
Beyond SPARQL under OWL 2 QL
Entailment Regime: Rules to the Rescue

Georg Gottlob1 Andreas Pieris2

1Department of Computer Science, University of Oxford, UK
2Institute of Information Systems, Vienna University of Technology, Austria

georg.gottlob@cs.ox.ac.uk, pieris@dbai.tuwien.ac.at

Abstract

SPARQL is the de facto language for querying RDF
data, since its standardization in 2008. A new ver-
sion, called SPARQL 1.1, was released in 2013,
with the aim of enriching the 2008 language with
reasoning capabilities to deal with RDFS and OWL
vocabularies, and a mechanism to express naviga-
tion patterns through regular expressions. How-
ever, SPARQL 1.1 is not powerful enough for ex-
pressing some relevant navigation patterns, and it
misses a general form of recursion. In this work, we
focus on OWL 2 QL and we propose TriQ-Lite 1.0,
a tractable rule-based formalism that supports the
above functionalities, and thus it can be used for
querying RDF data. Unlike existing composite ap-
proaches, our formalism has simple syntax and se-
mantics in the same spirit as good old Datalog.

1 Introduction
RDF is the W3C recommendation data model to represent in-
formation about World Wide Web resources, while SPARQL
is the standard language for querying RDF data, since its stan-
dardization in 2008. One of the distinctive features of Seman-
tic Web data is the existence of vocabularies with predefined
semantics: the RDF Schema (RDFS) and the Ontology Web
Language (OWL), which can be used to derive logical con-
clusions from RDF graphs; hence, an RDF query language
equipped with reasoning capabilities to deal with these vo-
cabularies is desirable. In addition, navigational capabili-
ties are vital for data models with an explicit graph structure
such as RDF [Alkhateeb et al., 2009; Arenas et al., 2009;
Pérez et al., 2010; Fionda et al., 2012], while recursive defi-
nitions are a key feature for graph query languages [Barceló,
2013; Libkin et al., 2013]. Having an RDF query language
available that combines the above key functionalities is of
paramount importance for the development of the Semantic
Web. This has been recognized by the W3C, which led to the
release of SPARQL 1.1 in 2013 [Harris and Seaborne, 2013;
Glimm and Ogbuji, 2013], that is, an extended version of the
2008 language with reasoning capabilities to deal with RDFS
and OWL vocabularies, and a mechanism to express naviga-
tion patterns through regular expressions. However, there are

still useful queries that cannot be expressed in SPARQL 1.1,
due to the lack of general recursion [Libkin et al., 2013].

To the best of our knowledge, the only language that sup-
ports the above features, focussing on the profile OWL 2 QL
of OWL 2, while its query evaluation problem is tractable
in data complexity, is the recently introduced rule-based lan-
guage TriQ-Lite, the lite version of the highly expressive
triple query (TriQ) language [Arenas et al., 2014]. This lan-
guage is based on Datalog∃,¬s,⊥, that is, Datalog extended
with existential quantification in rule-heads, stratified nega-
tion, and negative constraints with the falsum (⊥) in rule-
heads. Unfortunately, TriQ-Lite suffers from a serious draw-
back, which may revoke its advantage as an expressive RDF
query language, namely it is not a plain language. A query
language is called plain if it allows the user to write a query
as a single program in a simple non-composite syntax. An
example of a plain query language is Datalog, where the user
simply needs to define a single Datalog program that cap-
tures the intended query. The property of plainness provides
conceptual simplicity, which is considered to be a key condi-
tion for a query language to be useful in practice. Although
TriQ-Lite is based on an extension of Datalog, the way its
syntax and semantics are defined significantly deviates from
the standard way of defining Datalog-like languages, and thus
does not inherit the plainness of Datalog. In fact, TriQ-Lite
is a composite language, where the user is forced to split the
query in several modules Π1, . . . ,Πn so that each Πi can be
expressed by the fragment of Datalog∃,¬s,⊥ that is underlying
TriQ-Lite, while each pair (Πi,Πi+1) is bridged via a set Qi
of conjunctive queries (more details are given in Section 4).

From the above discussion, we conclude that an RDF query
language that fulfills certain desiderata, which in turn guar-
antee its applicability in real Semantic Web applications, is
currently missing. These desiderata are the following:

1. Plainness: simple syntax and semantics, with the aim of
simplifying the definition of queries;

2. Reasoning Capabilities: express every SPARQL query
under the entailment regime for OWL 2 QL;

3. Recursive Definitions: general form of recursion must
be supported, and ideally Datalog must be incorporated;

4. Efficiency: query evaluation must be data tractable, and
feasible by the use of standard database technology.

At this point, we would like to expose an additional (con-
ceptual) shortcoming of SPARQL 1.1, which must be taken

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2999

Desideratum How it is Achieved
Plainness Standard Datalog-like language
Reasoning capabilities ∃-quantification and ⊥ in rule-heads
Recursive definitions Incorporate full Datalog¬s

Efficiency Reduction to UCQ evaluation
Reasoning-Query Expressive joins in rule-bodies, and
decoupling ∃-quantification in rule-heads

Table 1: TriQ-Lite 1.0.

into account during the designing of an RDF query language.
Under the OWL 2 direct semantics entailment regime, the
evaluation of a basic graph pattern over an RDF graph adopts
the so-called active domain semantics, i.e., it uses the notion
of entailment in OWL 2 QL, but allowing variables and blank
nodes to take only values from the RDF graph. As discussed
in [Arenas et al., 2014], this forces the user to encode part of
the reasoning in the actual query, which undoubtedly leads to
unnatural and complex queries (an example is given in Sec-
tion 3). Notably, TriQ-Lite provides the definition of the more
natural entailment regime, where the active domain semantics
is dropped. This is certainly an additional desideratum:

5. Reasoning-Query Decoupling: the entailment regime
without the active domain semantics must be definable,
with the aim of decoupling the reasoning from the query.

In this work, we focus on TriQ-Lite, which is a language in
evolution, and we investigate how it can be transformed into
a plain language without sacrificing any of the other desider-
ata. The outcome of our study is TriQ-Lite 1.0, the new ver-
sion of TriQ-Lite, which is based on Datalog∃,¬sg,⊥; we use
the superscript ¬sg (instead of ¬s) since, for our purposes,
it suffices to focus on negation that, apart from being strati-
fied, is also grounded, i.e., it can be used with predicates that
can only store constants. The proposed formalism is part of
Datalog±, that is, a family of logical KR languages [Calı̀ et
al., 2012a]. Although several interesting Datalog± languages
can be found in the literature (see, e.g., [Baget et al., 2011;
Thomazo et al., 2012; Leone et al., 2012; Calı̀ et al., 2012b;
2013]), none of them fulfills all desiderata. Even though
Datalog± languages inherit the plainness of Datalog, either
they are not expressive enough for satisfying desiderata 2, 3
and 5, or very expressive and thus intractable. Hence, our key
challenge was to define a Datalog± language that achieves
the right balance between expressivity and complexity.

