
Efficient Query Rewriting in the Description Logic EL and Beyond

Peter Hansen and Carsten Lutz and İnanç Seylan
University of Bremen, Germany

{hansen, clu, seylan}@informatik.uni-bremen.de

Frank Wolter
University of Liverpool, UK

frank@csc.liv.ac.uk

Abstract
We propose a new type of algorithm for computing
first-order (FO) rewritings of concept queries under
ELHdr-TBoxes. The algorithm is tailored towards
efficient implementation, yet complete. It outputs
a succinct non-recursive datalog rewriting if the in-
put is FO-rewritable and otherwise reports non-FO-
rewritability. We carry out experiments with real-
world ontologies which demonstrate excellent per-
formance in practice and show that TBoxes orig-
inating from applications admit FO-rewritings of
reasonable size in almost all cases, even when in
theory such rewritings are not guaranteed to exist.

1 Introduction
Ontology-based data access (OBDA) with Description Log-
ics (DLs) is a very active topic of research, which has re-
sulted in various approaches to implementing OBDA in prac-
tice [Poggi et al., 2008; Lutz et al., 2009; Pérez-Urbina
et al., 2010; Eiter et al., 2012]. A particularly promising
such approach is query rewriting, which enables implemen-
tations based on conventional relational database systems
(RDBMSs), thus taking advantage of those systems’ effi-
ciency and maturity [Poggi et al., 2008; Kontchakov et al.,
2013]. The general idea is to transform the original query q
and the relevant TBox T into a first-order (FO) query qT that
is then handed over to the RDBMS for execution. One limi-
tation of this approach is that, for the majority of description
logics that are used as ontology languages, the query qT is
not guaranteed to exist. In fact, this is the case already for
the members of the popular EL family of lightweight DLs
[Baader et al., 2005; Lutz et al., 2009], which underly the EL
profile of the OWL2 ontology language and are frequently
used in health care and biology ontologies. This observation,
however, does not rule out the possibility that FO-rewritings
still exist in many practically relevant cases. In fact, TBoxes
that emerge from practical applications tend to have a rather
simple structure and one might thus speculate that, indeed,
FO-rewritings under EL-TBoxes tend to exist in practice.

In this paper, we consider the construction of FO-rewri-
tings of concept queries under TBoxes that are formulated
in the description logic ELHdr. The latter is a logical core

of OWL2 EL that extends basic EL with role inclusions and
domain/range restrictions on roles [Lutz et al., 2009] while
concept queries take the form C(x) with C an EL-concept.
Constructing the desired rewritings is computationally hard:
it follows from results in [Bienvenu et al., 2013] that deciding
whether a given concept query C(x) is FO-rewritable under a
given TBox T is PSPACE-complete both in EL and in ELHdr,
and it even becomes EXPTIME-complete when the vocabu-
lary of the admitted database instances (i. e., ABoxes) is an
additional input—a feature that we allow in the current paper.

Existing approaches to query rewriting under DL TBoxes
can be summarized as follows: (i) approaches that target
rewritings into the more expressive query language datalog
and which are incomplete in the sense that existing datalog-
rewritings are not guaranteed to be found and, moreover,
the generated datalog-rewritings are not necessarily non-
recursive even if there is an FO-rewriting [Rosati, 2007;
Pérez-Urbina et al., 2010; Kaminski and Grau, 2013; Mora
and Corcho, 2013]; (ii) backwards chaining approaches for
existential rules (a strict generalization of ELHdr) which are
complete in the sense that they find an FO-rewriting if there
is one, but need not terminate otherwise [König et al., 2012];
(iii) complete and terminating approaches which aim to prove
upper complexity bounds, but which are not practically feasi-
ble [Bienvenu et al., 2013; 2014].

The aim of this paper is to design, for the first time, algo-
rithms for computing FO-rewritings of concept queries un-
der EL- and ELHdr-TBoxes that are complete, terminating,
and feasible in practice. We start with a marriage of ap-
proaches (ii) and (iii) above to get the best of both worlds;
in particular, (ii) appears to be practically much more feasi-
ble than (iii) while (iii) provides a way to achieve termina-
tion. The resulting backwards chaining algorithm is concep-
tually simple and constitutes a significant step towards our
goal. However, it produces FO-rewritings that are unions
of conjunctive queries (UCQs), which has two significant
drawbacks: first, recent experiments [Lutz et al., 2013] have
shown that executing UCQ-rewritings on RDBMSs is pro-
hibitively expensive while executing equivalent rewritings
that take the form of non-recursive datalog programs is much
more feasible; and second, UCQ-rewritings can be of exces-
sive size even in practically relevant cases [Rosati and Al-
matelli, 2010].

