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Abstract
Belief merging is a central operation within the
field of belief change and addresses the problem
of combining multiple, possibly mutually inconsis-
tent knowledge bases into a single, consistent one. A
current research trend in belief change is concerned
with tailored representation theorems for fragments
of logic, in particular Horn logic. Hereby, the goal
is to guarantee that the result of the change opera-
tions stays within the fragment under consideration.
While several such results have been obtained for
Horn revision and Horn contraction, merging of
Horn theories has been neglected so far. In this pa-
per, we provide a novel representation theorem for
Horn merging by strengthening the standard merg-
ing postulates. Moreover, we present a concrete
Horn merging operator satisfying all postulates.

1 Introduction
Belief merging uses a logical approach to study how infor-
mation coming from multiple, possibly mutually inconsistent
knowledge bases should be combined to form a single, con-
sistent knowledge base. Merging shares a common methodol-
ogy with other belief change operators, such as revision [Al-
chourrón et al., 1985; Katsuno and Mendelzon, 1992], con-
traction [Alchourrón et al., 1985] and update [Katsuno and
Mendelzon, 1991]. Part of the methodology is the formula-
tion of postulates, which any rational operator should satisfy.
For merging, the IC-merging postulates [Konieczny and Pino
Pérez, 2002; 2011] are commonly used. In a further step, a
representation result is usually derived: this shows that all
(merging) operators satisfying the postulates can be charac-
terized using rankings on the possible worlds described by
the underlying language, which is typically taken to be full
propositional logic.

Recently, the restriction of belief change formalisms to
different fragments of propositional logic has become a vivid
research branch. There are pragmatic reasons for focusing on
fragments, especially Horn logic. Firstly, Horn clauses are
a natural way of formulating basic facts and rules, and thus
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are useful to encode expert knowledge. Second, Horn logic
affords very efficient algorithms. Thus the computational cost
of reasoning in this fragment is comparatively low.

While revision [Delgrande and Peppas, 2015; Van De Putte,
2013; Zhuang et al., 2013] and contraction [Booth et al., 2011;
Delgrande and Wassermann, 2013; Zhuang and Pagnucco,
2012] have received a lot of attention in this direction, belief
merging has yet remained unexplored, with the notable excep-
tion of [Creignou et al., 2014]. We aim to fill this gap and
investigate the problem of merging in the Horn fragment of
propositional logic. We find that restricting the underlying
language poses a series of non-trivial challenges, as represen-
tation results which work for full propositional logic break
down in the Horn case.

Firstly, we find that we cannot rely on the same types of
rankings as the ones used for merging in the case of full propo-
sitional logic. The reason is that such rankings lead to outputs
that can not be expressed as Horn formulas. We fix this prob-
lem by adding the restriction of Horn compliance: this narrows
down the notion of ranking in a way that is coherent with the
semantics of Horn formulas. Since standard merging opera-
tors are found not to be Horn compliant (hence useless for our
needs), we also give a concrete operator that exhibits this prop-
erty. This is remarkable, since previous research [Creignou
et al., 2014] only resulted in Horn merging operators that do
not satisfy all postulates. Secondly, Horn merging operators
that satisfy the standard postulates turn out to represent more
rankings than was expected, some of which are undesirable.
We interpret this as an inadequacy of the standard postulates to
capture the intended intuitive behaviour of a merging operator.
Hence, we propose an alternative formulation of some key
postulates, which allows us to derive an appealing representa-
tion result for the case of Horn merging. Our approach here
is inspired by existing work on Horn revision [Delgrande and
Peppas, 2015], though we go significantly beyond it to tackle
the problems posed by merging.

The rest of the paper is organized as follows. In Section 2
we introduce the background to merging. In Section 3 we
argue that standard model-based merging operators are in-
appropriate for Horn merging and introduce the property of
Horn compliance. In Section 4 we argue that a subset of
the IC-merging postulates should be replaced by a strength-
ened version, and introduce a representation result using the
strengthened postulates. Finally, in Section 5 we describe a

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3041



concrete Horn merging operator satisfying all postulates. Due
to lack of space, we do not include here the proofs of the
claims found in the text. These can be found in the full version
[Haret et al., 2015].

