [α]⊥. A deduction of [α]ϕ is nontrivial only when

α > Inc(Σ). In other words, the derivation of a QML for-
mula [α]ϕ from Σ is trivial if [α]⊥ is also derivable from
Σ. In this way, QML allows a knowledge base to be incon-
sistent to some extent; and uncertain beliefs with necessity
measures above the inconsistency level are still acceptable.
However, instead of simply discarding a large part of infor-
mation, the occurrence of inconsistency sometimes yields the
requirement to update the knowledge base. By adding justifi-
cation terms to the formulas, it is possible to track the origin
of inconsistency which can be used in the update process. The
following example illustrates this point.

Example 1 Let us use ϕ1, ϕ2, ϕ3, and ψ to denote “Tweety
is a penguin”, “Tweety is a bird”, “Tweety lives in Zoologis-
cher Garten Berlin”, and “Tweety can fly” respectively; and
let us assume that our knowledge base is Σ = {c :1 ϕ1, s :1
(ϕ1 ⊃ ϕ2), d1 :0.9 (ϕ1 ⊃ ¬ψ), d2 :0.8 (ϕ2 ⊃ ψ), n :0.8 ϕ3}
where c, s, d1, d2, n are justification constants denoting a re-
liable observation, a strict rule, a quite reliable default rule,
a less reliable default rule and a partially reliable informa-
tion source respectively. Then, by axioms (b), (g), and (h), we
can derive (d1 · c) · (d2 · (s · c)) :0.8 ⊥ (recalling that ¬ψ is
an abbreviation of ψ ⊃ ⊥) which keeps track of sources of
the inconsistency. By using inconsistency-tolerant reasoning,
(d1 · c) :0.9 ¬ψ is a nontrivial consequence of Σ, whereas
(d2 · (s · c)) :0.8 ψ and n :0.8 ϕ3 are both blocked be-
cause of the triviality. Although inconsistency-tolerant rea-
soning allows us to maintain highly certain information in
the knowledge base, it is sometimes not good enough to sim-
ply discard less certain information. For example, it seems
that n :0.8 ϕ3 is unrelated to the inconsistent information in
Σ, but the derivation of n :0.8 ϕ3 is still blocked. In such
case, the justification term (d1 · c) · (d2 · (s · c)) for ⊥ will
provide a clue to deal with the problem.

By checking the term, we find that it is possible to modify
the strength of the least reliable evidence d2 to improve the
consistency degree of the knowledge base. The most straight-
forward method is to remove d2 :0.8 (ϕ2 ⊃ ψ) from Σ. Then,
the inconsistency degree of Σ will be reduced to 0. However,
the complete removal of d2 :0.8 (ϕ2 ⊃ ψ) seems not very
reasonable according to our commonsense. Hence, an alter-
native way is to change d2 :0.8 (ϕ2 ⊃ ψ) to d2 :0.7 (ϕ2 ⊃ ψ)
because the defeating example Tweety may show that the
strength of the default rule was set too high. Yet another ap-
proach is to keep the default rule unchanged but seek further
evidence to increase the reliability of ϕ3. This approach, de-
spite not increasing the consistency of Σ, may suggest that
some information independent of the inconsistent part of the
knowledge base deserves further investigation. This usually
occurs in the context of scientific inquiry.

In the Kripke-Fitting semantics of JL, the truth of a wff
t : ϕ in a possible worldw depends on two conditions: (1) t is
an admissible evidence for ϕ inw and (2) ϕ is believed. How-
ever, in the JL language, we cannot describe these two con-
ditions separately. In particular, we cannot assert that t is an
admissible evidence for ϕ by using JL formulas. By contrast,
the wff t :0 ϕ precisely describes this fact because w 
 t :0 ϕ
iff w ∈ E(t, ϕ). Indeed, the formula is used in axiom (f) to
formalize an implicit assumption in JL. That is, all admissible
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evidences for the same proposition are treated equally in the
sense that if s and t are both admissible evidences for ϕ, then
s : ϕ is true iff t : ϕ is true. An implication of the assumption
in PJL is that multiple justifications of the same proposition
will converge to the strongest justification among them. In-
deed, by using axiom (f), we can derive that, if s :α ϕ and
t :β ϕ are true, then s :max(α,β) ϕ and t :max(α,β) ϕ are both
true. Hence, if there exist multiple justifications for uncertain
beliefs on ϕ, then the strongest justified uncertain belief will
be chosen and all other justifications are regarded as support-
ing the uncertain belief to the same extent. The assumption is
sometimes regarded as too restrictive. A possibility of lifting
the restriction is to associate with each term t an accessibil-
ity relation Rt instead of using a single relation R in the PJL
model. It may well be worth exploring the impact of the less
restrictive semantics.

Mkrtychev semantics is a predecessor of Kripke-Fitting se-
mantics [Mkrtychev, 1997]. Mkrtychev models essentially
coincide with single-world Kripke-Fitting models. In such
models, the truth value of t : ϕ is determined only by the
admissible evidence function E. Interestingly, the informa-
tion about Kripke structure in Kripke-Fitting models can be
completely encoded by the admissible evidence function and
consequently, the system J is also complete with respect to
Mkrtychev semantics [Artemov, 2008]. However, this is no
longer true for PJL. For example, let us consider a set of PJL
wffs Σ = {s :0.9 p,¬s :+0.9 p, t :0.7 q,¬t :+0.7 q}. Then, Σ is
obviously satisfiable in PJL semantics. However, any models
of Σ must contain at least two possible worlds to accommo-
date different necessity values on p and q.

