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Abstract

We study temporal description logics (TDLs) based
on the branching-time temporal logic CTL and the
lightweight DL EL in the presence of rigid roles
and restricted TBoxes. While TDLs designed in this
way are known to be inherently nonelementary or
even undecidable over general TBoxes, there is hope
for a better computational behaviour over acyclic
or empty TBoxes. We begin by showing that the
basic DLALC combined with CTL in the described
way is indeed decidable, but still inherently nonele-
mentary. As our main contribution, we identify
several TDLs of elementary complexity, obtained
by combining EL with CTL fragments that allow
only restricted sets of temporal operators. We obtain
upper complexity bounds ranging from PTIME to
CONEXPTIME and mostly tight lower bounds. This
contrasts the fact that the respective ALC variants
are already inherently nonelementary.

1 Introduction
Classical description logics (DLs), such as those underlying
the W3C standard OWL, are a successful family of knowledge
representation languages. Temporal description logics (TDLs)
extend classical DLs, providing built-in means to represent
and reason about temporal aspects of knowledge. The impor-
tance of TDLs stems from the need of relevant applications
to capture temporal and dynamic aspects of knowledge, e.g.,
in medical and life science ontologies, which are very large
but still demand efficient reasoning, such as SNOMED CT and
FMA [Bodenreider and Zhang, 2006], and the gene ontology
(GO) [The Gene Ontology Consortium, 2000]. A natural task
is to model dynamic knowledge about patient histories against
static medical knowledge (e.g., about diseases): e.g., the tem-
poral concept C := E3∃ requiresTransfusion.> describes a
patient who may need a blood transfusion in the future, and
the axiom Anemic v C says that this applies to anemic people.
In contrast, Anemia v Disorder represents static knowledge.

A notable approach to designing TDLs is to combine DLs
with temporal logics commonly used in software/hardware
verification such as LTL, CTL(∗), and to provide a two-
dimensional product-like semantics [Schild, 1993; Gabbay

et al., 2003; Lutz et al., 2008]. The combination allows vari-
ous design choices, e.g., we can restrict the scope of temporal
operators to certain types of entities (such as concepts, roles,
axioms), or declare some DL concepts or roles as rigid, mean-
ing that their interpretation will not change over time. The
need for rigid roles in TDL applications, e.g., in biomedi-
cal ontologies to accurately capture life-time relations, has
been identified [Baader et al., 2008]. For example, the role
hasBloodType should be rigid since a human’s blood type
does not change during their lifetime.

Unfortunately, TDLs based on the Boolean-complete DL
ALC with rigid roles cannot be effectively used since they
become undecidable as soon as temporal operators are applied
to concepts and a general TBox is allowed [Gabbay et al.,
2003; Gutiérrez-Basulto et al., 2014]. This is the case even if
we severely restrict the temporal operators available and use
the sub-Boolean DL EL, whose standard reasoning problems
are tractable, instead of ALC [Artale et al., 2007a; Gutiérrez-
Basulto et al., 2014]. In the light of these results, several
efforts have been devoted to the design of decidable TDLs
with rigid roles [Artale et al., 2007b; 2014]; e.g., decidability
can be attained by using a different lightweight DL component
based on DL-Lite. Both the EL and DL-Lite families underlie
prominent profiles of the OWL standard.

Interestingly, no research has been yet devoted to TDLs
based on EL in the presence of restricted TBoxes, such as
classical TBoxes, which consist solely of definitions of the
form A ≡ C with A atomic and unique, or acyclic TBoxes,
which additionally forbid syntactic cycles in definitions. This
is surprising since in the presence of general TBoxes TDLs
based on EL tend to be as complex as theALC variant [Artale
et al., 2007b; Gutiérrez-Basulto et al., 2012; 2014].

These considerations lead us to investigating TDLs with
rigid roles based on EL and the (branching-time) CTL allowing
for temporal concepts and empty or acyclic TBoxes. We
strongly believe that TDLs designed in this way are well-
suited as temporal extensions of biomedical ontologies. After
all, large parts of SNOMED CT and GO indeed are acyclic
EL-TBoxes.