We present a new syntactic paradigm, which is underly-
ing TriQ-Lite 1.0, called wardedness, that can be informally
described as follows: all the dangerous body-variables, i.e.,
variables that may be bound by the program to non-constant
values, and at the same time are propagated to the rule-head,
occur in exactly one body-atom, called ward, that can interact
with the rest of the rule-body only via harmless join variables,
i.e., variables that are bound by the program to database con-
stants. Our technical results can be summarized as follows:

- We introduce in Section 4 TriQ-Lite 1.0, which is based
on warded Datalog∃,¬sg,⊥, and show that it fulfills all
desiderata; the technical reasons are given in Table 1.

- For the reasoning-query decoupling, apart from expres-

sive joins among body-variables that are bound to non-
constant values (this exposes one of the main limitations
of the language underlying TriQ-Lite), it is vital to allow
for existentially quantified variables in rule-heads; this
issue is discussed in Section 5.

- We provide in Section 6 a formal justification for the ne-
cessity of introducing a new Datalog-based formalism.
We establish, via a model-theoretic argument, that exist-
ing tractable formalisms are not able to encode the OWL
2 direct semantics entailment regime, and at the same
time ensure the reasoning-query decoupling.

- Finally, in Section 7, we substantiate the design choices
made in the definition of our formalism. In fact, we show
that very mild extensions lead to EXPTIME-hardness.

Let us say that warded Datalog∃,¬sg,⊥, the formalism un-
derlying TriQ-Lite 1.0, is well-suited as a general-purpose
KR language, since it extends Datalog with features that al-
low us to express OWL 2 QL and OWL 2 RL ontologies.

2 Relational Databases and Datalog∃,¬s,⊥

Consider the following pairwise disjoint (infinite countable)
sets: a set C of constants, a set N of (labeled) nulls, and a set
V of variables. A term t is a constant, null, or variable. An
atom has the form p(t1, . . . , tn), where p is an n-ary predi-
cate, and ti’s are terms. For an atom a, dom(a) and var(a)
is the set of its terms and variables, respectively; these extend
to sets of atoms. An instance I is a (possibly infinite) set of
atoms p(t), where t is a tuple of constants and labeled nulls.
A database D is a finite instance where only constants occur.

A Datalog∃,¬ rule ρ is an expression of the following
form: a1, . . . , an,¬b1, . . . ,¬bm → ∃Y1 . . . ∃Yk c, where
(with A = {a1, . . . , an} and B = {b1, . . . , bm}): n > 1 and
m, k > 0; ai’s and bj’s are atoms with terms from (C ∪V);
var(B) ⊆ var(A); var(A)∩ {Y1, . . . , Yk} = ∅; and c con-
tains terms from (C ∪ {Y1, . . . , Yk} ∪ var(A)). The set A
is denoted B+(ρ), while B is denoted B−(ρ). The body of
ρ, denoted B(ρ), is defined as (A ∪ B). The atom c is the
head of ρ, denoted H (ρ). A Datalog∃,¬ program Π is a fi-
nite set of Datalog∃,¬ rules. A stratification of Π is defined
in the same way as for Datalog¬. We say that Π is stratified
if there exists a stratification of Π. A constraint ν is an asser-
tion a1, . . . , an → ⊥, where n > 1 and ai’s are atoms with
terms from (C ∪ V). The body of ν, denoted B(ν), is the
set {a1, . . . , an}. A Datalog∃,¬,⊥ program Π is a finite set of
Datalog∃,¬ rules and constraints. We denote by ex (Π) the set
of Datalog∃,¬ rules in Π; Π is stratified if ex (Π) is stratified.
A stratified Datalog∃,¬,⊥ query Q is a pair (Π, p), where Π
is a stratified Datalog∃,¬,⊥ program, and p is a predicate not
in the set of predicates occurring in Π, denoted sch(Π). For
brevity, we write Datalog∃,¬s,⊥ for stratified Datalog∃,¬,⊥.

The semantics Π(D) of a program Π over a database D is
defined in a standard way via the chase procedure; for details
see [Calı̀ et al., 2012a]. Let Q = (Π, p) be a Datalog∃,¬s,⊥
query, where p is an n-ary predicate. If Π(D) is defined
(Π(D) may be undefined due to the constraints), then the
evaluation of Q over D, denoted Q(D), is defined as the set
of tuples {t ∈ Cn | p(t) ∈ Π(D)}. The data complexity of
query evaluation is calculated by considering the query fixed.

3000

3 SPARQL over OWL 2 QL into Datalog∃,¬s,⊥

As recently shown in [Arenas et al., 2014], SPARQL queries
under OWL 2 direct semantics entailment regime over OWL
2 QL ontologies can be embedded into Datalog∃,¬s,⊥. In
particular, for a graph pattern P and an RDF graph G, it is
possible to construct a Datalog∃,¬s,⊥ query QP such that the
answer to P over G can be easily decoded from QP (DG),
where DG = {triple(a, b, c) | (a, b, c) ∈ G}. For the sake
of completeness, we briefly recall how the query QP is con-
structed. The reader who is familiar with this construction
can directly go to Section 4.

3.1 SPARQL into Datalog¬s

For brevity, we first disregard the direct semantics entailment
regime, and we illustrate, via some simple examples taken
from [Arenas et al., 2014], the main ingredients of the trans-
lation of a SPARQL query into a Datalog¬s query.

Example 1 Let P1 be the graph pattern (?X, name, ?Y),
where name is a constant, which asks for the list of pairs (a, b)
of elements from an RDF graph G such that b is the name of
a in G. P1 is represented via the rule

triple(X, name, Y) → queryP1
(X,Y).

The predicate queryP1
is used to store the answer to the

graph pattern P1. Assume now that P2 is the graph pattern
(?X, name, B), where B is a blank node, which asks for the
list of elements in G that have a name (we are not interested
in retrieving the blank nodes). P2 is represented via the rule

triple(X, name, Y) → queryP2
(X).

Notice that the variable Y represents the blank node B, and
it does not appear in the head since we are not interested in
retrieving names. Finally, consider the graph pattern P3

(?X, name, ?Y)︸ ︷︷ ︸
Q1

OPT (?X, phone, ?Z)︸ ︷︷ ︸
Q2

,

where phone is a property constant. For every constant a in
an RDF graph, P3 asks for the name and phone of a, if a’s
phone number is available in G, and otherwise it asks only
for the name of a. Q1 and Q2 are represented via the rules

triple(X, name, Y) → queryQ1
(X,Y)

triple(X, phone, Z) → queryQ2
(X,Z).

Having the predicates queryQ1
and queryQ2

in place, we can
now represent P3 as follows. First, we define a set of rules
for the cases where the phone number is available:

queryQ1
(X,Y), queryQ2

(X,Z) → queryP3
(X,Y, Z)

queryQ1
(X,Y), queryQ2

(X,Z) → compatibleP3
(X).

The predicate compatibleP3
is used to store the individuals

with phone numbers, which will be used in the rule that takes
care of the individuals without phone numbers:

queryQ1
(X,Y),¬compatibleP3

(X) → query
{3}
P3

(X,Y).