To address these shortcomings, the main contribution of

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3034

this paper is to refine our initial backwards chaining algorithm
to what we call a decomposed algorithm. While the initial al-
gorithm uses tree-shaped conjunctive queries (CQs) as an in-
ternal data structure, the new algorithm only represents single
nodes of tree-shaped CQs together with information of how to
reassemble these nodes into full queries. This can be seen as a
way to implement structure sharing and allows us to directly
produce rewritings that are non-recursive datalog programs,
avoiding UCQ-rewritings altogether. The algorithm runs in
exponential time, is capable of deciding the existence of FO-
rewritings in EXPTIME (which is optimal), and is capable of
producing monadic non-recursive datalog rewritings that are
of at most exponential size (but much smaller in practice). We
also show that an exponential blowup is unavoidable when
rewriting into monadic non-recursive datalog. Technically,
the decomposed algorithm is much more subtle than the ini-
tial one.

We then evaluate the decomposed algorithm by carrying
out experiments with seven ontologies from practical appli-
cations. We ask for an FO-rewriting of every concept query
A(x) with A a concept name from the ontology under con-
sideration. Out of 10989 inputs in total and with a timeout of
30 seconds, the decomposed algorithm terminates on all but
127 inputs and on average needs less than 0.5 seconds per in-
put. We also analyse the size of the generated non-recursive
datalog rewritings, with extremely encouraging results. Our
experiments show that the decomposed algorithm performs
very well on ontologies from practical applications and also
confirm our initial belief that such ontologies very often ad-
mit FO-rewritings. In particular, only 74 of 10989 inputs turn
out to be not FO-rewritable.

Proof details are deferred to the appendix, available at
http://www.informatik.uni-bremen.de/tdki/p.html.

2 Preliminaries
We use NC and NR to denote mutually disjoint countably
infinite sets of concept and role names, respectively. An
EL-concept is formed according to the syntax rule C ::=
A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR.
Let C,D be EL-concepts and r, s be role names. Then
C v D is a concept inclusion (CI), r v s is a role in-
clusion (RI), dom(r) v C is a domain restriction, and
ran(r) v C is a range restriction. An ELH-TBox is a fi-
nite set of CIs and RIs and an ELHdr-TBox additionally ad-
mits domain and range restrictions. The semantics of con-
cepts and TBoxes is defined as usual [Baader et al., 2007;
2005]. For a CI or RI α, we write T |= α if every model of
T satisfies α; when T is empty, we write |= α.

An ABox A is a set of assertions of the form A(a) and
r(a, b) withA a concept name, r a role name, and a, b individ-
ual names from a countably infinite set NI. We use ind(A) to
denote the set of individual names that occur inA. A concept
query is an expression C(x) with C an EL-concept. We write
A, T |= C(a) and say that a is a certain answer to C given
the ABox A and TBox T if a ∈ ind(A) and aI ∈ CI for all
models I of T andA. A signature is a finite set Σ ⊆ NC∪NR.
An ABox is a Σ-ABox if it only uses concept and role names
from Σ.

For an FO-formula q(x) with one free variable x, we write
A |= q(a) if A (viewed as an interpretation) satisfies q under
the assignment that maps x to a. A concept query C(x) is
FO-rewritable under a TBox T and signature Σ if there is an
FO-formula ϕ(x) such that for all Σ-ABoxes A and individ-
uals a, we have A, T |= C(a) iff A |= ϕ(a). In this case,
we call ϕ(x) an FO-rewriting of C(x) under T and Σ. When
studying FO-rewritability of concept queries C(x), we can
assume w. l. o. g. that C is a concept name since C(x) is FO-
rewritable under a TBox T and Σ iff A(x) is FO-rewritable
under T ∪ {C v A} and Σ, where A is a fresh concept name
[Bienvenu et al., 2013].

We will also consider other forms of rewritings, in par-
ticular into unions of conjunctive queries (UCQs) and non-
recursive datalog programs. Although, strictly speaking,
non-recursive datalog rewritings are not FO-rewritings, the
existence of either kind of rewriting coincides with the exis-
tence of an FO-rewriting [Bienvenu et al., 2014]. In particu-
lar, non-recursive datalog rewritings can be viewed as a com-
pact representation of a UCQ-rewriting. We will also con-
sider monadic datalog as a special case, where all intensional
(IDB) predicates are unary.

For any of these rewritings, if Σ is the set of all concept
and role names in T and C, then C(x) is rewritable under T
and Σ iff it is rewritable under T and any signature. If this is
the case, we say that C(x) is rewritable under T and the full
signature.

For our technical constructions, it will be convenient to
view EL-concepts as conjunctive queries (CQs) that take the
form of a directed tree. We will represent such queries as
sets of atoms of the form A(x) and r(x, y) with A a con-
cept name, r a role name and x, y variables. Tree-shapedness
of a conjunctive query q then means that the directed graph
(V, {(x, y) | r(x, y) ∈ q}) is a tree, where V is the set of
variables in q, and that r(x, y), s(x, y) ∈ q implies r = s.
We will not distinguish explicitly between an EL-concept C
and its query representation. We thus use var(C) to denote
the set of variables that occur in C and xε to denote the root
variable in C. For an x ∈ var(C), we use C|x to denote the
EL-concept represented by (the subtree rooted at) x. When
we speak of a top-level conjunct (tlc) of an EL-concept C, we
mean a concept name A such that A(xε) ∈ C or a concept
∃r.D such that r(xε, y) ∈ C and D = C|y . We use tlc(C) to
denote the set of all top-level conjuncts of C. For any syntac-
tic object (such as a concept or a TBox), we define its size to
be the number of symbols used to write it.