2 Preliminaries
Propositional logic. We work with the language L of propo-
sitional logic over a fixed alphabet P = {p1, . . . , pn} of
propositional atoms. We use standard connectives ∨, ∧, ¬
and the logical constants > and ⊥. A literal is an atom or a
negated atom. A clause is a disjunction of literals. A clause
is called Horn if at most one of its literals is positive. The
Horn fragment LH ⊂ L is the set of all formulas in L that
are conjunctions of Horn clauses. An interpretation is a set
w ⊆ P of atoms. The set of all interpretations is denoted
by W . We will typically represent an interpretation by its
corresponding bit-vector of length |P|. As an example, if
|P| = 3, then 101 is the interpretation {p1, p3}. A pre-order
≤ on W is a reflexive, transitive binary relation on W . If
w1, w2 ∈ W , then w1 < w2 denotes the strict part of ≤, i.e.,
w1 ≤ w2 but w2 � w1. We write w1 ≈ w2 to abbreviate
w1 ≤ w2 and w2 ≤ w1. IfM is a set of interpretations, then
the set of minimal elements ofM with respect to ≤ is defined
as min≤M = {w1 ∈ M |6 ∃w2 ∈ M s.t. w2 < w1}. If
interpretation w satisfies formula ϕ, we call w a model of ϕ.
We denote the set of models of ϕ by [ϕ]. Given a setM of
interpretations, we define Cl∩(M), the closure ofM under
intersection, as the smallest superset ofM that is closed under
∩, i.e., if w1, w2 ∈ Cl∩(M) then also w1 ∩ w2 ∈ Cl∩(M).
We recall here a classic result concerning Horn formulas and
their models (see e.g. [Schaefer, 1978]).

Proposition 1. A set of interpretationsM is the set of models
of a Horn formula ϕ if and only ifM = Cl∩(M).

A formula is called complete if it has exactly one model.
If wi is an interpretation, we sometimes write σwi

or σi to
denote the complete formula that has wi as a model. If σi
and σj are complete formulas, then σi,j is a formula such that
[σi,j ] = {wi, wj}. If we are working in the Horn fragment,
we take σi,j to be such that [σi,j ] = Cl∩({wi, wj}).

Belief Merging. A knowledge base is a finite set of propo-
sitional formulas. A profile is a non-empty finite multi-set
E = {K1, . . . ,Kn} of consistent knowledge bases. Horn
knowledge bases and Horn profiles contain only Horn formu-
las and Horn knowledge bases, respectively. The sets of all
knowledge bases, Horn knowledge bases, profiles and Horn
profiles are denoted by K, KH , E and EH , respectively. If E1

and E2 are profiles, then E1 t E2 is the multi-set union of
E1 and E2. Interpretation w is a model of knowledge base K
if it is a model of every formula in K. Interpretation w is a
model of profile E if it is a model of every K ∈ E. We denote
by [K] and [E] the set of models of K and E, respectively.
We write

∧
E for

∧
K∈E

∧
ϕ∈K ϕ. This reduces a profile to a

single propositional formula. Clearly, [
∧
E] = [E].

Profiles E1 and E2 are equivalent, written E1 ≡ E2, if
there exists a bijection f : E1 → E2 such that for any K ∈ E1

we have [K] = [f(K)].

A merging operator is a function ∆: E × L → K. It maps
a profile E and a formula µ, typically referred to as constraint,
onto a knowledge base. We write ∆µ(E) instead of ∆(E,µ).
As is common in the belief change literature, logical postulates
are employed to set out properties which any merging oper-
ator ∆ should satisfy. An operator satisfying the following
postulates is called IC-merging operator [Konieczny and Pino
Pérez, 2002; 2011]:

(IC0) ∆µ(E) |= µ.
(IC1) If µ is consistent, then ∆µ(E) is consistent.
(IC2) If

∧
E is consistent with µ, then ∆µ(E) ≡

∧
E ∧ µ.

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then ∆µ1(E1) ≡ ∆µ2(E2).
(IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1,K2}) ∧K1 is

consistent iff ∆µ({K1,K2}) ∧K2 is consistent.
(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2).
(IC6) If ∆µ(E1) ∧∆µ(E2) is consistent, then

∆µ(E1 t E2) |= ∆µ(E1) ∧∆µ(E2).
(IC7) ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E).

(IC8) If ∆µ1
(E) ∧ µ2 is consistent, then

∆µ1∧µ2
(E) |= ∆µ1

(E) ∧ µ2.

It turns out that we can use a particular type of rankings on
interpretations to compute the models of a merging operator.
Definition 1. A syncretic assignment is a function mapping
each E ∈ E to a pre-order ≤E on W such that, for any
E,E1, E2 ∈ E , K1,K2 ∈ K and w1, w2 ∈ W the follow-
ing conditions hold:

(s1) If w1 ∈ [E] and w2 ∈ [E], then w1 ≈E w2.
(s2) If w1 ∈ [E] and w2 /∈ [E], then w1 <E w2.
(s3) If E1 ≡ E2, then ≤E1

=≤E2
.