Our main contributions are algorithms for standard reason-
ing problems and (mostly tight) complexity bounds. We begin
by showing that the combination of CTL andALC with empty
and acyclic TBoxes is decidable. Our nonelementary upper
bound is optimal even when the set of temporal operators is
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Rigid roles? no yes yes yes
TBoxes general general acyclic empty

CTLALC =EXPTIME1 undecidable2 nonelementary, decidable [Thm. 1] nonelem., decidable [Thm. 1]
CTLE3

EL /CTLE◦
EL ≤PTIME1 nonelem./undecid.2 ≤PTIME [Thm. 6] ≤PTIME [Thm. 6]

CTLE◦,E3
EL =EXPTIME1,2 undecidable2 ≥CONP, ≤CONEXPTIME [Thm. 2, Cor. 5] =CONP [Thm. 2]

CTLE3,A2
EL =PSPACE1 nonelementary2 =PSPACE [Thm. 9] ≤PSPACE [Thm. 9]

1 [Gutiérrez-Basulto et al., 2012] 2 [Gutiérrez-Basulto et al., 2014]

Table 1: Overview of previous and new complexity results. ≥ hardness, ≤ membership, = completeness

restricted to E3 (“possibly eventually”) or E© (“possibly
next”). We then replace ALC with EL and maintain the re-
striction to E3,E© and empty TBoxes. We particularly show
that the resulting TDLs are decidable in PTIME with one of
the two operators, and CONP-complete with both. To this aim,
we employ canonical models, together with expansion vectors
[Haase and Lutz, 2008] in the case with both E3,E©. Next,
we lift the PTIME upper bound to the case of acyclic TBoxes,
employing a completion algorithm in the style of those for
EL and extensions, [Baader et al., 2005]. Finally, we show
that the combination of E3 with A2 (“always globally”)
and acyclic TBoxes leads to a PSPACE-complete TDL, again
employing a completion algorithm. An overview of existing
and new results is given in Table 1, where CTLYX denotes the
combination of the DL X with the fragment of CTL restricted
to the temporal operators Y . In particular, all the new results
hold even if rigid concepts are also included.

The relatively low complexity that we obtain for EL-based
TDLs over restricted TBoxes are in sharp contrast with the
undecidability and nonelementary lower bounds known for
the same logics over general TBoxes [Gutiérrez-Basulto et al.,
2014]. With the restriction to acyclic TBoxes, we will thus
identify the first computationally well-behaved TDLs with
rigid roles based on EL and classical temporal logics.

Due to limited space, additional technical notions and proofs
are in a report: http://tinyurl.com/ijcai15tdl

2 Preliminaries
We introduce CTLALC , a TDL based on the classical DLALC.
Let NC and NR be countably infinite sets of concept names
and role names, respectively. We assume that NC and NR are
partitioned into two countably infinite sets: Nrig

C and Nloc
C of

rigid concept names and local concept names, respectively;
and, Nrig

R and Nloc
R of rigid role names and local role names,

respectively. CTLALC-concepts C are defined by the grammar

C := > | A | ¬C | C uD | ∃r.C | E©C | E2C | E(CUD)

where A ranges over NC, r over NR. We use standard DL
abbreviations [Baader et al., 2003] and temporal abbreviations
E3C,A2C,A3C and A(C U D) [Clarke et al., 1999].

The semantics of classical DLs, such as ALC, is given in
terms of interpretations of the form I = (∆, ·I), where ∆ is
a non-empty set called the domain and ·I is an interpretation
function that maps each A ∈ NC to a subset AI ⊆ ∆ and each
r ∈ NR to a binary relation rI ⊆ ∆ ×∆. The semantics of
CTLALC is given in terms of temporal interpretations based

on infinite trees [Gutiérrez-Basulto et al., 2014]: A tempo-
ral interpretation based on an infinite tree T = (W,E) is a
structure I = (T, (Iw)w∈W ) such that, for each w ∈ W , Iw
is a DL interpretation with domain ∆; and, rIw = rIw′ and
AIw = AIw′ for all r ∈ Nrig

R , A ∈ Nrig
C and w,w′ ∈ W . We

usually write AI,w instead of AIw . The stipulation that all
worlds share the same domain is called the constant domain
assumption (CDA). For Boolean-complete TDLs, CDA is the
most general: increasing, decreasing and varying domains can
all be reduced to it [Gabbay et al., 2003, Prop. 3.32]. For
the sub-Boolean logics studied here, CDA is not w.l.o.g. In-
deed, we identify a logic in which reasoning with increasing
domains cannot be reduced to the constant domain case.

We now define the semantics of CTLALC-concepts. A path
in T = (W,E) starting at a node w is an infinite sequence
π = w0w1w2 · · · with w0 = w and (wi, wi+1) ∈ E. We
write π[i] for wi, and use Paths(w) to denote the set of all
paths starting at the node w. The mapping ·I,w is extended
from concept names to CTLALC-concepts as follows.
>I,w = ∆ (C uD)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ∆ | ∃e . (d, e) ∈ rI,w ∧ e ∈ CI,w}
(E©C)I,w = {d | ∃π ∈Paths(w) . d∈CI,π[1]}
(E2C)I,w = {d | ∃π ∈Paths(w) .∀j≥ 0 . d∈CI,π[j]}

(E(CUD))I,w = {d | ∃π ∈Paths(w) .∃ j≥ 0 . (d∈DI,π[j]

∧ (∀ 0≤ k < j . d∈CI,π[k]))}
An acyclic CTLALC-TBox T is a finite set of concept defini-
tions (CDs) A ≡ D with A ∈ NC and D a CTLALC concept,
such that (1) no two CDs have the same left-hand side, and
(2) there are no CDs A1 ≡ C1, . . . , Ak ≡ Ck in T such that
Ai+1 occurs in Ci for 1 ≤ i ≤ k, where Ak+1 = A1.