We show that we can remove domain and range restric-
tions from ELHdr-TBoxes and work with ELH-TBoxes when
developing algorithms that decide rewritability or compute
rewritings.
Lemma 1. For every ELHdr-TBox T , signature Σ, and con-
cept query A0(x), one can construct in polynomial time an
ELH-TBox T ′ and signature Σ′ such that A0(x) is FO-
rewritable under T and Σ iff it is FO-rewritable under T ′
and Σ′.

Moreover, every UCQ and non-recursive datalog rewriting
ofA0(x) under T ′ and Σ′ can be converted in linear time into
a UCQ and, respectively, non-recursive datalog rewriting of
A0 under T and Σ.

3035

3 A Backwards Chaining Algorithm
The algorithm presented in this section constructs a set of
UCQ-rewritings of A0(x) under an ELH-TBox T by start-
ing from {A0} and then exhaustively applying the axioms
in T as rules in a backwards chaining manner. It terminates
by either constructing a UCQ-rewriting or returning ‘not FO-
rewritable’. For simplicity and since the purpose of the algo-
rithm presented here is mainly to prepare for the subsequent,
more refined one, we consider rewritability for the full signa-
ture only.

Let A0 and T be an input to the algorithm. We start with
introducing the central backwards chaining steps. Let C and
D be EL-concepts and let α be a (concept or role) inclusion
from T . The notion of D being obtained from C by applying
α is defined as follows.
(CI) Let α = E v F be a CI, x ∈ var(C), and let there be at
least one tlc G of C|x with |= F v G. Then D is obtained
from C by applying α at x if D can be obtained from C by
• removing A(x) for all concept names A with |= F v A;
• removing the subtree rooted at y whenever r(x, y) ∈ C

and |= F v ∃r.(C|y) (including the edge r(x, y));
• adding A(x) for all concept names A that are a tlc of E;
• adding the subtree ∃r.H to x for each ∃r.H that is a tlc

of E.
(RI) Let α = r v s be an RI and let s(x, y) ∈ C . Then
D is obtained from C by applying α at s(x, y) if D can be
obtained from C by replacing s(x, y) by r(x, y).
The following is immediate.
Lemma 2. If T |= C v A0 and D can be obtained from C
by applying some inclusion in T , then T |= D v A0.

Apart from applying backwards chaining, our algorithm
also minimises the generated concepts to attain completeness
and termination. To make this precise, we introduce some no-
tation. Let C and D be EL-concepts and x ∈ var(C). Then
C \ C|x denotes the concept obtained by removing from C
the subtree rooted at x, and we write C ≺ D if there exists
x ∈ var(D) such that C = D \ D|x. We use ≺∗ to denote
the reflexive and transitive closure of ≺ and say that C is ≺-
minimal with T |= C v A0 if T |= C v A0 and there is no
C ′ ≺ C with T |= C ′ v A0. Note that if T |= C v A0,
then it is possible to find in polynomial time a C ′ ≺∗ C that
is ≺-minimal with T |= C ′ v A0.

The constructions in [Bienvenu et al., 2013] suggest that,
to achieve termination, we can use a certain form of block-
ing, similar to the blocking used in DL tableau algorithms.
Let sub(T) denote the set of subconcepts of (concepts that
occur in) T . For each EL-concept C and x ∈ var(C), we set
conCT (x) := {D ∈ sub(T) | T |= C|x v D}. We say that C
is blocked if there are x1, x2, x3 ∈ var(C) such that

1. x1 is a proper ancestor of x2 is an ancestor of x3 and
2. conDT (x1) = conDT (x2) for D ∈ {C,C \ C|x3

}.
The algorithm is formulated in Figure 1. Note that, by
Lemma 2, the concept D considered in the condition of the
while loop satisfies T |= D v A0 and thus we are guaranteed
to find the desired D′. Also note that each of the potentially
many candidates for D′ will work.

procedure find-rewriting(A0(x), T)
M := {A0}
while there is a C ∈M and a concept D such that

1. D can be obtained from C by applying some
axiom in T and

2. there is no D′ ≺ D with D′ ∈M then
find a D′ ≺∗ D that is ≺-minimal with T |= D′ v A0

if D′ is blocked then return ‘not FO-rewritable’
else add D′ to M

return the UCQ
∨
M .

Figure 1: The backwards chaining algorithm

Example 3. Let T = { ∃r.(B1 uB2) v A0,∃s.B2 v B2 }.
Starting with M = {A0} and applying the first CI to A0, we
get M = {A0,∃r.(B1 uB2)}. The second CI can be applied
repeatedly, starting with ∃r.(B1 uB2), and yields concepts

D1 = ∃r.(B1 u ∃s.B2),

D2 = ∃r.(B1 u ∃s.∃s.B2),

D3 = ∃r.(B1 u ∃s.∃s.∃s.B2), . . . ,

all of which are ≺-minimal with T |= Di v A0. D3

is blocked and the algorithm will classify A0 as ‘not FO-
rewritable’ under T .