(s4) If w1 ∈ [K1], then there is w2 ∈ [K2] such that
w2 ≤{K1,K2} w1.

(s5) If w1 ≤E1
w2 and w1 ≤E2

w2, then w1 ≤E1tE2
w2.

(s6) If w1 ≤E1
w2 and w1 <E2

w2, then w1 <E1tE2
w2.

We define syncretic assignments in a way that allows the
pre-orders ≤E to be partial, as we will make use of partial
pre-orders in our own results on Horn operators (Theorems 3
and 4). In the context of full propositional logic, however, the
classical result below characterizes all IC-merging operators
in terms of syncretic assignments with total pre-orders.
Theorem 1 ([Konieczny and Pino Pérez, 2002; 2011]). A
merging operator ∆ is an IC-merging operator if and only if
there exists a syncretic assignment mapping each E ∈ E to a
total pre-order ≤E such that [∆µ(E)] = min≤E

[µ], for any
µ ∈ L.

When this equation holds we will say that the assignment
represents the operator.

It is useful to think of a profile E = {K1, . . . ,Kn} as a
multi-set of agents, represented by their sets of beliefs Ki.
Each agent is equipped with a pre-order ≤Ki

onW which can
be thought of as the way in which the agent ranks possible
worlds in terms of their plausibility. Merging is then the task
of finding a common ranking that approximates, as best as

3042



[K] Σ GMAX
00 2 2 (2)
01 1 1 (1)
10 1 1 (1)
11 0 0 (0)

Table 1: ∆dH ,Σ
µ (E1) and ∆dH ,GMAX

µ (E1) do not stay in the
Horn fragment.

possible, the individual rankings. Proposition 1 tells us that
if this process is done using syncretic assignments, we are in
agreement with postulates IC0 – IC8.

Two parts need to be filled out to get a concrete merging
operator: how to compute the individual rankings and how
to aggregate them. For the first part, the common approach
in the literature is to use some notion of distance between
interpretations, such as Hamming distance dH or the drastic
distance dD. The minimal distance between interpretations
and models of Ki is used to construct ≤Ki . For the second
part, common functions used to aggregate the distances are the
sum Σ or GMAX , giving us operators ∆dH ,Σ, ∆dH ,GMAX ,
∆dD,Σ, ∆dH ,GMAX . The reader is referred to [Konieczny and
Pino Pérez, 2002; 2011] for more details.

3 Restricting assignments
A Horn merging operator is a function ∆: EH × LH → KH .
Our aim is to characterize the class of such operators in the
manner of Proposition 1 and to exhibit a concrete operator.
The first problem occurs when we apply standard merging
operators to Horn profiles and formulas: their output cannot
always be represented by a Horn formula.

Examples 1 and 2 show how standard merging operators fail
in the Horn fragment. In both cases we choose Horn profiles
over the 2-letter alphabet and construct rankings using the
Hamming distance and the drastic distance. We then aggregate
the rankings with Σ and GMAX . The rankings and the result
of their aggregation are shown in Tables 1 and 2. Each row
displays one possible interpretation over {p1, p2} (denoted in
the first column). The second column displays the minimal
distance of the interpretation to any model of K. The third
and fourth column show the aggregation of the distances (in
our case only one distance) according to the Σ as well as the
GMAX function. The output of the merging operator is the
set of those interpretations that are models of µ (marked grey)
and have the smallest aggregated value.
Example 1. Take K = {p1, p2}, E1 = {K} and µ =
¬p1 ∨ ¬p2 (all of them Horn). We compute ∆dH ,Σ

µ (E1)

and ∆dH ,GMAX
µ (E1), keeping in mind that [K] = {11} and

[µ] = {00, 10, 01}. Table 1 displays how the output of these
two mergings is computed.

We get [∆dH ,Σ
µ (E1)] = min[µ] = {10, 01}, and the

same result is obtained for ∆dH ,GMAX
µ (E1). It holds, then,

that ∆dH ,Σ
µ (E1) and ∆dH ,GMAX

µ (E1) cannot be expressed as
Horn formulas.
Example 2. Take K1 = {p1, ¬p2}, K2 = {¬p1, p2},
E2 = {K1, K2} and µ = ¬p1 ∨ ¬p2: We get (see Ta-
ble 2) [∆dD,Σ

µ (E2)] = min[µ] = {10, 01}, and the same

[K1] [K2] Σ GMAX
00 1 1 2 (1,1)
01 1 0 1 (1,0)
10 0 1 1 (1,0)
11 1 1 2 (1,1)

Table 2: ∆dD,Σ
µ (E2) and ∆dD,GMAX

µ (E2) do not stay in the
Horn fragment.

result is obtained for ∆dD,GMAX
µ (E2). Again, ∆dD,Σ

µ (E2)

and ∆dD,GMAX
µ (E2) cannot be represented by Horn formu-

las.