A temporal interpretation I is a model of a concept C if
CI,ε 6= ∅; it is a model of an acyclic TBox T , written I |= T ,
if AI,w = CI,w for all A ≡ C in T and w ∈ W ; it is a
model of a concept inclusion C v D, written I |= C v D, if
CI,w ⊆ DI,w for all w ∈W .

The two main reasoning tasks we consider are concept
satisfiability and subsumption. A concept C is satisfiable
relative to an acyclic TBox T if there is a common model of
C and T . A concept D subsumes a concept C relative to an
acyclic TBox T , written T |= C v D, if I |= C v D for all
models I of T . If T is empty, we write |= C v D.

3 First Observations

We start by observing that the combination of CTL and ALC
with rigid roles relative to empty and acyclic TBoxes is de-
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cidable and inherently nonelementary. In a nutshell, we show
the upper bounds using a variant of the quasimodel tech-
nique [Gabbay et al., 2003, Thm. 13.6]; the lower bound
follows from the fact that satisfiability for the product modal
logics S4×K and K×K is inherently nonelementary [Göller
et al., 2015]. Indeed, the fragment of CTLALC allowing E3

(E©) as the only temporal operator is a notational variant of
S4×K (K×K) [Gutiérrez-Basulto et al., 2014].

Theorem 1 Concept satisfiability relative to acyclic and
empty TBoxes for CTLALC with rigid roles is decidable and
inherently nonelementary.

With Theorem 1 and the third column of Table 1 in mind, we
particularly set as our goal the identification of elementary
(ideally tractable) TDLs. To this aim, we study combinations
of (fragments of) CTL with the lightweight DL EL. CTLEL is
the fragment of CTLALC that disallows the constructor ¬ (and
thus the abbreviations C tD, ∀r.C, A2, . . . ). The standard
reasoning problem for CTLEL, as for EL, is concept subsump-
tion since each concept and TBox are trivially satisfiable. In
what follows we consider various fragments of CTLEL ob-
tained by restricting the available temporal operators. We
denote the fragments by putting the allowed operators as a
superscript. In this context, we view each of the operators E3,
A2 as primitive instead of as an abbreviation.

In order to keep the presentation of our main results acces-
sible, in Sections 5-6, we concentrate on the case where only
rigid role names and local concept names are present. Later
on, in Section 7, we explain how to deal with the general case.

4 CTLE◦,E3

EL relative to the Empty TBox
We begin by investigating the complexity of subsumption
relative to the empty TBox for a TDL whose subsumption
relative to general TBoxes is undecidable: CTLE◦,E3

EL .

Theorem 2 Concept subsumption relative to the empty TBox
is CONP-complete for CTLE◦,E3

EL with rigid roles and in
PTIME for CTLE◦

EL and CTLE3
EL with rigid roles.

CONP-hardness is obtained by embedding EL plus transitive
closure into CTLE◦,E3

EL ; the jump in complexity comes from
the ability to express disjunctions, e.g., |= E3C v C t
E©E3C. We next explain CONP-membership; the PTIME
results are a byproduct and improved later.

We proceed in two steps: first we provide a characteriza-
tion of |= C v D where C is an CTLE◦

EL -concept and D an
CTLE◦,E3

EL -concept. Next we generalize this characterization
to CTLE◦,E3

EL -concepts C.
Given a CTLE◦

EL -concept C, the description tree tC =
(VC , LC , EC) for C is a labeled graph corresponding to C’s
syntax tree; we denote its root by xC . For example, if
C = E©(∃r.A u ∃s.B), then tC is given in Figure 1, left.

For plain EL, we have |= C vD if and only if there is a
homomorphism from tD to tC , which can be tested in polyno-
mial time [Baader et al., 1999]. This criterion cannot directly
be transferred to CTLE◦

EL because tC does not explicitly repre-
sent all pairs of worlds and domain elements whose existence
is implied by tC , e.g., for |= E©∃r.A v ∃r.E©A with r rigid,

...