Now consider the TBox T ′ = T ∪{B1 v B2}. Already the
concept D1 is not ≺-minimal with T ′ |= D1 v A0 and in-
stead ofD1, ∃r.B1 is added toM . At this point, rule applica-
tion stops and the UCQ

∨
M is returned as an FO-rewriting

of A0 under T ′.
T ′ illustrates that the algorithm is incomplete without the

minimization step since this step prevents generation of the
blocked concept D3.

We now establish correctness and termination.
Theorem 4. The algorithm in Figure 1 returns a UCQ-
rewriting

∨
M if A0 is FO-rewritable under T and the full

signature and ‘not FO-rewritable’ otherwise.
The generated UCQ-rewritings are not necessarily of min-

imal size. It is possible to attain minimal-size rewritings by
using a stronger form of minimality when constructing the
concept D′, namely by redefining the relation “≺” so that
C � D if there is a root-preserving homomorphism from C
toD (c.f. most-general rewritings in [König et al., 2012]). As
a consequence, the≺-minimal conceptD′ with T |= D′ v A
can then be of size exponential in the size of D. However, D′
can still be constructed in output-polynomial time.

We prove in the appendix that all concepts in M have out-
degree at most n and depth at most 22n, n the size of T .
As remarked in [Bienvenu et al., 2013], the size of UCQ-
rewritings can be triple exponential in the size of T , and thus
the same is true for the runtime of the presented algorithm.
While this worst case is probably not encountered in practice,
the size of M can become prohibitively large for realistic in-
puts. For this reason, we propose an improved algorithm in
the subsequent section, which produces non-recursive data-
log rewritings instead of UCQ-rewritings and whose runtime
is at most single exponential.

3036

4 A Decomposed Algorithm
The algorithm presented in this section consists of three
phases. In Phase 1, a set Γ is computed that can be viewed as
a decomposed representation of the set M from Section 3 in
the sense that we store only single nodes of the tree-shaped
concepts inM , rather than entire concepts. In many cases, we
can already construct a non-recursive datalog rewriting after
Phase 1. If this is not possible, we compute in Phase 2 a set Ω
that enriches the node representation provided by Γ with sets
of logical consequences that are relevant for Point 2 of the
definition of blocked concepts. In Phase 3, we first execute a
certain cycle check on Ω, which corresponds to checking the
existence of a blocked concept in M . If no cycle is found, we
then construct a non-recursive datalog rewriting.

Phase 1. Assume that T is a TBox, Σ an ABox-signature,
and A0 a concept name for which we want to compute an
FO-rewriting under T and Σ. To present the algorithm, it
is convenient to decompose conjunctions on the right-hand
side of CIs, that is, to assume that T consists, apart from RIs,
only of CIs of the form C v A with A a concept name and
C v ∃r.D. We start with describing the construction of a set
Γ, whose elements we call node pairs. A node pair has the
form (C, S), where C ∈ sub(T), and S ⊆ sub(T) is a set
of concept names and concepts of the form ∃r.C. Intuitively,
a node pair (C, S) describes a set of concepts D such that
T |= D v C and the following conditions are satisfied:

(i) the concept names that are tlcs of D are S ∩ NC;

(ii) the existential restrictions that are the tlcs of D are ob-
tained from the existential restrictions in S by replacing
each ∃r.E ∈ S with some ∃s.E′ such that T |= ∃s.E′ v
∃r.E.

The computation of Γ starts with {(A0, {A0})} and proceeds
by exhaustively applying the following two rules:

(r1) if (C, S) ∈ Γ, D v A ∈ T and A ∈ S, then extend Γ
with (C, (S \ {A}) ∪ tlc(D)).

(r2) if (C, S) ∈ Γ,D v ∃r.F ∈ T , and there is an ∃s.G ∈ S
with T |= F v G and T |= r v s, then extend Γ with

(C, (S\{∃s.G | T |= F v G and T |= r v s})∪tlc(D)).

After applying either rule, we also have to add the pair
(G, tlc(G)) for every subconcept ∃r.G of D to trigger further
derivation.

Example 5. Let T = {∃r.(B1 u B2) v A0, ∃s.B2 v B2},
and Σ the full signature. Starting with the pair (A0, {A0})
and applying (r1), we extend Γ by (A0, {∃r.(B1 uB2)}) and
((B1 u B2), {B1, B2}). (r1) is now applicable to the lat-
ter, yielding ((B1 u B2), {B1,∃s.B2}) and (B2, {B2}). An-
other application of (r1) results in e. g. (B2, {∃s.B2}) being
added.

From Γ we can extract a (potentially infinitary) UCQ-re-
writing of A0 under T and Σ, as follows. Start with defining
ΓΣ to be the set of all (C, S) ∈ Γ such that S∩NC ⊆ Σ. Then
Γ̂Σ is obtained as the limit of the sequence of sets Γ̂0

Σ, Γ̂
1
Σ, . . .

defined as follows:

• Γ̂0
Σ := {(C,uS) | (C, S) ∈ ΓΣ and S ⊆ NC}.

