
Simplifying A Logic Program Using Its Consequences

Jianmin Ji
School of Computer Science and Technology

University of Science and Technology of China
Hefei 230027, China
jianmin@ustc.edu.cn

Hai Wan∗ and Ziwei Huo and Zhenfeng Yuan
School of Software

Sun Yat-sen University
Guangzhou 510006, China
wanhai@mail.sysu.edu.cn

Abstract
A consequence of a logic program is a consistent
set of literals that are satisfied by every answer set.
The well-founded model is a consequence that can
be used to simplify the logic program. In this pa-
per, we extend the notion of well-founded models
to consequences for simplifying disjunctive logic
programs (DLPs) in a general manner. Specifically,
we provide two main notions, strong reliable set
and weak reliable set, and show that a DLP is
strongly equivalent to the simplified program if
and only if the consequence is a strong reliable set,
and they have the same answer sets if and only if
the consequence is a weak reliable set. Then we
provide computational complexity on identifying
both notions. In addition, we provide an algorithm
to compute some strong reliable sets and show that
the approach is an extension of the well-founded
model in simplifying logic programs.

1 Introduction
Answer Set Programming (ASP) has been considered as one
of the most popular nonmonotonic rule-based formalisms,
mainly due to the availability of efficient ASP solvers such
as smodels [Syrjänen and Niemelä, 2001], ASSAT [Lin
and Zhao, 2004], cmodels [Lierler and Maratea, 2004],
clasp [Gebser et al., 2007a], claspD [Drescher et al., 2008],
and DLV [Leone et al., 2002].

All of these modern ASP solvers require a preprocessing
state for simplifying a logic program by its consequences
in their grounding engines, like lparse [Syrjänen, 2000],
gringo [Gebser et al., 2007b], and the grounding engine for
DLV [Leone et al., 2002]. In specific, a consequence is a
consistent set of literals that are satisfied by every answer set
of the program. Many consequences can be derived using
efficient inference rules before computing the answer sets of
the program. For instance, a consequence can be computed
by applying unit propagation to the set of clauses obtained
from Clark’s completion [Clark, 1978] of the program,
applying the well-founded operator [Leone et al., 1997] to
the program, using the loop formulas of loops with at most

∗Corresponding author

one external support rule [Chen et al., 2013], and applying
the lookahead operator based on previous operations.

These consequences can help computing the answer sets
of the program. The notion of consequences is also extended
in [Eiter et al., 2004] to simplify logic programs under uni-
form and strong equivalence. However, not all consequences
can be used to simplify the logic program, as simplified
programs may have answer sets that are not answer sets of
the original program. The best known consequences for
simplifying programs are the well-founded models for nor-
mal logic programs [Van Gelder et al., 1991] and the results
computed by the well-founded operator for disjunctive logic
programs [Leone et al., 1997], the approximations of which
have been used in grounding engines of most ASP solvers.

To extend the notion of well-founded models, we consider
when a consequence can be used to simplify a logic program.
In this paper, we provide two notions, called strong reliable
set and weak reliable set, so that
• a logic program is strongly equivalent to the simplified

program iff the consequence is a strong reliable set,
• they have the same answer sets iff the consequence is a

weak reliable set.
We also explore computational complexity on identifying
both sets. These notions provide a guideline to explore
classes of consequences that could be used to simplify a
logic program. As an example, we provide an algorithm to
compute some strong reliable sets and show that the approach
is an extension of the well-founded model in simplifying
logic programs.

2 Preliminaries
In this paper, we consider only fully grounded finite logic
programs. A (disjunctive) logic program (DLP) is a finite set
of (disjunctive) rules of the form

a1 ∨ · · · ∨ ak ← ak+1, . . . , am, not am+1, . . . , not an, (1)

where n ≥ m ≥ k ≥ 0, n ≥ 1 and a1, . . . , an are atoms. If
k ≤ 1, it is a normal rule; if m = n, it is a positive rule; if
n = m = k = 1, it is a fact. In particular, a normal logic
program (NLP) is a finite set of normal rules and a positive
logic program is a finite set of positive rules.

We will also write rule r of form (1) as

head(r)← body(r), (2)

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3069

where head(r) is a1 ∨ · · · ∨ ak, body(r) = body+(r) ∧
body−(r), body+(r) is ak+1 ∧ · · · ∧ am, and body−(r)
is ¬am+1 ∧ · · · ∧ ¬an, and we identify head(r), body+(r),
body−(r) with their corresponding sets of atoms.