A B

◦

r s

A
B

r

s
A
B

r

s

tC IpreCIC

Figure 1: Description tree tC , canonical model IC , and finite
representation Ipre

C for the concept C = E©(∃r.A u ∃s.B)

there is no homomorphism from tD to tC . We overcome this
problem by transforming tC into a canonical model IC of
C, i.e., (1) its distinguished root is an instance of C and (2)
IC homomorphically embeds into every model of C. The
construction of IC from tC is straightforward: for every node
with an incoming ©-edge (r-edge, r being a role) create a
fresh world (domain element); for the root xC create both a
world and domain element. The temporal relation and the
interpretation of r and concept names is read off EC and LC .
To transform (W,R) into an infinite tree, we add an infinite
path of fresh worlds to every world without R-successor. The
canonical model for the above concept C is shown in Fig. 1,
center; the infinite path of worlds is dashed.

From (1), (2), and the preservation properties of homomor-
phisms, we obtain the desired characterization of subsumption.

Lemma 3 For all CTLE◦
EL -concepts C and all CTLE◦,E3

EL -
concepts D, we have |= C v D if and only if xC ∈DIC ,xC .

Now xC ∈ DIC ,xC can be verified by model-checking D in
world xC and element xC of Ipre

C , which is the polynomial-
sized modification of I where the lastly added infinite path
of worlds is replaced by a single loop, see Figure 1, right.
Since IC is the unraveling of Ipre

C into the temporal dimension,
both interpretations satisfy the same concepts in their roots.
Theorem 2 for CTLE◦

EL therefore follows. The CTLE3
EL part

can be obtained by representing every E3 in C by a ©-edge
in tC and modifying the notion of a homomorphism.

For CTLE◦,E3
EL , we use expansion vectors introduced by

Haase and Lutz [2008], applied to the temporal dimension.
Let C be a CTLE◦,E3

EL -concept with n occurrences of E3.
An expansion vector for C is an n-tuple U = (u1, . . . , un)
of natural numbers ui ∈ N (including 0). Intuitively, U fixes
a specific number of temporal steps taken for each E3 in C
when constructing tC and IC . More precisely, we use C[U ] to
denote the CTLE◦

EL -concept obtained from C by replacing the
i-th occurrence of E3 with (E©)ui , that is, a sequence of ui
E©-operators. For example, if C = E3∃r.E3(A u E©B)
and U = (2, 0), then C[U ] = E©E©∃r.(A uE©B).

Let UmC be the set of all expansion vectors (u1, . . . , un) with
0 6 ui 6 m, for all i = 1, . . . , n. We denote with td(D) the
nesting depth of temporal operators in D. We use expansion
vectors with entries bounded by td(D) to reduce 6|= C v D

for CTLE◦,E3
EL to the case where C is from CTLE◦

EL .
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Lemma 4 For all CTLE◦,E3
EL -concepts C,D, we have

|= CvD if and only if |= C[U ] v D for all U ∈ Utd(D)+1
C .

Together with Lemma 3, this yields the desired polynomial-
time guess-and-check procedure for deciding |= C v D.

5 CTLE◦
EL and CTLE3

EL relative to Acyclic
TBoxes

The results of Theorem 2 transfer to acyclic TBoxes with an
exponential blowup due to unfolding [Nebel, 1990], that is:

Corollary 5 Concept subsumption relative to acyclic
CTLE◦,E3

EL -TBoxes with rigid roles is in CONEXPTIME.

For the subfragments CTLE◦
EL and CTLE3

EL , we can even show
polynomial complexity as in the empty TBox case.

Theorem 6 Concept subsumption relative to acyclic CTLE◦
EL -

and CTLE3
EL -TBoxes with rigid roles is in PTIME.

We first concentrate on the E3 case and explain below how
to deal with the E© one. We focus w.l.o.g. on subsumption
between concept names and assume that the input TBox is
in normal form (NF), i.e., each axiom is of the shape A ≡
A1 uA2, A ≡ E3A1, or A ≡ ∃r.A1, where Ai ∈ NC ∪ {>}
and r ∈ NR. As usual, a subsumption-equivalent TBox in NF
can be computed in polynomial time [Baader, 2003]. We use
CN and ROL to denote the sets of concept names and roles
occurring in T .

To prove a PTIME upper bound, we devise a comple-
tion algorithm in the style of those known for EL and (two-
dimensional) extensions, cf. [Baader et al., 2005; Gutiérrez-
Basulto et al., 2011], which build an abstract representation
of the ‘minimal’ model of the input TBox T (in the sense
of Horn logic). The main difficulty is that different occur-
rences of the same concept name in the TBox cannot all be
treated uniformly (as it is the case for, say, EL), due to the
two-dimensional semantics. Instead, we have to carefully
choose witnesses for E3A and ∃r.A, respectively. Our algo-
rithm constructs a graph G = (W,E,Q,R) based on a set
W , a binary relation E, a mapping Q that associates with
each A ∈ CN and each w ∈W a subset Q(A,w) ⊆ CN, and
a mapping R that associates with each rigid role r ∈ ROL
a relation R(r) ⊆ CN × W × CN × W . For brevity, we
write (A,w)

r→ (B,w′) instead of (A,w,B,w′) ∈ R(r) and
denote with E∗ the reflexive, transitive closure of E.