The superscript {3} in the binary predicate queryP3
indicates

that the third argument in the answer to P3 is missing.

The approach shown above can be generalized to represent
any graph pattern. Let P = {t1, . . . , tn} be a basic graph
pattern such that ti = (ui, vi, wi), for every i ∈ [1, n], with
{?X1, . . . , ?Xk} be the set of variables in P . Assume that γ
is a substitution such that for every symbol u occurring in P ,
γ(u) = u if u ∈ C, γ(u) = X if u =?X , and γ(u) is a fresh
variable if u is a blank node. Then, ρbgpP is defined as the rule:

triple(γ(u1), γ(v1), γ(w1)), . . . ,
triple(γ(un), γ(vn), γ(wn)) → queryP (X1, . . . , Xk).

For a non-basic graph pattern P , Πbgp
P is the Datalog program

consisting of the rules ρbgpQ for each basic graph pattern Q in
P . Moreover, Πopr

P is defined as the Datalog¬s program that
represents the non-basic graph patterns in P ; in fact, Πopr

P
encodes the semantics of the SPARQL operators occurring in
P as explained in Example 1. For our purposes, the formal
definition of Πopr

P is not important, and therefore we skip it.
However, it is crucial to say that Πopr

P is a Datalog¬s pro-
gram. Finally, the program Πout

P , which defines the output
predicate ansP , is constructed as follows. By construction,
some atoms of the form queryJP (X1, . . . , Xk), where J is a
set of indexes, occur in the head of some rules of Πopr

P (see
atom query

{3}
P (X,Y) in Example 1); if J = ∅ we simply

write queryP (X1, . . . , Xk). Let mP be the arity of the pred-
icate queryP , i.e., the query-predicate without superscript,
occurring in Πopr

P . For every atom queryJP (X1, . . . , Xk) in
Πopr
P , the following rule occurs in Πout

P :

queryJP (X1, . . . , Xk) → ansP (t1, . . . , tmP),

where, for each i ∈ J , ti is the special constant ?, and after
eliminating all the occurrences of ? from (t1, . . . , tn) the tu-
ple (X1, . . . , Xk) is obtained. For instance, due to the atom
query

{3}
P (X,Y) occurring in Πopr

P3
, where P3 is the graph

pattern given in Example 1, the rule

query
{3}
P (X,Y) → ansP (X,Y, ?)

occurs in Πout
P3

. Eventually, the Datalog¬s query QP is de-
fined as (ΠP , ansP), were ΠP = (Πbgp

P ∪Πopr
P ∪Πout

P).
Let us now explain how the answer to a graph pattern P

over an RDF graph G, denoted JP KG, can be obtained from
QP (DG). Consider an atom a = ansP (t1, . . . , tmP), where
(t1, . . . , tmP) ∈ QP (DG). By construction, in Πout

P there
exists an atom ansP (X1, . . . , XmP) that contains only vari-
ables (and not the constant ?). The mapping µa,P correspond-
ing to a given P is defined as follows: for each i ∈ [1,mP],
if ti 6= ?, then Xi → ti belongs to µa,P , and nothing else
occurs in µa,P . Moreover,

JQP (DG)K = {µa,P | a = ans(t) and t ∈ QP (DG)}

are the mappings corresponding to the answers of QP over
DG. As shown in [Arenas et al., 2014], JP KG = JQP (DG)K.

3.2 SPARQL Entailment Regime
We now show how the above translation can be extended in
order to translate every SPARQL query under OWL 2 direct
semantics entailment regime over OWL 2 QL ontologies into

3001

a Datalog∃,¬s,⊥ query. We first demonstrate how OWL 2 QL
ontologies are stored as RDF graphs. Notice that in the speci-
fication of OWL 2, it is defined a standard syntax to represent
OWL 2 ontologies as RDF triples. However, for brevity, we
use the simplified syntax of [Arenas et al., 2014], having in
mind that the approach described below can be adapted to the
standard syntax. The vocabulary of an OWL 2 QL ontology
consists of unary and binary predicates, called classes and
properties, respectively. A basic property is either p or p−,
where p is a property. A basic class is either c or ∃p, where c
is a class and p a property. To represent an OWL 2 QL ontol-
ogy, we first include some triples to indicate the classes and
the properties in the ontology. For every class c we have the
triple (c, rdf:type, owl:Class), asserting that c is of type class.
For every property p we have the following triples:

(p, rdf:type, owl:Prop) (p, owl:inv, p−)
(p−, rdf:type, owl:Prop) (p−, owl:inv, p)
(∃p, owl:rest, p) (∃p, rdf:type, owl:Class)
(∃p−, owl:rest, p−) (∃p−, rdf:type, owl:Class).

As said, the notation used above is a simplified version of
the notation used in OWL 2. In particular, owl:Prop, owl:inv
and owl:rest correspond to the keywords owl:ObjectProperty,
owl:inverseOf and owl:Restriction, respectively. Note also
that a triple such as (∃p, owl:rest, p) is represented by means
of several triples in OWL 2.

The axioms in an OWL 2 QL ontology are represented as
follows. (c1, rdfs:sc, c2) indicates that the basic class c1 is
a subclass of the basic class c2, while (p1, rdfs:sp, p2) indi-
cates that the basic property p1 is a subproperty of the ba-
sic property p2. To indicate that two basic classes c1 and c2
are disjoint we use (c1, owl:disj, c2). As above, we employ a
simplified notation; in fact, rdfs:sc, rdfs:sp and owl:disj corre-
spond to the keywords rdfs:subClassOf, rdfs:subPropertyOf
and owl:disjointWith, respectively. Note that OWL 2 QL al-
lows for the use of qualified existential quantification in the
right-hand side of inclusion assertions, which is not captured
by the above encoding. However, such kind of axioms can
be simulated in an OWL 2 QL ontology through the use of
unqualified existential quantification, auxiliary roles, and in-
clusions between roles.

The membership assertions in an OWL 2 QL ontology are
represented as follows. The triple (a, rdf:type, c) indicates
that the constant a belongs to the basic class c, while the triple
(a1, p, a2) asserts that the constant a1 is related to the con-
stant a2 via the property p. In the sequel, we say that an RDF
graph G represents an OWL 2 QL ontology if there exists an
OWL 2 QL ontology O such that, after the translation of O
into RDF we obtain G.

Consider now a graph pattern P , and an RDF graph G
that represents an OWL 2 QL ontology. In what follows,
we present the construction of the Datalog∃,¬s,⊥ query QC

P
such that the answer to P over G under the OWL 2 direct
semantics entailment regime as defined in [Glimm and Og-
buji, 2013], denoted JP KCG , coincides with JQC

P (DG)K. No-
tice that the superscript C is used to indicate that the active
domain semantics is adopted. First, we give the crucial pro-
gram ΠOWL2QL, that is, the fixed Datalog∃,¬s,⊥ program that
encodes the OWL 2 direct semantics entailment regime over

OWL 2 QL ontologies. This program contains three rules that
store in a predicate dom(·) all the constant occurring in G:

triple(X,Y, Z) → dom(X)
triple(X,Y, Z) → dom(Y)
triple(X,Y, Z) → dom(Z).