• Γ̂i+1
Σ is Γ̂i

Σ extended with all pairs (C,D) such that there
is (C, S) ∈ ΓΣ with the following property: for each
∃r.G ∈ S there are (G,Cr,G) ∈ Γ̂i

Σ and sr,G ∈ Σ such
that T |= sr,G v r and

D = u
A∈S∩NC

A u u
∃r.G∈S

∃sr,G.Cr,G.

Note that if (C,D) ∈ Γ̂Σ, then D uses only symbols from Σ.
The set Γ̂Σ represents a UCQ-rewriting as follows.

Proposition 6 (Soundness and Completeness of Γ̂Σ). For
all Σ-ABoxes A and a ∈ ind(A), we have A, T |= A0(a) iff
there is an (A0, D) ∈ Γ̂Σ with A |= D(a).

ΓΣ provides us with a sufficient condition for FO-rewrita-
bility ofA0 under T and Σ and suggests a way to (sometimes)
produce a non-recursive datalog rewriting. In fact, if ΓΣ is
acyclic in the sense that the directed graph

G = (ΓΣ, {((C, S), (C ′, S′)) | S contains ∃r.C ′ with
T |= s v r for some s ∈ Σ})

contains no cycle, then Γ̂Σ is finite and we obtain a non-
recursive datalog program ΠΓΣ

that is a rewriting ofA0 under
T and Σ by taking the rule

PC(x)←
∧
A∈S

A(x) ∧∧
∃r.D∈S

∨
T |=svr,s∈Σ

(
s(x, yr,D) ∧ PD(yr,D)

)
for each (C, S) ∈ ΓΣ and using PA0

as the goal predicate.
Note that the disjunctions can be removed by introducing
auxiliary (monadic) IDB predicates, without causing a signif-
icant blowup. If ΓΣ is acyclic, we output the above rewriting.
Note that it is potentially much smaller than a UCQ-rewriting
since it implements structure sharing. However, if ΓΣ is not
acyclic, then A0 could still be FO-rewritable under T and Σ,
but the above program will be recursive.
Example 5 (continued). ΓΣ contains the node pairs
(A0, {∃r.(B1 u B2}), (B1 u B2, {B1, B2}), (B2, {∃s.B2})
and is thus cyclic. This is the expected outcome since, as ar-
gued in Example 3, A0 is not FO-rewritable under T and Σ

Now, let T ′ := T ∪ {B1 v B2} as in the second part of
Example 3. The resulting ΓΣ still contains the above node
pairs and is thus cyclic. To find out that A0 is FO-rewritable
under T ′ and Σ, the algorithm enters Phase 2.

Phase 2. In the second phase of the algorithm, we con-
struct a set of node tuples ΩΣ by further annotating (and du-
plicating) the pairs in ΓΣ. A node tuple takes the form t =
(Ct, St, cont, Et, xcont) whereCt and St have the same form
as the components of node pairs in ΓΣ, Ct ∈ cont ⊆ sub(T),
Et is the special symbol “−” or of the form ∃s.C such that
∃r.C ∈ St for some r with T |= s v r, and xcont is a subset
of cont or “−”. Intuitively, a node tuple t ∈ ΩΣ describes
a set of concepts D such that (Ct, D) ∈ Γ̂Σ and apart from
(i) and (ii) above the following additional conditions are sat-
isfied:

3037

(iii) T |= D v E iff E ∈ cont, for each E ∈ sub(T);

(iv) if Et = ∃s.C, then there is a tlc ∃s.E in D and a leaf
node in E such that (C,E) ∈ Γ̂Σ and for the conceptD′
obtained from D by dropping this node, we have T |=
D′ v E iff E ∈ xcont, for each E ∈ sub(T).

When St contains no existential restrictions, we use “−”
for Et and xcont. To understand Et, it is useful to think of D
as a tree and of Et as a selected successor of the root of that
tree. We start the construction of ΩΣ with setting

ΩΣ = {(C, S ∩ NC, conT (S ∩ NC),−,−) | (C, S) ∈ ΓΣ},

where for a set of concepts M , conT (M) denotes the set of
concepts D ∈ sub(T) such that T |= uM v D. We call
the tuples in the set above leaf tuples. The final set ΩΣ is
constructed by exhaustively applying the following rule:
(rΩ) If t = (Ct, St, cont, Et, xcont) is a node tuple with
∃r0.D0, . . . ,∃rn.Dn the existential restrictions in St (n ≥ 0)
and there are role names s0, . . . , sn ∈ Σ and node tuples
t0, . . . , tn ∈ ΩΣ and an ` ∈ {0, . . . , n} such that the follow-
ing conditions are satisfied, then add t to ΩΣ:

1. T |= si v ri and Cti = Di for 0 ≤ i ≤ n;

2. Et = ∃s`.D`;

3. there is a node pair (Ct, S) ∈ ΓΣ with St ⊆ S and
S ∩ NC = St ∩ NC;

4. cont = conT (M), where

M = (St ∩ NC) ∪ {∃si.u conti | i ≤ n};

5. xcont = conT (M ′), where

M ′ = (St ∩ NC) ∪ {∃s`.u xcont`} ∪
{∃si.u conti | ` 6= i ≤ n}.