The algorithm for deciding subsumption initializes G by
setting R(r) = ∅ for all r ∈ ROL and for all A ∈ CN:

W = CN× CN ∪ {E3A | A ∈ CN};
E = {(E3A,AA), (AB,A>) | A,B ∈ CN};

Q(A,w) = {>, B}, if w = AB; {>}, otherwise.

Intuitively, the unraveling of (W,E) is the temporal tree un-
derlying the canonical model and the mappings Q and R
contain condensed information on how to interpret concepts
and roles, respectively. More specifically, the data stored in
Q(A, ·) describes the temporal evolution of an instance of A.
For example, Q(A,AA) collects all concept names B such
that T |= A v B; likewise, Q(A,E3A) captures everything

F1 If B ∈Q(A,AA′) & B ≡ E3B′ ∈ T , add (AA′, AB′) to E

F2 If B ∈ Q(A,w) and B ≡ ∃r.B′ ∈ T ,
set (A,w) r→ (B′, B′B′)

F3 If B∈Q(A,w) & B≡A1uA2 ∈T , add A1,A2 to Q(A,w)

C1 If (BB,w) ∈ E and (A,w′)
r→ (B,BB), add (w′, w) to E

C2 If (A,w) r→ (B,BB), then
a) (A,w′)

r→ (B,E3B) for all w′ 6= w with (w′, w) ∈ E∗

b) (A,w′)
r→ (B,w′) for all w′ with (w′, w) /∈ E∗

B1 If B ∈ Q(A,w), (w′, w) ∈ E∗, and A′ ≡ E3B ∈ T ,
add A′ to Q(A,w′)

B2 If A ∈ Q(B,w), (A′, w′) r→ (B,w), and A′′ ≡ ∃r.A ∈ T
add A′′ to Q(A′, w′)

B3 If A1, A2 ∈ Q(B,w) & A ≡ A1 uA2 ∈ T
add A to Q(B,w)

Figure 2: Completion rules

that follows from E3A. Finally, Q(A,AB) contains con-
cept names that are implied by B given that B appears in the
temporal evolution of an instance of A, i.e., B′ ∈ Q(A,AB)
implies T |= A uE3B v E3(B uB′).

After initialization, the algorithm extends G by applying
the completion rules depicted in Figure 2 in three phases. In
the first phase – also called FORWARD-phase, since definitions
A ≡ C ∈ T are read asA v C – rules F1-F3 are exhaustively
applied in order to generate a fusion-like representation by
adding witness-worlds and witness-existentials as demanded.
Most notably, rule F2 introduces a pointer to the structure
representing the temporal evolution of an instance of B′.

Subsequently, G is extended to conform with the constant
domain assumption and reflect rigidity of roles by exhaustively
applying rules C1 and C2. For example, one can read C2 as
‘if two points are connected via r in some world, then they
should be connected in all worlds.’ Note that Q(B,E3B) is
used as a representative for the entire “past” of B in part a).

In the final phase, BACKWARD-completion rules B1-B3
are exhaustively applied in order to respect the ‘backwards’-
direction of definitions, i.e., definitions A ≡ C ∈ T are read
as A w C. This separation into a FORWARD and BACKWARD
phase is sanctioned by acyclicity of the TBox. In fact, one
run through each phase is enough; note that no new tuples are
added to E or R in the BACKWARD-phase.

The following lemma shows correctness of our algorithm.

Lemma 7 Let T be an acyclic CTLE3
EL -TBox in normal form.

Then for all A,B ∈ CN, we have T |= A v B iff, after
exhaustive rule application, B ∈ Q(A,AA).

For proving “⇐”, we show that (a certain unraveling of) G
“embeds” into every model of A and T . For this purpose,
we need to adapt the notion of a homomorphism to temporal
interpretations and rigid roles. For the reverse direction, we
construct from G a model I of T such that d ∈ AI,w \BI,w

for some d,w. It is not hard to see that the algorithm runs
in polynomial time: The size of the data structures W , E,
and R is clearly polynomial and the mapping Q(·, ·) is ex-
tended in every rule application, so the algorithm stops after
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polynomially many steps.
Finally, we sketch two modifications of the algorithm

such that it works for E© instead of E3. First, we have
to use a non-transitive version of B1. Second, and a bit
more subtly, we have to replace E3A ∈ W with E©kA,
1 ≤ k ≤ |T | to capture what is implied by E©kA; more pre-
cisely, B′ ∈ Q(A,E©kA) implies T |= E©kA v B′, where
E©k denotes E© · · ·E© k times.