It also contains some Datalog rules that store the different
elements in the ontology:

triple(X, rdf:type, Y) → type(X,Y)
triple(X, rdfs:sp, Y) → sp(X,Y)

triple(X, owl:inv, Y) → inv(X,Y)
triple(X, owl:rest, Y) → rest(X,Y)

triple(X, rdfs:sc, Y) → sc(X,Y)
triple(X, owl:disj, Y) → disj (X,Y)

triple(X,Y, Z) → triple1(X,Y, Z).

The purpose of the last rule is to guarantee that in the pred-
icate triple are stored only constants occurring in G and not
nulls. As we shall see, ΠOWL2QL may generate a triple that
contains a null z. Therefore, if such a triple is stored in the
predicate triple, and not in the auxiliary predicate triple1,
we will conclude that dom(z) holds, which violates the in-
tended meaning of the dom predicate. Moreover, ΠOWL2QL

contains the following rules to reason about properties:

sp(X1, X2), inv(Y1, X1), inv(Y2, X2) → sp(Y1, Y2)
type(X, owl:Prop) → sp(X,X)

sp(X,Y), sp(Y,Z) → sp(X,Z),

the following rules to reason about classes:

sc(X1, X2), rest(Y1, X1), rest(Y2, X2) → sc(Y1, Y2)
type(X, owl:Class) → sc(X,X)
sc(X,Y), sc(Y, Z) → sc(X,Z),

and the following rule for disjointness constraints:

disj (X1, X2), sc(Y1, X1), sc(Y2, X2) → disj (Y1, Y2).

Finally, ΠOWL2QL contains the following rules to reason
about membership assertions:

triple1(X,U, Y), sp(U, V) → triple1(X,V, Y)
triple1(X,U, Y), inv(U, V) → triple1(Y, V,X)
type(X,Y), rest(Y, U) → ∃Z triple1(X,U,Z)
type(X,Y) → triple1(X, rdf:type, Y)
type(X,Y), sc(Y,Z) → type(X,Z)
triple1(X,U, Y), rest(Z,U) → type(X,Z)
type(X,Y), type(X,Z), disj (Y,Z) → ⊥.

Having the program ΠOWL2QL in place, the query QC
P is

defined as (ΠOWL2QL ∪ ΠC
P , ansP), where ΠC

P is obtained
from ΠP , as defined in Section 3.1, by applying the following
modification: for each rule ρ ∈ Πbgp

P (recall that Πbgp
P is the

part of ΠP that encodes the basic graph patterns of P), add in
the body of ρ the atom dom(X), for each variable X occur-
ring in ρ, and replace each occurrence of the predicate triple
by triple1. The new dom-atoms enforce the constraint that
every variable and blank node in P can only take a value from
G. As shown in [Arenas et al., 2014], JP KCG = JQC

P (DG)K.

3002

3.3 Dropping the Active Domain Restriction
As shown by the following example, the active domain re-
striction forces the user to encode part of the reasoning in the
query, which leads to unnatural and complex queries.

Example 2 Consider the OWL 2 QL ontology O which
states that Tom is a person and each person has father, and
let G be the RDF graph that represents O. Assume that we
want to retrieve the elements of G that have a father. One
may be tempted to claim that this query can be expressed via
the graph pattern P = (?X, father, B), where B is a blank
node. However, JP KCG = ∅ since there are no elements
a, b in G such that the triple (a, father, b) is implied by the
ontology. To obtain the expected answer, we have to con-
sider the graph pattern (?X, rdf:type,∃father), which means
that we are forced to implicitly encode the fact that the triple
(Tom, rdf:type,∃father) is inferred by the ontology.

As already discussed in [Arenas et al., 2014], the solution
to the above problem is to relax the semantics JP KCG in such
a way that blank nodes are treated as existentially quantified
variables that are not forced to take only values in the RDF
graph. Indeed, after this relaxation, the answer to the the
graph pattern P = (?X, father, B) over the RDF graphG that
represents the ontology O in Example 2 will be Tom since a
triple (Tom, father, z), where z ∈ N, is inferred by O. The
more general semantics JP KC,NG has been proposed in [Are-
nas et al., 2014]. Given a graph pattern P and an RDF graph
G that represents an OWL 2 QL ontology, JP KC,NG is defined
as JQC,N

P (DG)K, whereQC,N
P = (ΠOWL2QL∪ΠC,N

P , ansP)

with ΠC,N
P be the program obtained from ΠC

P as follows: as-
suming that Πbgp

P is the part of ΠC
P that encodes the basic

graph patterns, for each rule ρ ∈ Πbgp
P , eliminate the atoms

of the form dom(X), where X is a variable that appears in
the body but not in the head of ρ, which means that X repre-
sents a blank node. The superscript C,N indicates that blank
nodes may be assigned null values of N.

In view of the fact that the problem of querying OWL 2 QL
ontologies using conjunctive queries with inequalities, with-
out restricting the inequalities to compare only database con-
stants, is undecidable [Gutiérrez-Basulto et al., 2013], and
since SPARQL allows for inequalities, one may think that
the more general semantics JP KC,NG leads to undecidability.
This is not true since the OWL 2 direct semantics entailment
regime is first applied at the level of basic graph patterns, and
the results of this step, which is a finite database that contains
only constants, are combined using the standard SPARQL op-
erators. Since in basic graph patterns we do not have inequal-
ities, the above undecidability result cannot be applied.

4 From Modular to Standard Queries
Recall that the present work aims at proposing TriQ-Lite 1.0,
the new version of TriQ-Lite, that enjoys all crucial desiderata
analyzed in Section 1. Towards this direction, we are going to
define a standard (non-composite) Datalog∃,¬s,⊥-based for-
malism that is powerful enough to express the queries QC

P

and QC,N
P , incorporates Datalog¬s, and at the same time its

query evaluation problem is tractable in data complexity.

Let us recall that TriQ-Lite, proposed in [Arenas et al.,
2014], although is tractable and powerful enough for express-
ing QC

P and QC,N
P , it is a non-plain language, where the user

can place different parts of the query in different modules,
while its semantics is defined in a modular way. For example,
the query QC

P = (ΠOWL2QL ∪ ΠC
P , ansP) can be expressed

(following the syntax of [Arenas et al., 2014]) as

MQC
P = [(ΠOWL2QL,Π

bgp
P), (Πopr

P ,Πout
P)],

where ΠOWL2QL is the fixed Datalog∃,¬s,⊥ program that en-
codes the OWL 2 direct semantics entailment regime as dis-
cussed in Section 3.2, while {Πbgp

P ,Πopr
P ,Πout

P } forms a par-
tition of ΠC

P , where the first program consists of the rules that
represent the basic graph patterns, the second one contains
the rules that encode the SPARQL operators, and the last one
consists of the rules that define the predicate ansP . The se-
mantics of such a query over a database DG is defined in a
modular way. First, consider the instance

IbgpP = {pρ(t) | t ∈ qρ(ΠOWL2QL(DG))}ρ∈Πbgp
P
,

where, for each rule ρ : ϕ(X,Y) → pρ(X) of Πbgp
P , qρ is

the conjunctive query ∃Yϕ(X,Y). Then, the semantics of
MQC

P over DG is defined as

MQC
P (DG) = {t | t ∈ qρ(Πopr

P (IbgpP))}ρ∈Πout
P
,

where, for each ρ ∈ Πout
P , qρ is defined as above.