As we see in Examples 1 and 2, standard distance and
aggregate functions are not adequate for the Horn fragment.
Here we adopt a solution suggested by [Delgrande and Peppas,
2015], which is to impose an extra condition on the pre-orders.

Definition 2. A pre-order ≤ is Horn compliant if for any
µ ∈ LH , min≤[µ] can be represented by a Horn formula.

Example 3. The computed pre-orders for E1 and E2 in
Examples 1 and 2 are not Horn compliant, as we get that
min[µ] = {01, 10} in both cases.

Adding Horn compliance makes it possible to define a merg-
ing operator for the Horn fragment, and this gives us one
direction of a representation theorem.

Theorem 2. If there exists a syncretic assignment mapping
every E ∈ EH to a Horn compliant total pre-order ≤E , then
we can define an operator ∆: EH × LH → KH by taking
[∆µ(E)] = min≤E

[µ], for any µ ∈ LH , and ∆ satisfies
postulates IC0 – IC8.

4 Strengthening the postulates
Conversely, we want to show that for any Horn merging oper-
ator ∆ there exists a syncretic assignment which represents it.
This is true when the language is not restricted (see Proposi-
tion 1), but interesting problems arise as soon as we restrict
ourselves to the Horn case.

We know from existing work on Horn revision [Delgrande
and Peppas, 2015] that we can find non-syncretic assignments
to represent a Horn operator ∆. Such assignments are non-
syncretic in the sense that they contain non-transitive cycles
between interpretations. Yet, we can still define an operator
on top of these rankings, which satisfies postulates IC0 – IC8.
Furthermore, it can be shown that there are no non-cyclic
pre-orders that represent the same operator ∆. The solution
proposed in [Delgrande and Peppas, 2015] is to add an extra
postulate, called Acyc, specifically to eliminate cycles:

(Acyc) If for every n ≥ 1 and i ∈ {0, n− 1}, µi ∧∆µi+1(E)
and µn ∧∆µ0

(E) are all consistent, then µ0 ∧∆µn
(E)

is also consistent.

Acyc provably follows from postulates IC0 – IC8 in full
propositional logic, so it only makes a difference when we
restrict the language to the Horn fragment. Here we employ
the same strategy of adding an extra postulate to deal with
non-transitive cycles, but we propose a postulate formulated
in terms of complete formulas:
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[K1]

≤K1

01

00

11

10

+

[K2]

≤K2

10

00, 11

01

−→

≤{K1,K2}

00

01, 11

10

Figure 1: s4 does not hold.

(Acyc′) For any complete formulas σ0, . . . , σn, n ≥ 1 and
i ∈ {0, n − 1}, it holds that if σi ∧ ∆σi,i+1

(E) and
σn ∧∆σn,0

(E) are all consistent, then σ0 ∧∆σ0,n
(E) is

also consistent.

There is clearly a strong similarity between Acyc and Acyc′,
though we prefer the latter here for its intuitive appeal. More-
over, it can be shown that they are equivalent modulo the
merging postulates.

Proposition 2. Given postulates IC0 – IC8, Acyc and Acyc′

are equivalent.

The intuition behind Acyc′ is that it prevents non-transitive
cycles between chains of interpretations of arbitrary length.
Suppose n = 2 and the antecedent of Acyc′ is true: then from
the fact that σ0∧∆σ0,1

(E) is consistent we conclude thatw0 ∈
[∆σ0,1

(E)], where [σi] = {wi}. This means that w0 is among
the models of σ0,1 that are ‘preferred’, or considered more
plausible, by ∆. Thus, in the pre-order ≤E that represents
∆, it should hold that w0 ≤E w1. By the same token, we get
that w1 ≤E w2 ≤E w0 should hold. Since we want ≤E to
be transitive, it should also hold that w0 ≤E w2, and this is
exactly what Acyc′ requires at this point. Thus, we need the
extra postulate Acyc′(or something equivalent) to ensure that
the pre-orders representing a given Horn merging operator ∆
preserve intuitive properties such as (in this case) transitivity.

Introducing Acyc′ is not enough, as one can still find assign-
ments that represent a Horn merging operator ∆ without being
syncretic, this time because they do not satisfy properties s4 –
s6. The following examples make this clearer.