We next show that there is a jump in the complexity if
increasing domains are considered instead of constant ones.
Intuitively, this can be explained by the fact that increasing
domains allow rigid roles to mimic the behaviour of the A2-
operator. In the next section, we show that the addition of A2

to {E3} indeed leads to PSPACE hardness.

Theorem 8 Concept subsumption relative to acyclic CTLE◦
EL -

and CTLE3
EL -TBoxes with rigid roles and increasing domains

is PSPACE-hard.

6 CTLE3,A2

EL relative to Acyclic TBoxes
We now add A2 and observe that this leads to an increase in
complexity to polynomial space over acyclic TBoxes.

Theorem 9 Concept subsumption relative to acyclic
CTLE3,A2

EL -TBoxes with rigid roles is PSPACE-complete.

The lower bound is obtained via a reduction from QBF validity.
For the upper bound, we again consider w.l.o.g. subsumption
between concept names and assume that the acyclic TBox is in
normal form, i.e., axioms are of the shape A ≡ A1 uA2, A ≡
E3A1, A ≡ A2A1, or A ≡ ∃r.A1, where Ai ∈ NC ∪ {>}
and r ∈ NR. We also restrict ourselves again to only rigid
roles. CN and ROL are used as before.

In contrast to the previous section, we cannot maintain the
entire minimal model in memory since the added operator A2

can be used to enforce models of exponential size. Instead, we
will compute all concepts implied by the input concept A (the
left-hand side of the subsumption to be checked) by iteratively
visiting relevant parts of the minimal model. Our main tool
for doing so are traces.

Definition 1 A trace is a tuple (σ,E,R) where σ is a se-
quence (d0, w0) · · · (dn, wn) such that for all 0 ≤ i < n
one of the following is true:

• di = di+1 and (wi, wi+1) ∈ E;

• wi = wi+1 and (di, di+1) ∈ R(r) for some r ∈ ROL.

Intuitively, traces represent paths through temporal interpreta-
tions, which in each step follow either the temporal relation
(first item of Definition 1) or a DL relation r (second item of
Definition 1); so, in a pair (d,w), d can be thought of as a
domain element and w as a world.

Our algorithm, whose basic structure is depicted in Algo-
rithm 1, enumerates on input A and T , in a systematic tableau-
like way, all traces that must appear in every model of A and
T . It is important to note that in the context of Algorithm 1 a
trace is used as the basis for inducing a richer structure that
conforms with the constant domain assumption and captures
rigidity; see Example 1 below. The algorithm also maintains
an additional mapping Q that labels each point (d,w) of the

Algorithm 1: Subsumption in CTLE3,A2
EL

Input: Acyclic TBox T , concept names A,B
Output: true if T |= A v B, false otherwise

1 σ := (d0, w0); Q(d0, w0) := {A,>};
2 E := ∅; R(r) := ∅ for all r ∈ ROL;
3 expand(σ,E,R);
4 return true if B ∈ Q(d0, w0), false otherwise;

5 procedure expand (σ,E,R) :
6 complete (σ,E,R,Q);
7 if (σ,Q) is periodic at (i, j) then
8 add (wj−1, wi) to E;
9 truncate;

10 complete (σ,E,R,Q);
11 return;
12 (d,w) := last element of σ;
13 foreach A ∈ Q(d,w) with A ≡ ∃r.B ∈ T do
14 Q(d′, w) = {B,>} for a fresh d′;
15 add (d, d′) to R(r);
16 expand (σ · (d′, w), E,R);
17 foreach A ∈ Q(d,w) with A ≡ E3B ∈ T do
18 Q(d,w′) = {B,>} for a fresh w′;
19 add (w,w′) to E;
20 expand (σ · (d,w′), E,R);

trace (and all the induced points) with a set Q(d,w) ⊆ CN.
The set Q(d,w) captures all concept names that are satisfied
in the minimal model at points represented by (d,w).

The basics of Algorithm 1 are the following. In Lines 1
and 2, it creates a trace consisting of a single point representing
A and initializes the necessary data structures. In Line 3, the
systematic expansion is set off. When that is finished, the
algorithm just returns whether or not B (the right-hand of the
subsumption) has been added during the expansion. As for the
expand procedure:

• in Line 6 and 10, the algorithm updates the mapping Q;

• Line 7 contains some termination condition; and finally,

• the loops in Lines 13 and 17 enumerate all ∃r.B and
E3B that appear in the setQ(d,w) of the last element of
the trace and expand the trace to witness these concepts.