In Point 5, ∃r.− is identified with >. For t, t′ ∈ ΩΣ, we
write t ΩΣ

t′ if there are t0, . . . , tn ∈ ΩΣ that satisfy the
conditions listed in (rΩ) and such that t′ = t`, that is, t′ is the
tuple that was chosen for the selected successor.

Example 5 (continued). For the TBox T , ΩΣ is initialized
to

{ (A0, {A0}, {A0},−,−), (ta)
(A0, ∅, ∅,−,−), (tb)
(B1 uB2, {B1, B2}, {B1, B2},−,−), . . . }. (tc)

(rΩ) can be applied using (A0, {∃r.(B1 u B2)}) ∈ ΓΣ for
(Ct, S) in Point 3, with n = ` = 0, s0 = r, and t0 = tc,
adding to ΩΣ the following node tuple t:

(A0, {∃r.(B1uB2)}, {∃r.(B1uB2), A0}, ∃r.(B1uB2), ∅).

We now have t ΩΣ
tc. Note that M = {∃r.B1 u B2} in

Point 4 and that M ′ = ∅ in Point 5, resulting in xcont = ∅.

Phase 3. The third and last phase of the algorithm first
checks whether an FO-rewriting exists at all and, if so, pro-
duces a rewriting that takes the form of a non-recursive
monadic datalog program.

We start with introducing the relevant notion of a cycle. A
tuple t ∈ ΩΣ is a root tuple if Ct = A0, A0 ∈ cont and
A0 /∈ xcont. A path through ΩΣ is a finite sequence of node
tuples t1, . . . , tk from ΩΣ such that ti ΩΣ

ti+1 for 1 ≤
i < k. A tuple t ∈ ΩΣ is looping if there is a path t1, . . . , tk
through ΩΣ such that k > 1, t = t1, cont = contk , and
xcont = xcontk . We say that ΩΣ contains a root cycle if
there are tuples t, t′ ∈ ΩΣ such that t is a root tuple, t′ is a
looping tuple, and t′ is reachable from t along ΩΣ .

Theorem 7. A0 is not FO-rewritable under T and Σ if and
only if ΩΣ contains a root cycle.

Example 5 (continued). After completing Phase 2 for T , the
algorithm checks ΩΣ for cyclicity and finds a root cycle:

(A0, {∃r.(B1 uB2)}, {∃r.(B1 uB2), A0},∃r.(B1 uB2), ∅),
(B1uB2, {B1, ∃s.B2}, {B1uB2, B1, B2, ∃s.B2},∃s.B2, {B1}),

(B2, {∃s.B2}, {∃s.B2, B2}, ∃s.B2, ∅).
The last node tuple possesses a reflexive ΩΣ

edge and leads
to the root cycle.

For the TBox T ′, the second tuple in this path will have
{B1uB2, B1, B2} as xcont (we do not need the selected suc-
cessor to infer B2 here), and the first tuple above will contain
A0 in xcont and will therefore not be a root tuple. Indeed, for
T ′ the resulting set ΩΣ does not contain a root cycle.

As suggested by Theorem 7, our algorithm first checks
whether ΩΣ contains a root cycle and, if so, returns ‘not
FO-rewritable’. Otherwise, it constructs a datalog program
ΠA0,T that is a rewriting of A0 under T and non-recursive iff
A0 is FO-rewritable under T and Σ (which is guaranteed at
this point by Theorem 7).

The IDB relations of ΠA0,T take the form PC,con,XCON

where C ∈ sub(T), con is a subset of sub(T) and XCON
is a set of such subsets or the special set {−}. We start with
rules

PCt,cont,{−}(x)←
∧

A∈St

A(x)

for all t ∈ Ω with St ⊆ NC (which are of the form
(Ct, St, cont,−,−)) and then exhaustively add a rule

PCt,cont,XCON(x)←
∧

A∈St∩NC

A(x) ∧∧
i≤n

(
si(x, yi) ∧ PCti

,conti ,XCONi
(yi)

)
for all t ∈ Ω with existential restrictions ∃r0.D0, . . . ,∃rn.Dn

the existential restrictions in St, tuples t0, . . . , tn ∈ Ω,
role names s0, . . . , sn ∈ Σ, ` ∈ {0, . . . , n}, and sets
XCON0, . . . ,XCONn such that

1. Conditions 1 to 5 from the rule (rΩ) hold;
2. PCti

,conti ,XCONi
already occurs in ΠA0,T , for all i ≤ n;

3. XCON consists of all sets conT (M ′) such that there is
an `′ ≤ n and an xcon ∈ XCON`′ with

M ′ = (St ∩ NC) ∪ {∃s`′ .u xcon} ∪
{∃si.u conti | `′ 6= i ≤ n}.

3038

In Point 3 above, we again identify ∃r.− with >. The
goal predicates of ΠA0,T are the predicates of the form
PA0,con,XCON with A0 ∈ con and A0 /∈ xcon for all xcon ∈
XCON. To eliminate ‘accidental’ recursiveness from ΠA0,T ,
remove all rules that contain a predicate which is not reach-
able from a goal predicate (defined in the obvious way).