It is evident that TriQ-Lite significantly deviates from the
standard way of defining Datalog-like query languages, and
this makes the comprehensibility of its syntax and semantics a
difficult task. Let us clarify that a single module of TriQ-Lite
is not powerful enough for expressing QC

P and QC,N
P . This

is a strong indication that the modular nature of this langauge
only helps to gain the missing expressive power for captur-
ing SPARQL queries under the OWL 2 direct semantics en-
tailment regime over OWL 2 QL ontologies, by treating the
various parts of the same query in a different way.

The crucial question that comes up is how TriQ-Lite can
be transformed into a standard Datalog-like query language,
which fulfills all the aforementioned desiderata. The rest of
this section is devoted to give an answer to this question by
introducing TriQ-Lite 1.0.

4.1 A Standard Datalog∃,¬s,⊥ Language
After a careful syntactic analysis of the query programs of
QC
P andQC,N

P , for an arbitrary graph pattern P , we identified
an interesting property regarding the dangerous variables of
each rule that was decisive for the definition of our language.
From previous studies, we know that the rule-variables that
must be tamed, in order to guarantee a good computational
behavior, are the body-variables that can be associated with
null values, and at the same time are propagated to the rule-
head [Baget et al., 2011; Calı̀ et al., 2013]; these are the vari-
ables that we dubbed dangerous. The query programs of QC

P

and QC,N
P enjoy the following property: for each rule ρ, its

dangerous variables are isolated in a single atom of B+(ρ),
and they can interact with the rest of the rule-body only via

3003

(b) Indirect interaction (�) (a) Direct interaction (→)

ward

rest of the body

harmless variables

dangerous variables

harmful (non-dangerous)
variables

harmful (non-dangerous)
or harmless variables

Figure 1: The anatomy of a warded rule-body.

harmless variables, i.e., variables that cannot be associated
with null values. Another key observation is that the involved
negation, apart from being stratified, is also grounded, i.e., it
is used with predicates that can only store constant values, but
not nulls. Let us now formalize the above key properties.

Technical Definitions. A position p[i] identifies the i-th
attribute of a predicate p. Given a Datalog∃,¬s program Π,
the set of affected positions of sch(Π), denoted affected(Π),
is inductively defined as follows: (1) if there exists ρ ∈ Π
such that at position π an existentially quantified variable oc-
curs, then π ∈ affected(Π); and (2) if there exists ρ ∈ Π,
a variable X in B+(ρ) only at positions of affected(Π), and
X appears in H (ρ) at position π, then π ∈ affected(Π). Let
nonaffected(Π) be the nonaffected positions of sch(Π). For
a rule ρ ∈ Π, a variable X ∈ var(B(ρ)) is called harmless
(w.r.t. Π) if at least one occurrence of X appears in B+(ρ)
at a position of nonaffected(Π); let harmless(ρ) be the set
of variables of var(B(ρ)) that are harmless. A variable
X ∈ var(B(ρ)) is dangerous (w.r.t. Π) if X 6∈ harmless(ρ)
and X ∈ var(H (ρ)); let dangerous(ρ) be the set of vari-
ables of var(B(ρ)) that are dangerous. Π is a Datalog∃,¬sg
program (“sg” stands for stratified and ground) if, for each
rule ρ ∈ Π, for each atom p(t1, . . . , tn) ∈ B−(ρ), and for
each i ∈ [1, n], either (ti ∈ C) or (ti ∈ harmless(ρ)).

Wardedness. We proceed to formalize the aforementioned
property regarding the dangerous variables of a rule. Con-
sider a Datalog∃,¬sg program Π and a rule ρ ∈ Π. A set
of variables X ⊆ var(B(ρ)) is called warded (w.r.t. Π) if,
either X = ∅, or there exists a ∈ B+(ρ), called the ward
(of X relative to ρ), such that: (1) var(a) ⊇ X; and (2)
(var(a) ∩ var(B(ρ) \ {a})) ⊆ harmless(ρ). Intuitively, the
ward isolates the harmful variables of X from the rest of the
rule-body. Having the notion of the ward in place, it is now
straightforward to formalize the intuitive idea of isolating the
dangerous variables of a rule.

Definition 1 A Datalog∃,¬sg,⊥ program Π is warded if, for
each ρ ∈ ex (Π), dangerous(ρ) is warded. A Datalog∃,¬sg,⊥
query (Π, p) is warded if Π is warded. A TriQ-Lite 1.0 query
is a Datalog∃,¬sg,⊥ query that is warded.

The body of a rule occurring in a warded program can be
graphically illustrated (via its hypergraph) as shown in Fig-
ure 1, where the shaded part consists only of harmless vari-
ables, while the dashed area represents an arbitrary (possibly
cyclic) hypergraph. For every graph pattern P , both QC

P and
QC,N
P are warded Datalog∃,¬sg,⊥ queries, and thus:

Theorem 2 Every SPARQL query under the OWL 2 direct
semantics entailment regime over OWL 2 QL ontologies (with

or without the active domain semantics) can be expressed as
a TriQ-Lite 1.0 query.

Warded Datalog∃,¬sg,⊥, and therefore TriQ-Lite 1.0, can
be conceived as a refined version of a more expressive formal-
ism called weakly-frontier-guarded Datalog∃,¬sg,⊥ [Baget et
al., 2011]. The latter requires the existence of a body-atom,
called guard, that contains (or guards) all the dangerous vari-
ables. Thus, wardedness is a restriction of weak-frontier-
guardedness, where the interface between the guard and the
rest of the rule-body contains only harmless variables.

4.2 TriQ-Lite 1.0: A Tractable Language
Interestingly, the mild syntactic restriction applied on
weakly-frontier-guarded Datalog∃,¬sg,⊥ has a huge impact
on the data complexity, namely it decreases from EXPTIME
to PTIME. This implies that our formalism achieves the right
balance between expressivity and complexity:

Theorem 3 Query evaluation for TriQ-Lite 1.0 is PTIME-
complete in data complexity.