This basic description of the algorithm leaves open several
points: (i) the precise behavior of the subroutine complete,
(ii) when a trace is periodic, and (iii) what happens inside the
truncate command in Line 9. Let us start with describ-
ing the subroutine complete. It uses additional mappings
Qcert(d) ⊆ CN and QA2(d,w) ⊆ CN, which intuitively con-
tain all the concept names that d satisfies certainly, i.e., in all
worlds, and starting from world w, respectively. It proceeds in
two steps:

1. Initialize undefined Q(d,w) and Qcert(d) with {>}, and
undefined QA2(d,w) with Qcert(d); and

2. apply rules R1-R12 in Figure 3 to Q(·), Qcert(·) and
QA2(·).

The number of rules is indeed scarily high; however, they can
be divided into four digestible groups: R1 and R2 are used
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R1 If A ≡ A1 uA2 ∈ T and A ∈ Q∗(·), add A1, A2 to Q∗(·)
R2 If A ≡ A1 uA2 ∈ T and A1, A2 ∈ Q∗(·), add A to Q∗(·)

R3 If (d, d′) ∈ R(r), B ∈ Q(d′, w), A ≡ ∃r.B ∈ T ,
add A to Q(d,w)

R4 If B ∈ Q(d,w), (w′, w) ∈ E∗, A ≡ E3B ∈ T ,
add A to Q(d,w′)

R5 If B ∈ Q(d,w), (w,w′) ∈ E∗, B ≡ A2A ∈ T ,
add B,A to Q(d,w′)

R6 If (d, d′) ∈ R(r), B ∈ Qcert(d
′), A ≡ ∃r.B ∈ T ,

add A to Qcert(d)

R7 If B ∈ Qcert(d), A ≡ A2B ∈ T , add A to Qcert(d)

R8 If B ∈ Qcert(d), add B to Q(d,w) for all w

R9 If B ∈ QA2(d,w), A ≡ A2B ∈ T , add A to Q(d,w)

R10 If A ∈ Q(d,w), A ≡ A2B ∈ T , add A,B to QA2(d,w)

R11 If (d, d′) ∈ R(r), B ∈ QA2(d
′, w), A ≡ ∃r.B ∈ T ,

add A to QA2(d,w)

R12 If A ∈ QA2(d,w), A ≡ E3B ∈ T , w′ added due to
A ∈ Q(d,w) in Line 18, B′ ∈Q(d,w′), A′ ≡ E3B′ ∈ T ,
add A′ to QA2(d,w)

Figure 3: Saturation rules, where in R1 and R2 the set Q∗(·)
ranges over all Q(d,w), Qcert(d), and QA2(d,w).

to ensure that all sets Q∗ are closed under conjunction; R3-
R5 are used to complete Q(·). Note that R1-R4 are already
known from the algorithm of the previous section. Further-
more, R6-R8 are used to deal with Qcert(·); and R9-R12 to
update QA2(·). As an example of the interplay between the
different mappings take R9: If B is certain for d starting in
world w and A ≡ A2B, then we also know that d satisfies A
in w; and R11 for the interplay between temporal operators
and rigid roles: indeed, for r rigid, |= ∃r.A2B v A2∃r.B.

Example 1 Let T = {A≡E3A1, A1≡∃r.B, B≡E3A1}
be the input TBox; and T |= A v A1 is to be checked.
Figure 4 (left) shows the trace initiated at (d0, w0) with
Q(d0, w0) = {>, A}, and further expanded in Lines 13 and
17. The trace, as mentioned above, induces a richer structure,
reflecting rigid roles and the constant domain assumption; see
Fig. 4 (center). This richer structure is then completed to
properly enrich the types Q(d,w) of each element. In partic-
ular, during completion, further concept names are added to
the corresponding types (Fig. 4, right). One can now easily
see that T |= A v A1 indeed holds. Furthermore, note that

(d0,w0)

(d0,w1)(d1,w1)

(d1,w2)

E

E

r

r

r

r

r

r

r

A

A1B

B1

B A,A1

A1B

B1,B A1

Figure 4: An example trace and the induced structure

T 6|= A v A1, if r is local or increasing domains are assumed.
This is the case since, in both cases, the r-connection is not
necessarily present in the ‘root world’.

For the termination condition in Line 7, we take the following
definition of periodicity.

Definition 2 A trace (σ,E,R) together with a mapping Q is
called periodic at (i, j) if σ = (d0, w0) · · · (dn, wn), i < j,
di = dj = dn, and Q(di, wi) = Q(dj , wj).

This means that during the evolution of element d = di = dj ,
we find two different worlds wi, wj such that d has the same
type in wi and wj . We can stop expanding worlds appear-
ing after wj since their behavior is already captured by the
successors of wi. If a trace periodic at (i, j) is found, we
add an edge (wj−1, wi) to E reflecting the periodic behav-
ior, see Line 8. Then, in truncate, the trace is shortened
to (d0, w0) · · · (dj−1, wj−1) and the relations E and R(r),
r ∈ ROL, and the mappings Q,Qcert, QA2 are restricted to
those d and w that appear in the shortened trace.