Example 4. Consider Horn knowledge bases [K1] = {01},
[K2] = {10} and an assignment that works as in Figure 1
when restricted to K1 and K2. Figure 1 shows the rank-
ings associated with K1 and K2 and the result of merging
them into the new ranking ≤{K1,K2}.

1 Notice that s4 is not
true: s4 requires that 01 ≈{K1,K2} 10, whereas we have
01 <{K1,K2} 10. However, we can define a (Horn) merg-
ing operator ∆ on top of this assignment in the usual way,
by taking [∆µ(E)] = min≤E

[µ], for any Horn formula µ,
and ∆ will satisfy postulates IC0 – IC8 + Acyc′. This can be

1It is worth noting that ≤K1 , ≤K2 and ≤{K1,K2} are not gen-
erated using any familiar notion of distance—the rankings were
hand-picked.

≤E1

101

001

011

000

010, 111, 100

110

+

≤E2

111

110

000

010, 011,
001, 101,

100

−→

≤E1tE2

101, 111

001

011

000

010

110

100

Figure 2: s5 does not hold for 010 and 100.

verified by direct inspection; we focus here only on IC4. The
problematic interpretations are the models 01 and 10 of K1

and K2, respectively. Notice that there is no Horn formula
that represents exactly the set {01, 10}: the best we can do is
take a Horn formula µ such that [µ] = [σ01,10] = {00, 01, 10}.
Obviously, K1 |= µ and K2 |= µ, so we are in the range of
application of IC4. We have that [∆µ({K1,K2})] = {00},
and [∆µ({K1,K2})∧K1] = [∆µ({K1,K2})∧K2] = ∅, so
IC4 is satisfied for this particular µ.

Example 4 is significant because it shows that an assignment
which does not satisfy s4 may still represent an operator ∆
obeying IC4. And given the standard formulation of IC4, this
turns out to be unavoidable.
Proposition 3. There is no syncretic assignment represent-
ing ∆ from Example 4 that assigns to {K1,K2} a pre-order
≤?{K1,K2} where 01 ≈?{K1,K2} 10.

Proof. Suppose 01 ≈?{K1,K2} 10. From Figure 1 we know
that [∆σ10,11({K1,K2})] = {11}, hence min≤?{10, 11} =
{11} and thus 11 <?{K1,K2} 10. Similarly, we obtain
01 ≈?{K1,K2} 11, which implies 01 <?{K1,K2} 10. This cre-
ates a contradiction.

The following example shows how s5 fails to be enforced
by IC5 in the case of Horn logic.
Example 5. Assume there exists an assignment which for
two profiles E1 and E2 behaves as in Figure 2, and is oth-
erwise Horn compliant and syncretic. Property s5 does not
hold: 010 ≈E1 100 and 010 ≈E2 100, but 010 <E1tE2

100. However, as in Example 4, we can define a (Horn)
merging operator ∆ on top of this assignment and ∆ will
satisfy postulates IC0 – IC8 + Acyc′. Let us check that
IC5 holds. The problematic interpretations here are 010
and 100 (for which s5 does not hold). In this case we
have that ∆σ010,100

(E1) ∧ ∆σ010,100
(E2) is consistent, and
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[∆σ010,100(E1) ∧ ∆σ010,100(E2)] = [∆σ010,100(E1 t E2)] =
{000}. This shows that for the case we are interested in
(µ = σ010,100) IC5 is true.

Similarly as for IC4, we can show that such a counter-
example to s5 is unavoidable.

It is perhaps surprising to see that IC5 can be satisfied in an
assignment where s5 does not hold, but closer thought shows
this is to be expected: since in the Horn fragment we cannot
represent the set {100, 010} with a formula, it becomes harder
to control the order in which 100 and 010 appear. Without any
additional constraints on ∆, one cannot prevent it from varying
the order of 100 and 010 in ways that directly contradict s5.
Similar counter-examples can be constructed for s6.

Examples 4 and 5 show that a syncretic assignment with
total pre-orders is not the most natural way to represent a Horn
merging operator. Hence, we introduce the following notion.

Definition 3. A pre-order ≤ onW is Horn connected if

(h1) ≤ is Horn compliant,

(h2) any wi, wj ∈ W that are in the subset relation are in ≤,
and

(h3) for any wi, wj ∈ W such that wi * wj and wj * wi, it
holds that if wi ≤ wj then:

(h3.1) wi ∈ min≤Cl∩({wi, wj}), or
(h3.2) for some n > 2, there exist pair-wise distinct

interpretations w1, . . . , wn, such that w1 = wi,
wn = wj and w1 ≤ · · · ≤ wn.