The lower bound immediately follows from the fact that
plain Datalog is PTIME-hard [Dantsin et al., 2001]. The non-
trivial part is to establish the PTIME upper bound. Given a
database D, and a TriQ-Lite 1.0 query Q = (Π, p), we first
need to check whether Π(D) is defined. This task can be re-
duced to query evaluation for warded Datalog∃,¬sg . Thus, it
suffices to show that the latter is in PTIME. Fix a database D,
and a warded Datalog∃,¬sg query Q = (Π, p). Our goal is
to construct in polynomial time a database DL and a linear
Datalog∃ query QL = (ΠL, p) such that Q(D) = QL(DL),
while the arity of the predicates of sch(ΠL) does not de-
pend on D. Linear Datalog∃ rules are rules with just one
body-atom. Query evaluation for linear Datalog∃ is polyno-
mial in the number of rules and the number of predicates oc-
curring in the query program, and exponential in the maxi-
mum arity over all predicates in the query program [Gottlob
et al., 2014]. Thus, our reduction shows that query evalua-
tion for warded Datalog∃,¬sg is in PTIME in data complexity.
Moreover, query evaluation for linear Datalog∃ can be effec-
tively reduced to query evaluation for unions of conjunctive
queries [Gottlob et al., 2014], and thus our reduction shows
that query evaluation for warded Datalog∃,¬sg is feasible by
the use of standard RDBMSs. Notice that a similar approach
has been followed in [Arenas et al., 2014] to show that query
evaluation for TriQ-Lite is in PTIME in data complexity. How-
ever, as we shall discuss below, there is a fundamental differ-
ence between TriQ-Lite and warded Datalog∃,¬sg that makes
the definition of the above reduction even more challenging.

The reduction to query evaluation for linear Datalog∃ con-
sists of the following three steps: (1) Normalization: we nor-
malize Π so that each rule is head-ground, i.e., each term oc-
curring in the head is either a constant or a harmless variable,
or semi-body-ground, i.e., there exists at most one body-atom
that contains a harmful variable; (2) Eliminate Negation: we
construct a database D+, and a negation-free program Π+

such that Q(D) = Q+(D+), where Q+ = (Π+, p). Since
the negation is stratified and grounded, Π+ can be computed
from Π in the standard way, by replacing each negative atom

3004

p(a,b)

p(b,z1)

ρ 1

ρ3

t(b)

(a) (b)

ρ3

t(b)

s(z2,z1)

ρ 2

ρ3

p(b,z1)

ρ2

s(z1,z2)

ρ3

p(a,b)

ρ1

p(b,z1)

p(a,b)

ρ1

Figure 2: Proofs and proof-trees.

¬s(t) with s̄(t), where the extension of s̄ in D+ is the com-
plement of s w.r.t. the ground semantics of Π over D, that
is, the instance Π(D)↓ = {a ∈ Π(D) | dom(a) ⊂ C};
and (3) Linearization of Q+: We define DL = Π+(D+)↓,
and we transform Π+ into ΠL. The program Π+ can be par-
titioned into {Π+

h ,Π
+
b }, where Π+

h consists of all the head-
ground rules of Π+, while Π+

b = (Π+ \ Π+
h) of semi-body-

ground rules. The rules of Π+
h can be safely ignored since

only ground atoms can be inferred from them, which are al-
ready in DL. Finally, ΠL is obtained from Π+

b by replacing
each non-linear rule ρ, where a is the ward of dangerous(ρ),
with the linear rules {h(ρ) → h(head(ρ))h∈Hρ , where Hρ

are all the homomorphisms that map (body(ρ) \ {a}) to DL.
Ground Semantics. It remains to show that the ground se-

mantics can be computed in polynomial time. Fix a database
D, and a warded Datalog∃ query Q = (Π, p). We show that:

Proposition 4 The instance Π(D)↓ can be constructed in
polynomial time w.r.t. D.

A similar result can be found in [Arenas et al., 2014] for
constant-join Datalog∃ programs, that is, programs consisting
of rules that can join only harmless variables, which are un-
derlying TriQ-Lite. However, warded Datalog∃ programs can
join harmfull variables, and this is precisely the fundamen-
tal difference between constant-join Datalog∃ and warded
Datalog∃ that makes our task technically more challenging.
To establish Proposition 4, it suffices to show that the prob-
lem of deciding whether a ground atom a belongs to Π(D)
is feasible in polynomial time w.r.t. D. To this end, we sig-
nificantly extend the alternating procedure Proof, proposed
in [Arenas et al., 2014], for constant-join Datalog∃. Let us
first introduce the notion of the proof-tree via an example.

Example 3 Consider the warded Datalog∃ program Π′:

ρ1 : p(X,Y)→ ∃Z p(Y, Z)
ρ2 : p(X,Y)→ ∃Z s(Y,Z)
ρ3 : p(X,Y), s(Y,Z)→ t(X),

the database D′ = {p(a, b)}, and the atom a = t(b). A
proof of a w.r.t. D′ and Π′ is depicted in Figure 2(a), while
a proof-tree of a w.r.t. D′ and Π′ is given in Figure 2(b).
Having a proof of a, we can construct a proof-tree of a by,
roughly speaking, reversing the edges and unfolding the ob-
tained graph into a tree by repeating some nodes. On the other
hand, having a proof-tree of a, we can construct a proof of a
by reversing the edges and collapsing some nodes.

Clearly, to establish Proposition 4, it suffices to show that
the problem of deciding whether a proof-tree exists is feasible

in polynomial time. Proof(a,D,Π) constructs a proof-tree P
of a w.r.t. D and Π (if it exists) by constructing the various
branches of P in parallel universal computations. The diffi-
culty during this alternating procedure, is to guarantee that the
branches constructed in parallel computations are compatible
so that, after their merging, a valid proof-tree of aw.r.t.D and
Π is obtained. In fact, we need to ensure that the “fresh” null
values occurring in more than one branch of P (see the null
z1 in the proof-tree of Figure 2(b)), represent the same term
in Π(D). An abstract description of our algorithm follows.

Proof(a,D,Π) starts from a, and applies appropriate res-
olution steps until the database D is reached. In particular, it
consists of the following steps:

- A rule ρ ∈ Π such thatH(ρ) and a unify is guessed. Af-
ter resolving awith ρwe get the set of atoms θρ,a(B(ρ)),
where θρ,a is the most general unifier for H(ρ) and a.
Notice that θρ,a maps the variables occurring in B(ρ)
but not in H(ρ) into “fresh” nulls.

- θρ,a(B(ρ)) is partitioned into {S1, . . . , Sn} so that, for
each null z occurring in θρ,a(B(ρ)), there exists exactly
one i ∈ [1, n] such that Si contains z, and there is no
partition of θρ,a(B(ρ)) with n+1 elements that satisfies
the latter condition, i.e., each element of {S1, . . . , Sn}
is ⊆-minimal. The intention underlying the above par-
tition is to keep together the nulls that appear in more
than one branch of the proof-tree under construction, un-
til enough information regarding their generation, which
will be used to ensure the compatibility among the vari-
ous branches, is known.

- Universally select each set S ∈ {S1, . . . , Sn} and prove
it, which means that each atom of S must be proved.
More precisely, for each atom b ∈ S, a rule ρb ∈ Π
is guessed such that H(ρb) and b unify, and the set of
atoms θρb,b(B(ρb)) is obtained.