Theorem 8.
1. The program ΠA0,T is a rewriting of A0 under T .

2. If A0 is FO-rewritable under T and Σ, then ΠA0,T is
non-recursive.

Note that ΠA0,T is of double exponential size in the worst
case. It is possible to find a (monadic) program that is only
single exponential in the worst case, but unlike the program
ΠA0,T it is also best-case exponential. This cannot be signif-
icantly improved without giving up monadicity.

Theorem 9. If A0 is FO-rewritable under T and Σ, then it
has a monadic non-recursive datalog rewriting of size at most
2p(n), n the size of T and p() a polynomial.

There is a family of TBoxes T1, T2, . . . such that for all
n ≥ 1, Tn is of size O(n2), the concept name A0 is FO-
rewritable under Tn, and the smallest non-recursive monadic
datalog rewriting has size at least 2n.

Let us briefly analyze the complexity of the decomposed
algorithm. It is easy to verify that the number of Γ-pairs and
Ω-tuples is singly exponential in the size of T and that all
required operations for building Γ and Ω and for determining
the existence of a root cycle require only polynomial time.
By Theorem 7, we have thus found an EXPTIME algorithm
for deciding FO-rewritability of concept queries under EL-
TBoxes and ABox signatures, which is optimal [Bienvenu et
al., 2013].

5 Experiments
We have implemented the decomposed algorithm in the
Grind system and conducted a number of experiments. The
system can be downloaded from http://www.informatik.uni-
bremen.de/∼hansen/grind, and is released under GPL. In the
following, we point out some selected aspects of the imple-
mentation. We use numbers to represent subconcepts in T ,
store the S-component of each pair (C, S) ∈ Γ, which is a
set of subconcepts of T , as an ordered set, and use tries as a
data structure to store Γ. We remove pairs (C, S) ∈ Γ where
S is not minimal, that is, for which there is a (C, S′) ∈ Γ
with S′ (S. It can be verified that this optimization does not
compromise correctness. We eagerly check for cycles in Γ
without waiting for Phase 1 to complete and immediate start
Phase 2 once a cycle is found to check whether it gives raise
to non-FO-rewritability. If this is not the case, we return to
Phase 1.

The experiments were carried out on a Linux (3.2.0) ma-
chine with a 3.5 GHz quad-core processor and 8 GB of RAM.
Although a large number of ELHdr -TBoxes is available on
the web and from various repositories, most of them are
acyclic TBoxes in the traditional DL sense, that is, the left-
hand sides of all CIs are concept names, there are no two CIs
with the same left-hand side, and there are no syntactic cycles.

TBox CI CN RN no stop time RQ stop RQ time
ENVO 1942 1558 7 7 100% 2s 92.6% 2m52s
FBbi 567 517 1 0 100% 3s 86.1% 19m25s
MOHSE 3665 2203 71 1 99.6% 6m35s 58.7% 7h17m
NBO 1468 962 8 6 100% 3s 61.5% 3h05m
not-galen 4636 2748 159 44 95.9% 1h15m 48.9% 11h43m
SO 3160 2095 12 15 99.8% 4m28s 77.9% 3h53m
XP 1046 906 27 1 100% 27s 0.0% 7h33m

Table 1: TBoxes used in the experiments.

Since concept queries are always FO-rewritable under such
TBoxes [Bienvenu et al., 2012a], they are not useful for our
experiments. We have identified seven TBoxes that do not fall
into this class, listed in Table 1 together with the number of
concept inclusions (CI), concept names (CN), and role names
(RN) that they contain. Role inclusions occur in MOHSE,
not-galen, and SO. All TBoxes together with information
about their origin are available at http://www.informatik.uni-
bremen.de/∼hansen/grind. All experiments conducted were
using the full ABox signature (which in practice is the most
difficult case since smaller signatures result in fewer node
pairs and node tuples).

For each of these TBoxes, we have applied the decomposed
algorithm to every concept name in the TBox. In some rare
cases, either the set Γ has reached excessive size or calcu-
lation of Ω took too long, resulting in non-termination. We
have thus established a 30 second timeout which results in
termination in almost all cases; the “stop” column of Table 1
shows the fraction of inputs on which the algorithm success-
fully terminated, and the “time” column lists the overall run-
time needed to process all concept names from the ontology
(including timeouts). The generated non-recursive datalog-
rewritings are typically of very reasonable size. The number
of rules in the rewriting is displayed in the upper part of Fig-
ure 2; for example, for NBO, about 55% of all rewritings
consist of a single rule, about 18% have two or three rules,
about 10% have 4–7 rules, and so on. Note that the x-axis
has exponential scale. The size of the rule bodies is typically
very small, between one and two atoms in the vast majority
of cases, and we have never encountered a rule with more
than ten body atoms. It is also interesting to consider the
number of IDB predicates in a rewriting, as intuitively these
correspond to views that have to be generated by a database
system that executes the query. As shown in the lower part of
Figure 2, this number is rather small, and considerably lower
than the number of rules in the produced programs (we again
use exponential scale on the x-axis).