A Horn connected pre-order ≤E is not necessarily total.
Example 6 illustrates this.

Example 6. Consider the following pre-orders on the 2-letter
alphabet: (a) 11 <1 01 <1 10 <1 00, (b) 00 <2 01 <2

11 <2 10, (c) 00 <3 01 <3 11, 00 <3 10 <3 11, 01 �3 10
10 �3 01, (d) 00 <4 01 ≈4 10 <4 11. It is immediately
visible that all pre-orders are Horn compliant (h1) and that
they satisfy h2. Let us focus on interpretations 01 and 10.

In ≤1 we have 01 ∈ min≤Cl∩({01, 10}). Thus h3.1 is
satisfied, and ≤1 is Horn connected. In ≤2 we do not have
01 ∈ min≤Cl∩({01, 10}), but there is interpretation 11 such
that 01 < 11 < 10. Thus h3.2 is satisfied and ≤2 is Horn
connected. Pre-order ≤3 is partial, as 01 and 10 are not in ≤3,
and thus h3 is vacuously true. In ≤4 we have 01 ≈ 10 though
none of h3.1 and h3.2 holds, thus ≤4 is not Horn connected.

Next, for every Horn operator ∆ and Horn profile E, we
define a (partial) pre-order on complete formulas of LH .2

Definition 4. Given a Horn operator ∆, then for any Horn
profile E and complete Horn formulas σi, σj , we say that
σi �E σj if there exist complete Horn formulas σ1, . . . , σn
such that σ1 = σi, σn = σj , and for i ∈ {1, n − 1}, σi ∧
∆σi,i+1

(E) are all consistent.

It is straightforward to check that �E is reflexive and tran-
sitive, and thus a pre-order on complete Horn formulas. We
write ≺E for the strict part of �E . It is also worth noting that
�E is total when the underlying language is full propositional

2The pre-order �E is not to be confused with the pre-order ≤E

on interpretations, though it is meant to mirror it.

logic, since [σi,j ] = {wi, wj} and we can take the sequence
σ1, . . . , σn to be just σi, σj or σj , σi. This does not necessar-
ily hold in the case of the Horn fragment, where �E can be
partial.

We now reformulate IC4, IC5 and IC6 for K1,K2 ∈ KH ,
E1, E2 ∈ EH and complete Horn formulas σi, σj as follows:

(IC′4) For any σi |= K1, there exists σj |= K2 such that
σj �{K1,K2} σi.

(IC′5) If σi �E1
σj and σi �E2

σj , then σi �E1tE2
σj .

(IC′6) If σi �E1 σj and σi ≺E2 σj , then σi ≺E1tE2 σj .

These postulates make a difference only in the Horn frag-
ment, while in full propositional logic they are redundant.

Proposition 4. In the case of full propositional logic, IC′4, IC′5
and IC′6 follow from the standard IC0 – IC8 postulates.

With postulates IC′4, IC′5 and IC′6 we can derive a represen-
tation result for syncretic assignments with Horn connected
pre-orders. The result is split across two theorems: Theorem 3
shows that Horn connected pre-orders can be used to construct
a Horn merging operator satisfying our amended set of postu-
lates. Its converse, Theorem 4, shows that any Horn merging
operator satisfying the amended postulates is represented by a
syncretic assignment with Horn connected pre-orders.

Theorem 3. If there exists a syncretic assignment mapping
every E ∈ EH to a Horn connected total pre-order ≤E , then
we can define an operator ∆: EH × LH → KH by taking
[∆µ(E)] = min≤E

[µ], for any µ ∈ LH , and ∆ satisfies
postulates IC0 – IC3 + IC′4 + IC′5 + IC′6 + IC7 – IC8 + Acyc′.

Theorem 4. If a Horn operator ∆: EH×LH → KH satisfies
postulates IC0 – IC3 + IC′4 + IC′5 + IC′6 + IC7 – IC8 + Acyc′,
then there exists a syncretic assignment mapping every Horn
profile E to a Horn connected pre-order ≤E , such that, for
any Horn formula µ, it holds that [∆µ(E)] = min≤E

[µ].

In Theorem 4, the strengthened postulates IC′4, IC′5 and
IC′6 rule out Horn merging operators ∆ represented by non-
syncretic assignments such as the ones in Examples 4 and 5,
and thus justify their presence. Our focus on Horn connected
pre-orders, on the other hand, should not be seen as a restric-
tion: we can translate any Horn compliant pre-order ≤E into
a Horn connected one ≤?E such that the overall assignment (1)
represents the same (Horn) merging operator and (2) remains
syncretic. This can be done simply by ‘uncoupling’ pairs wi
and wj which are not in the subset relation and do not satisfy
either of the properties h3.1 and h3.2. Since wi and wj do not
appear together in any set of the type min≤E

[µ], for µ ∈ LH ,
the Horn merging operators represented by ≤E and ≤?E are
the same.