- With S = {b1, . . . , bm},
⋃
i∈[1,m] θρbi ,bi(B(ρbi)) is par-

titioned as above, and each component of the partition is
proved recursively in a parallel universal computation.

During the execution of the above procedure, the first time
that a null z is lost after resolving an atom b (that contains
z) with a rule ρ ∈ Π, which means that z is associated with
an existentially quantified variable in H(ρ), we conclude that
θρ,b(H(ρ)) represents the atom where z is invented. It is vital
to ensure that the atoms where z is invented in parallel com-
putations are isomorphic to θρ,b(H(ρ)). This can be achieved
by carrying together with the component that contains z the
crucial atom θρ,b(H(ρ)). Although the above is only a high-
level description of our algorithm, it gives enough evidence
for its soundness. By exploiting wardedness, we can show
that at each step of the computation of Proof(a,D,Π) we
need logarithmic space w.r.t.D. Since ALOGSPACE coincides
with PTIME, Proposition 4 follows.

5 Program Expressive Power
One may claim that Datalog¬s and TriQ-Lite 1.0, or, equiva-
lently, warded Datalog∃,¬sg,⊥, are formalisms with the same
expressive power, and raise the following question: is warded
Datalog∃,¬sg,⊥, and in particular the feature of existential
quantification, necessary for our purposes? This question is

3005

directly related to our fifth desideratum, i.e., the absolute de-
coupling between the reasoning process, and the process of
defining the actual query. In fact, warded Datalog∃,¬sg,⊥ ful-
fills the above desideratum since is able to encode the OWL
2 direct semantics entailment regime over OWL 2 QL on-
tologies via a fixed program, namely ΠOWL2QL, that does
not depend on any graph pattern, and also is able to ex-
press every SPARQL query when the active domain seman-
tics is dropped. However, the above desideratum, and in par-
ticular the encoding of the OWL 2 direct semantics entail-
ment regime via a fixed program, cannot be achieved with
Datalog¬s [Arenas et al., 2014]. Thus, the answer to the
above question is that the existential quantification is vital
in order to accomplish the decoupling between the reasoning
part and the actual query.

The classical notion of expressive power does not cap-
ture the above key difference between Datalog¬s and warded
Datalog∃,¬sg,⊥. Interestingly, this is captured by the recent
notion of program expressive power [Arenas et al., 2014].
Consider a query language L and a program Π. The program
expressive power of Π relative to L, denoted PepL[Π], is the
of triples (D,Λ, p(t)) such that (Π ∪ Λ) ∈ L, the predicate
p occurs only in the head of the rules of Λ (i.e., the rules
of Λ act as the output rules of (Π ∪ Λ)), and t ∈ Q(D),
where Q = (Π ∪ Λ, p). Roughly, PepL[Π] encodes that set
of atoms that can be inferred from a database D via a query
Q ∈ L, where Π consists of the rules of Q other than the
output rules. The program expressive power of L is now nat-
urally defined as Pep[L] = {PepL[Π] | Π ∈ L}. We say that
a language L is more expressive than L′ w.r.t. the program
expressive power, written as L′ ≺Pep L, if Pep[L′] ⊆ Pep[L]
and Pep[L] 6⊆ Pep[L′]. We can show that:

Theorem 5 Datalog¬s ≺Pep TriQ-Lite 1.0.

The above result formally explains the key difference be-
tween Datalog¬s and TriQ-Lite 1.0, and the importance of the
existential quantification in rule-heads.

6 Model-theoretic Justification of Wardedness
The goal of this section is to justify the necessity for defin-
ing a new formalism instead of exploiting an existing one. To
this end, we are going to establish, via a model-theoretic ar-
gument, that existing Datalog-based formalisms, which seem
suitable for our purposes, are not able to encode the OWL
2 direct semantics entailment regime over OWL 2 QL on-
tologies via a fixed program. The only previously known
plain formalisms that are powerful enough for our purposes
are weakly-guarded Datalog∃,¬sg,⊥ [Calı̀ et al., 2013] and
weakly-frontier-guarded Datalog∃,¬sg,⊥ [Baget et al., 2011].
However, these two formalisms are EXPTIME-complete in
data complexity, and thus inherently intractable. One may
suggest to exploit existing tractable subclasses of the above
formalisms. We show that such subclasses, and in particular
(frontier-)guarded Datalog∃,¬sg,⊥, are not powerful enough
for encoding the OWL 2 direct semantics entailment regime
(no matter whether the active domain semantics is adopted
or not) via a fixed program. This justifies the necessity for
introducing warded Datalog∃,¬sg,⊥. We first expose, via an
example, a crucial model-theoretic property that a language

must fulfill in order to be able to encode the OWL 2 direct
semantics entailment regime over OWL 2 QL ontologies via
a fixed program.

Example 4 Consider the basic classes c0, . . . , cn, and the ba-
sic property p, and let O be the OWL 2 QL ontology that
encodes the following: the constant a belongs to c0, c0 is
a subclass of ∃p, ∃p− is a subclass of c1, and ci is a sub-
class of ci+1, for each i ∈ [1, n − 1]. It is not difficult to
verify that, after encoding O as an RDF graph G, we infer
the triples (z, rdf:type, ci), for each i ∈ [1, n], where z is a
“fresh” null. Observe that the null value z is connected, via
joint occurrences in triples, to all the constants in G that rep-
resent classes. In other words, the number of constants that
are connected to z depends on the RDF graph.

It can be seen that a Datalog∃,¬s,⊥ language is suitable for
our purposes only if it allows us to connect an invented null,
using a fixed program, with an unbounded number of con-
stants, or, in other words, if it enjoys the so-called unbounded
ground-connection property. The ground-connection of a null
z to an instance I , denoted gc(z, I), is the set of constants
{c ∈ C | there exists a ∈ I such that {c, z} ⊆ dom(a)}, that
is, all the constants that jointly appear with z in an atom of
I . A family of databases is a sequence D1, D2, . . ., where
each Dn is a database such that |dom(Dn)| = n. The formal
definition of the above key property follows:

Definition 6 A Datalog∃,¬s,⊥ language C enjoys the un-
bounded ground-connection property (UGCP), if there exists
a family of databasesD1, D2, . . ., and a program Π in C such
that, for each n > 0, Π(Dn) is defined, and |gc(z,Π(Dn))|
depends on n, for at least one null z in Π(Dn).

Our formalism enjoys the above model-theoretic property;
this can be shown by exploiting Example 4. On the other
hand, given a (frontier-)guarded Datalog∃,¬sg,⊥ program Π,
for every databaseD such that Π(D) is defined, and for every
null z in Π(D), gc(z,Π(D)) consists of the constants that
appear in the atom of Π(D) in which z was generated, i.e.,
|gc(z,Π(D))| 6 ω, where ω is the maximum arity over all
predicates of sch(Π), and thus does not depend on |dom(D)|.
From the above discussion, we get the following:

Proposition 7 It holds that, (1) Warded Datalog∃,¬sg,⊥ en-
joys the UGCP; and (2) (Frontier-)guarded Datalog∃,¬sg,⊥
does not enjoy the UGCP.