Lemma 10 On every input T , A,B, Algorithm 1 terminates
and returns true iff T |= A v B.

For termination, consider a trace with suffix (d,w1) · · · (d,wn)
and let additionally A1, . . . , An be the concept names such
that E3Ai lead to wi, see Line 17 of Algorithm 1. It is not
difficult to show that if Ai = Aj for i < j, then Q(d,wi) ⊆
Q(d,wj) after application of complete. Since Q(d,w) ⊆
CN, there are no infinite (strictly) increasing sequences. Hence,
the expansion in Lines 17ff. will not indefinitely be applied.
Also, the expansion in Lines 13ff. stops due to acyclicity of
the TBox. Together, this guarantees termination.

Correctness is shown similar to Lemma 7. For “⇒”, we
show that every trace together with the labeling so far com-
puted in Q can be embedded into every model of A and T .
For “⇐”, we present a model of T witnessing T 6|= A v B.

To finish the proof of Theorem 9, it remains to note that the
termination argument indeed yields a polynomial bound on the
length of the traces encountered during the run of Algorithm 1.

7 Local Roles and Rigid Concepts
One can easily extend the above algorithms so as to deal with
local roles. In fact, e.g., in Section 5 only B4 in Figure 5 needs
to be added to the BACKWARD-rules in Figure 3. Note that F2
is only applied to rigid roles and C2 is therefore not applied to
local ones. Clearly, the algorithm in Section 6 can be extended
with a similar rule.

Recall that rigid concepts are concepts whose interpretation
does not change over time. In the first example from Section 1,
the concept Disorder should be rigid because we consider med-
ical knowledge as static. In contrast, PatientWithDisorder
should be local because a disease history has a begin and end.

In the presence of general TBoxes, rigid concepts can be
simulated by rigid roles: replace each rigid concept name A
with ∃rA.>, where rA is a fresh rigid role. Unfortunately, this
simulation does not work in the context of acyclic TBoxes
since the result of replacing A with ∃rA.> in a CD A ≡ D
is not a CD anymore. Nevertheless, our algorithms can be
extended, without increasing the complexity, to consider rigid
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B4 If A ∈ Q(B,w), A ≡ ∃r.A′, B′ ∈ Q(A′, A′A′) and
B′′ ≡ ∃r.B′ ∈ T , add B′′ to Q(B,w)

RC If B ∈ Q(A,w), B ∈ CNrig, add B to Q(A,w′), ∀w′ ∈W

R13 If B ∈ Q(d,w) or B ∈ QA2(d,w) & B ∈ CNrig, then
add B to Qcert(d)

Figure 5: Rules for Local Roles and Rigid Concepts

concepts: e.g., the algorithm in Section 5 can be extended by
adding RC above to the FORWARD and BACKWARD rules –
CNrig denotes the set of rigid concepts occurring in the input
TBox. Note that the intermediate phase remains the same, i.e.,
rules C1 and C2 are neither extended nor modified.

Rigid concepts can analogously be included in Section 6 by
adding R13 to the rules in Figure 3. Recall that, intuitively,
Qcert(d) contains the concepts that hold for d in any world.

Finally, note that in the empty TBox case rigid roles can
indeed simulate rigid concepts, as described above.

8 Conclusions and Future Work
In this paper we have initiated the investigation of TDLs based
on EL allowing for rigid roles and restricted TBoxes. We
indeed achieved our main goal: we identified of fragments of
the combination of CTL and EL that have elementary, some
even polynomial, complexity.

One important conclusion is that the use of acyclic TBoxes,
instead of general ones, allows to design TDLs based on EL
with dramatically better complexity than theALC variant; e.g.,
for the fragment allowing only E© the complexity drops from
nonelementary to PTIME. As an important byproduct, the
studied fragments of CTLEL can be seen as positive fragments
of product modal logics with elementary complexity, e.g.,
implication for the positive fragment of K×K is in PTIME.

As a next step, we plan to look at more expressive fragments
of CTLEL or at classical (cyclic) TBoxes, e.g., consider non-
convex fragments, such as CTLE◦,E3

EL , with (a)cyclic TBoxes.
We plan to incorporate temporal roles, too. It is also worth
exploring how restricting TBoxes can help tame other TDLs
with bad computational behavior over general TBoxes, such
as TDLs based on LTL or the µ-calculus. We believe that the
LTL case is technically easier than ours since it does not have
the extra ‘ 12 -dimension’ introduced by branching.
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