However, the reverse is not as straightforward: for any Horn
connected pre-order there exist more than one Horn compliant
pre-orders representing the same Horn merging operator: any
interpretations wi and wj that are not in ≤?E can be related in
several ways if we care about making≤?E total (we could have
wi <

?
E wj , orwj <?E wi, etc.), and some of the configurations

give rise to non-syncretic assignments. Our point is thatwi and
wj do not need to be related as long as the represented merging
operator ∆ stays the same. Indeed, the main motivation for
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formulating the representation result with partial pre-orders
is that if wi and wj do not satisfy h3.1 and h3.2 then a Horn
merging operator ∆ does not give us any information on what
the order between them should be. It makes sense, in this case,
to not include wi and wj in the pre-order representing ∆.

5 A concrete Horn merging operator
By Theorem 2, we can find a Horn merging operator simply
by exhibiting a Horn compliant, syncretic assignment. As in
Examples 1 and 2, we can specify a pre-order≤K by assigning
numbers to interpretations, relative to K, and in the rest of
this section this is how we will be thinking of pre-orders. We
write lK(w) to denote the number assigned to w with respect
to some knowledge base K. If K has exactly one model w′,
we simply write lw′(w).

One difficulty here is that there is no obvious candidate
for an off-the-shelf assignment that satisfies all the required
properties: Horn compliance rules out standard approaches
using familiar distances between interpretations. Therefore,
we start by describing some general conditions sufficient to
guarantee that the resulting assignment satisfies s1 – s6 and is
Horn compliant.

We take lK(w) ≥ 0, for any knowledge base K and any
w ∈ W , with lK(w) = 0 if and only if w ∈ [K]. This
guarantees the assignment satisfies s1 – s3. We use the sum Σ
to aggregate individual pre-orders, and this guarantees s5 – s6.
The next conditions spell out what is needed for an assignment
to satisfy s4.

Definition 5. The distance between knowledge bases K1 and
K2 is defined as d(K1,K2) = min{lK1

(w) | w ∈ [K2]}.
We are interested in knowledge bases that satisfy the fol-

lowing property.

Definition 6. Knowledge bases K1 and K2 are symmetric if
d(K1,K2) = d(K2,K1).

Symmetry is important because it guarantees s4.

Proposition 5 ([Konieczny and Pino Pérez, 2002]). If an
assignment satisfies s1 – s3, then it satisfies s4 iff any two
knowledge bases are symmetric.

Interestingly, it turns out that if we fix the pre-orders for
every knowledge base K that has exactly one model, then
pre-orders for knowledge bases K with more than one model
are completely determined by this initial assignment (see Ex-
ample 7). Thus, if symmetry is enforced, we can represent
an assignment by just giving the pre-orders for single-model
knowledge bases, as a 2n × 2n matrix. We shall call this the
initial matrix. The same symmetry condition forces the initial
matrix to be symmetric. For s1 – s3 to hold, the initial matrix
needs to have positive entries and 0 on the main diagonal.3

Example 7. Table 3 shows the initial matrix for the 2 letter
alphabet, plus an additional ranking obtained through sym-
metry. Each column represents a ranking: for instance the
first column represents the ranking for a knowledge base
that has 00 as its sole model. The number assigned to 00
in this ranking is 0, the number assigned to 01 is 1, etc. The

3All this is treated rigorously in [Haret et al., 2015].

00 01 10 11 {10, 11}
00 0 1 2 3 2
01 1 0 3 5 3
10 2 3 0 8 0
11 3 5 8 0 0

Table 3: An initial assignment determines the remaining rank-
ings by symmetry.

ranking for a knowledge base K that has {10, 11} as its set
of models is computed from the initial assignment matrix
with symmetry. For example, consider interpretation 00. By
symmetry, we have that lK(00) = l00(K). Thus, we obtain
l00(K) = min{l00(10), l00(11)} = min{2, 3} = 2.

All that is left is Horn compliance, and here we propose the
following notion.
Definition 7. A pre-order ≤ is well-behaved if and only if for
any interpretations w0, w1, w2 such that w1 * w2, w2 * w1

and w0 = w1 ∩ w2, it is the case that w0 ≤ w1 or w0 ≤ w2

and |min{l(w1), l(w2)} − l(w0)| ≤ |max{l(w1), l(w2)} −
l(w0)|.