To sum up, all the known tractable subclasses of weakly-
(frontier-)guarded Datalog∃,¬sg,⊥ do not enjoy the UGCP,
and thus they are not powerful enough for encoding the OWL
2 direct semantics entailment regime over OWL 2 QL on-
tologies via a fixed program. This justifies the necessity for
defining warded Datalog∃,¬sg,⊥, the Datalog-based language
underlying TriQ-Lite 1.0.

7 Complexity-theoretic Justification of
Wardedness

Let us now substantiate the design choices made in the def-
inition of TriQ-Lite 1.0. We show that mild extensions of
warded Datalog∃ immediately lead to languages that are EX-
PTIME-hard in data complexity, and thus provably intractable.

3006

ward

rest of the body

harmless variable

dangerous variables

harmful (non-dangerous)
variables

harmful (non-dangerous)
or harmless variables

(b) Indirect interaction (�) (a) Direct interaction (→)

Figure 3: A ?-warded rule-body, where ? ∈ {→,y}.

This is a strong sign that wardedness lies at the boundaries of
data tractability. Recall that the key idea underlying warded-
ness is to collect the dangerous variables of a rule in a single
body-atom, and force them to interact with the rest of the rule-
body only via harmless variables. Thus, the apparent way to
extend warded Datalog∃ is to allow the dangerous variables
to interact with the rest of the body via harmful ones.

Towards this direction, the mildest relaxation of warded-
ness is to allow the existence of an atom (other then the ward)
in the body of a rule, which contains only harmless variables
apart from one harmful variable V that is either dangerous
or not. If V is dangerous, then we say that the interaction
of the dangerous variables with the rest of the body is di-
rect, and we get the formalism →-warded Datalog∃; other-
wise, we say that their interaction is indirect, and we get y-
warded Datalog∃ (“→” refers to the direct interaction, while
“y” refers to the indirect interaction). The body of a rule oc-
curring in a→-warded (resp., y-warded) Datalog∃ program
is graphically illustrated in Figure 3(a) (resp., 3(b)). Fig-
ures 1 and 3 confirm that the above proposed formalisms are
obtained by minor syntactic extensions of warded Datalog∃.
However, as we show below, these minor extensions have a
significant impact on the data complexity of query evaluation.

Proposition 8 Query evaluation for ?-warded Datalog∃,
where ? ∈ {→,y}, is EXPTIME-hard in data complexity.

The above result is shown by simulating the behavior of an
alternating polynomial space Turing machine M via a fixed
?-warded Datalog∃ query, where ? ∈ {→,y}.

8 Future Work
Our next step is to experimentally evaluate the employed pro-
cedures. To this end, a challenging task is to design a practical
algorithm for computing the ground semantics of a program.
This will allows us to productively exploit the fact that query
evaluation for TriQ-Lite 1.0 can be reduced to query evalua-
tion for linear Datalog∃, which in turn implies that standard
database technology and techniques can be employed.

Acknowledgements. G. Gottlob was supported by the EP-
SRC Programme Grant EP/M025268/ “VADA: Value Added
Data Systems – Principles and Architecture”. A. Pieris was
supported by the Austrian Science Fund (FWF): P25207-N23
and Y698.

References
[Alkhateeb et al., 2009] Faisal Alkhateeb, Jean-François Baget,

and Jérôme Euzenat. Extending SPARQL with regular expres-
sion patterns (for querying RDF). J. Web Sem., 7(2):57–73, 2009.

[Arenas et al., 2009] Marcelo Arenas, Claudio Gutierrez, and Jorge
Pérez. Foundations of RDF databases. In RW, pages 158–204,
2009.

[Arenas et al., 2014] Marcelo Arenas, Georg Gottlob, and Andreas
Pieris. Expressive languages for querying the semantic web. In
PODS, pages 14–26, 2014.

[Baget et al., 2011] Jean-François Baget, Michel Leclère, Marie-
Laure Mugnier, and Eric Salvat. On rules with existential
variables: Walking the decidability line. Artif. Intell., 175(9-
10):1620–1654, 2011.

[Barceló, 2013] Pablo Barceló. Querying graph databases. In
PODS, pages 175–188, 2013.

[Calı̀ et al., 2012a] Andrea Calı̀, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. J. Web Sem., 14:57–83, 2012.

[Calı̀ et al., 2012b] Andrea Calı̀, Georg Gottlob, and Andreas
Pieris. Towards more expressive ontology languages: The query
answering problem. Artif. Intell., 193:87–128, 2012.

[Calı̀ et al., 2013] Andrea Calı̀, Georg Gottlob, and Michael Kifer.
Taming the infinite chase: Query answering under expressive re-
lational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Gottlob
Georg, and Andrei Voronkov. Complexity and expressive power
of logic programming. ACM Comput. Surv., 33(3):374–425,
2001.

[Fionda et al., 2012] Valeria Fionda, Claudio Gutierrez, and
Giuseppe Pirrò. Semantic navigation on the web of data: spec-
ification of routes, web fragments and actions. In WWW, pages
281–290, 2012.

[Glimm and Ogbuji, 2013] Birte Glimm and Chimezie Ogbuji.
SPARQL 1.1 entailment regimes, 2013. W3C Recommendation
21 March 2013, http://www.w3.org/TR/sparql11-entailment/.

[Gottlob et al., 2014] Georg Gottlob, Giorgio Orsi, and Andreas
Pieris. Query rewriting and optimization for ontological
databases. ACM Trans. Database Syst., 39(3):25, 2014.

[Gutiérrez-Basulto et al., 2013] Vı́ctor Gutiérrez-Basulto,
Yazmin Angélica Ibáñez-Garcı́a, Roman Kontchakov, and
Egor V. Kostylev. Conjunctive queries with negation over dl-lite:
A closer look. In RR, pages 109–122, 2013.

[Harris and Seaborne, 2013] Steve Harris and Andy Seaborne.
SPARQL 1.1 query language, 2013. W3C Recommendation 21
March 2013, http://www.w3.org/TR/sparql11-query/.

[Leone et al., 2012] Nicola Leone, Marco Manna, Giorgio Ter-
racina, and Pierfrancesco Veltri. Efficiently computable Datalog∃

programs. In KR, 2012.
[Libkin et al., 2013] Leonid Libkin, Juan L. Reutter, and Domagoj

Vrgoc. Trial for RDF: adapting graph query languages for RDF
data. In PODS, pages 201–212, 2013.

[Pérez et al., 2010] Jorge Pérez, Marcelo Arenas, and Claudio
Gutierrez. nSPARQL: a navigational language for RDF. J. Web
Sem., 8(4):255–270, 2010.

[Thomazo et al., 2012] Michaël Thomazo, Jean-François Baget,
Marie-Laure Mugnier, and Sebastian Rudolph. A generic query-
ing algorithm for greedy sets of existential rules. In KR, 2012.

3007