4.2 Related works
In the last decades, the research on JL and its applications to
formal epistemology, mathematics, computer science, and AI
has been highly active [Artemov and Fitting, 2012]. How-
ever, it is only very recently that the integration of uncer-
tainty reasoning with JL started to be an important topic in
the discipline. Consequently, only a few works have been
done along this direction. The most remarkable example is
the logic JU for uncertain justifications proposed in [Mil-
nikel, 2014]. Syntactically, the wffs of JU are defined by

ϕ ::= p | ⊥ | ϕ ⊃ ϕ | t :α ϕ.

However, its wff t :α ϕ is interpreted quite differently. In a
JU model 〈W,R,E, V 〉, the accessibility relation R is crisp
but E is defined as a ternary function such that for any term
t, possible world w, and wff ϕ, E(w, t, ϕ) = [0, β) or [0, β]
for some rational number β ∈ [0, 1]; and w 
 t :α ϕ holds if
α ∈ E(w, t, ϕ) and for any u such that (w, u) ∈ R, u 
 ϕ.
Informally, this means that the same wff t :α ϕ represents the
uncertain justification of belief and the justification of uncer-
tain belief in JU and PJL respectively. A consequence of the
semantic difference is that the forgetful projection of PJL is
QML, whereas the forgetful projection of JU should be clas-
sical modal logic3.

3Although forgetful projection is not explicitly defined in [Mil-
nikel, 2014], we think the claim is reasonable because by removing
the admissible evidence function, a JU model is simply a classical
Kripke model.

The logic JU is further extended to fuzzy justification
logics in [Ghari, 2014b]. Instead of using classical two-
valued logic, the proposed fuzzy justification logics BLJ and
RPLJ are based on Hajek’s fuzzy basic logic BL and rational
Pavelka logic RPL respectively [Hájek, 1998], where BL has
a classical syntax with conjunction (&) and implication (→)
as primitive connectives and RPL is an extension of BL that
allows rational truth constants α for α ∈ [0, 1]. Hence, in
BLJ and RPLJ, a justification formula also has the classical
syntax. However, for a BLJ or RPLJ model 〈W,R,E, V 〉,
although the accessibility relation R is still crisp, V is now
defined as a fuzzy valuation such that V (w, p) ∈ [0, 1] for
any possible world w and propositional variable p, besides
E(w, t, ϕ) ∈ [0, 1] for any term t, possible world w, and
wff ϕ. Then, V is extended to all wffs according to the
many-valued interpretation. In particular, V (w, t : ϕ) =
E(w, t, ϕ) ⊗ infu:(w,u)∈R V (u, p), where ⊗ is a t-norm that
interprets the many-valued conjunction. Therefore, in BLJ
and RPLJ, t : ϕ can represent the uncertain justification of
belief on vague propositions and their forgetful projections
will be the respective fuzzy modal logics.

In addition to possibility theory-based representation, the
combination of probabilistic reasoning and JL has been also
proposed recently [Kokkinis et al., 2014]. However, instead
of considering probabilistic justification of belief or justifi-
cation of probabilistic belief, the proposed logic PJ aims at
reasoning about the probability of justification statements.
Hence, the wffs of PJ are Boolean combinations of formulas
of the form P≥αϕwhere ϕ ∈ LJ and interpreted by probabil-
ity measures over the space of LJ models. By contrast, it is
possible to develop a logic for reasoning about justified prob-
abilistic beliefs using our approach by interpreting t :α ϕ in a
structure where the fuzzy accessibility relation is replaced by
probability measures over possible worlds.

5 Conclusion
In this paper, we present an extension of JL to PJL in the
same way that QML extends classical modal logic. As JL is
regarded as an explicit modal logic, PJL can be regarded as an
explicit version of QML. Because QML is a modal formula-
tion of PL, it can represent and reason with uncertain beliefs
and partial inconsistency. On the other hand, the justification
terms in JL can track the derivation process of a deduction
and record the structure of a proof. Thus, by combining the
advantages of QML and JL, PJL can track the derivation of
uncertain belief and locate the source of inconsistency if the
belief is partially inconsistent.

Although we only present the basic system of PJL in this
paper, it should be clear that PJL is a promising approach
for integrating uncertainty formalisms into justification rea-
soning. As the starting point of a fruitful project, we can
see several possible directions for further research includ-
ing the extension of the basic system with axioms about be-
liefs like D, 4, 5; the decidability and complexity of the
PJL; a constructive proof of the Realization Theorem based
on sequent systems [Goetschi and Kuznets, 2012]; multi-
agent PJL; probabilistic justification logic based on probabil-
ity modalities [van der Hoek, 1997]; the applications of PJL
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to truth maintenance systems [de Kleer, 1993], formal argu-
mentation [Ferretti et al., 2014; Letia and Groza, 2012], and
belief fusion [Ghari, 2014a].
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