Notice that a well-behaved pre-order ≤ is also Horn com-
pliant. What makes well-behavedness suitable for our needs,
however, is that it is transmitted through Σ-aggregation.
Proposition 6. If ≤1 and ≤2 are well-behaved, then the pre-
order obtained by Σ-aggregating ≤1 and ≤2 is well-behaved.

Using all this knowledge, we can now define a specific Horn
compliant syncretic assignment, which we will call the sum-
mation assignment. We define this assignment for the general
case of an alphabet of size n. As suggested by the previous
discussion, we give the initial matrix and use symmetry to
determine pre-orders ≤K , when |[K]| > 1. Since the matrix
for the initial assignment has to itself be symmetric and have
0 on the main diagonal, we will only define the entries in the
matrix below the main diagonal, with the understanding that
the entries above the main diagonal are fixed by symmetry.
Also, the order in which interpretations appear in the rows and
columns is fixed by the number of 1’s in the corresponding
bit-vector. For instance, the matrix for the 3-letter alphabet
has its rows and columns ordered as follows: 000, 001, 010,
100, 011, 101, 110, 111.

The definition of the bottom half of the initial assignment
matrix is recursive. First, put:

lw0
(wi) = i, for i ∈ {0, . . . , 2n − 1}.

Hence, the levels on the first column are 0, 1, 2, . . . , 2n − 1
(see Table 4).

Second, for 1 ≤ i ≤ 2n − 1, put:

lwi
(wi+1) = lwi−1

(wi) + lwi−1
(wi+1).

Roughly, this means that the number in a particular cell under
the main diagonal is the sum of its two neighbours to the
left. In Table 4: if lwi−1

(wi) = a, lwi−1
(wi+1) = b, then

lwi
(wi+1) = a+ b. This is simpler than it sounds, and Table

3 shows the matrix that we get for the 2-letter alphabet.
The following proposition guarantees that the summation as-

signment is Horn compliant and stays Horn compliant through
repeated Σ-aggregations.
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w0 . . . wi−1 wi wi+1 . . .
w0 0 . . . i− 1 i i+ 1 . . .
. . . . . . . . . . . . . . . . . . . . .
wi−1 i− 1 . . . 0 . . .
wi i . . . a 0 . . .
wi+1 i+ 1 . . . b a+ b 0 . . .
. . . . . . . . . . . . . . . . . . . . .

Table 4: The recursive relation for levels.

Proposition 7. The summation assignment is well-behaved.

This is the last piece of information needed. We can now
assert the following theorem.

Theorem 5. The summation assignment represents a Horn
merging operator.

6 Conclusion and future work
In this paper, we provided a novel representation theorem for
Horn merging by strengthening the standard merging postu-
lates. Belief change operators for the Horn fragment have
attracted increasing attention over the last years, in particular
revision and contraction, while merging in the Horn fragment
remained rather unexplored so far. An exception is the work
by Creignou et al. [2014], who proposed to adapt known
merging operators by means of a certain post-processing and
studied the limits of this approach in terms of satisfaction of
the merging postulates. One of the main results of that paper is
that in their framework it is not possible to keep all postulates
satisfied. In our work, we have presented a novel concrete
Horn merging operator satisfying all postulates.

The moral of the present work is that, while going from syn-
cretic assignments to Horn merging operators is relatively easy
(Horn compliance is sufficient, by Theorem 2), going from
Horn merging operators to syncretic assignments requires con-
siderably more machinery (in particular, stronger postulates).
Thus, all the work in Section 4 is needed to obtain a full repre-
sentation result. Even so, Section 5 highlights that the easiness
of the first direction is only relative, as finding concrete syn-
cretic assignments that are also Horn compliant requires some
conceptual work, and there is no obvious trivial operator that
does the job. The main difficulty here lies in making sure
that if two pre-orders ≤1 and ≤2 are Horn compliant, then
the pre-order resulted from Σ-aggregating them is also Horn
compliant. Our well-behavedness property guarantees this.

Future work on merging in the Horn fragment would have to
consider extending the family of Horn merging operators. This
requires seeing how Horn compliance interacts, on the model
side, with other aggregation functions (such as GMAX ) and
exploring the range of conditions guaranteeing Horn compli-
ance of an assignment. We may add to this the study of other
merging postulates (e.g., majority and arbitration), considered
in the merging literature [Konieczny and Pino Pérez, 2002;
2011] but not touched upon here. Finally, we would like to
extend our approach to other fragments of propositional logic
(e.g., Krom or dual Horn), where similar problems arise and
for which tailored notions of compliance and strengthened
postulates are likely needed.
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