The experiments also confirm our initial belief that ontolo-
gies which are used in practical applications have a simple
structure. As shown in the “no” column of Table 1, the num-
ber of concept names that are not FO-rewritable is extremely
small. Moreover, if a concept name was FO-rewritable, then
we were always able to find a rewriting already in Phase 1 of
our algorithm. Note, though, that for those cases that turned
out to be not FO-rewritable, we had to go through Phases 2
and 3.

We have also compared the performance of Grind with that
of REQUIEM, which implements an incomplete resolution-

3039

1 2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
0

20

40

60

80

Number of rules

%
of

co
nc

ep
tn

am
es

ENVO
FBbi

MOHSE
NBO

not-galen
SO
XP

1 2 4 8 16 32 64
0

50

100

Number of IDB predicates

%
of

co
nc

ep
tn

am
es

ENVO
FBbi

MOHSE
NBO

not-galen
SO
XP

Figure 2: Number of rules and IDB predicates in the rewriting

based approach to computing FO-rewritings for ontology lan-
guages up to ELHI [Pérez-Urbina et al., 2010]. We use the
same 30s timeout, which resulted in the termination rate and
overall runtime (again including timeouts) displayed in the
columns of Table 1 marked with “RQ”. The termination cases
correspond to positive answers, as REQUIEM cannot deter-
mine that an input is not FO-rewritable. Since REQUIEM
tends to terminate only on relatively simple inputs, the con-
structed rewritings of the two tools are often identical. When
they are not, either tool may produce a shorter rewriting.

6 Outlook
As future work, we plan to extend the algorithm and imple-
mentation from concept queries to conjunctive queries and to
more expressive Horn-DLs such as ELHI and Horn-SHIQ.
This is non-trivial for several reasons; for example, with
inverse roles the computation of the con and xcon sets in
Phase 2 is no longer as straightforward as for ELHdr.

References
[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz.

Pushing the EL envelope. In IJCAI, pages 364–369, 2005.

[Baader et al., 2007] F. Baader, D. Calvanese, D.L. McGuin-
ness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2007.

[Baget et al., 2011] J.-F. Baget, M. Leclère, M.-L. Mugnier,
and E. Salvat. On rules with existential variables: Walking
the decidability line. In AI, 175(9-10):1620–1654, 2011.

[Bienvenu et al., 2012a] M. Bienvenu, C. Lutz, and
F. Wolter. Deciding FO-rewritability in EL. In DL, pages
70–80, 2012.

[Bienvenu et al., 2012b] M. Bienvenu, C. Lutz, and
F. Wolter. Query containment in description logics
reconsidered. In KR, pages 221–231, 2012.

[Bienvenu et al., 2013] M. Bienvenu, C. Lutz, and F. Wolter.
First order-rewritability of atomic queries in Horn descrip-
tion logics. In IJCAI, pages 754–760, 2013.

[Bienvenu et al., 2014] M. Bienvenu, B. ten Cate, C. Lutz,
and F. Wolter. Ontology-based data access: a study
through Disjunctive Datalog, CSP, and MMSNP. In
TODS, 39, 2014.

[Eiter et al., 2012] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran,
G. Xiao. Query rewriting for Horn-SHIQ plus rules. In
AAAI, 2012.

[Kaminski and Grau, 2013] M. Kaminski and B. Cuenca
Grau. Sufficient conditions for first-order and datalog
rewritability in ELU . In DL, pages 271–293, 2013.

[König et al., 2012] M. König, M. Leclère, M.-L. Mugnier,
and M. Thomazo. A sound and complete backward chain-
ing algorithm for existential rules. In RR, pages 122–138,
2012.

[Kontchakov et al., 2013] R. Kontchakov, M. Rodriguez-
Muro, and M. Zakharyaschev. Ontology-based data access
with databases: A short course. In Reasoning Web, pages
194–229, 2013.

[Lutz et al., 2009] C. Lutz, D. Toman, and F. Wolter. Con-
junctive query answering in the description logic EL using
a relational database system. In IJCAI, pages 2070–2075,
2009.

[Lutz et al., 2013] C. Lutz, İ. Seylan, D. Toman, and
F. Wolter. The combined approach to OBDA: Taming role
hierarchies using filters. In ISWC, pages 314–330, 2013.

[Mora and Corcho, 2013] J. Mora and Ó. Corcho. Engineer-
ing optimisations in query rewriting for OBDA. In I-
SEMANTICS, pages 41–48, 2013.

[Pérez-Urbina et al., 2010] H. Pérez-Urbina, B. Motik, and
I. Horrocks. Tractable query answering and rewriting un-
der description logic constraints. In J. of Applied Logic,
8(2):186–209, 2010.

[Poggi et al., 2008] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. In J. on Data Semantics, 10:133–173,
2008.

[Rosati and Almatelli, 2010] R. Rosati and A. Almatelli. Im-
proving query answering over DL-Lite ontologies. In KR,
pages 290–300, 2010.

[Rosati, 2007] R. Rosati. On conjunctive query answering in
EL. In DL, pages 451–458, 2007.

3040