A set S of atoms satisfies a rule r, if body+(r) ⊆ S and
body−(r) ∩ S = ∅ implies head(r) ∩ S 6= ∅. S satisfies a
program P , if S satisfies every rules in P . Let L be a set of
literals and F a propositional formula, we write L |= F if L
entails F in the sense of classical logic, L = {¬p | p ∈ L} ∪
{p | ¬p ∈ L}, L+ = {p | p ∈ L}, and L− = {p | ¬p ∈ L}.

In the following we recall the basic notions about answer
sets [Gelfond and Lifschitz, 1991], SE-models [Turner,
2003], external support rules and loop formulas [Lee and
Lifschitz, 2003], the well-founded model [Van Gelder et al.,
1991], and the well-founded operator [Leone et al., 1997].

2.1 Answer Set Semantics
Given a DLP P and a set S of atoms, the Gelfond-Lifschitz
reduct of P on S, written PS , is obtained from P by deleting:

1. each rule that has a formula not p in its body with p ∈ S,
2. all formulas of the form not p in the bodies of the re-

maining rules.

A set S of atoms is an answer set of P if S is a minimal set
satisfying PS .

A SE-interpretation is a pair (X,Y) where X and Y are
sets of atoms and X ⊆ Y . A SE-interpretation (X,Y) is a
SE-model of a DLP P if Y satisfies P and X satisfies PY . A
SE-model (Y, Y) of P is an equilibrium model of P , if there
does not exist another set X such that X ⊂ Y and (X,Y) is
a SE-model of P .

Two DLPs P1 and P2 are strongly equivalent, if for any
DLP P ′, programs P1 ∪ P ′ and P2 ∪ P ′ have the same set of
answer sets.

The SE-models and the answer sets of a DLP have the
following proposition [Ferraris, 2005; Lifschitz et al., 2001].

Proposition 1 Let P1, P2 be two DLPs and S a set of atoms.

• S is an answer set of P1 iff (S, S) is an equilibrium
model of P1.
• P1 is strongly equivalent to P2 iff P1 and P2 have the

same SE-models.

2.2 External Support Rules and Loop Formulas
Given a nonempty set E of atoms, a rule r is an external
support of E if head(r) ∩ E 6= ∅ and E ∩ body+(r) = ∅.
Given a DLP P , we use R−(E,P) to denote the set of
external support rules of E in P .

The (conjunctive) loop formula of E under P , written
LF (E,P), is the following implication∧

p∈E
p ⊃

∨
r∈R−(E,P)

(
body(r) ∧

∧
q∈head(r)\E

¬q
)
.

A set S of atoms satisfies LF (E,P), if E ⊆ S implies that
there exists a rule r ∈ R−(E,P) such that body+(r) ⊆ S,
body−(r)∩S = ∅, and (head(r)\E)∩S = ∅, i.e., S∪{¬p |
p /∈ S} |= LF (E,P).

Proposition 2 (Theorem 1 in [Lee and Lifschitz, 2003])
Let P be a DLP and S a set of atoms. If S satisfies P , then
following conditions are equivalent to each other:
• S is an answer set of P ;
• S satisfies LF (E,P) for every nonempty setE of atoms.

2.3 Well-Founded Semantics
Let P be a DLP and I a set of literals, a set X of atoms is
an unfounded set of P w.r.t. I if for each atom p ∈ X and
each rule r ∈ P such that p ∈ head(r), at least one of the
following conditions holds:
• body(r) ∩ I 6= ∅,
• X ∩ body+(r) 6= ∅, or
• (head(r) \X) ∩ I 6= ∅.
Let I be a set of literals. If P is an NLP, the union of

two unfounded sets is also an unfounded set. I is unfounded-
free for a DLP P if I ∩ X = ∅ for each unfounded set X
of P w.r.t. I . If I is unfounded-free, then the union of two
unfounded sets of P w.r.t. I is also an unfounded set, thus
there exists the greatest unfounded set of P w.r.t. I . We use
UP (I) to denote such greatest unfounded set, if exists.

We define two operators for a DLP P and a set I of literals:

TP (I) = {p | there exists a rule r ∈ P s.t. p ∈ head(r)

and I |= body(r) ∧
∧

q∈head(r)\{p}

¬q};

WP (I) = TP (I) ∪ UP (I).

TP , UP , andWP are monotonic operators. We useWFM(P)
to denote the least fixed point of the operator WP . If P is an
NLP, WFM(P) is the well-founded model of P as defined
in [Van Gelder et al., 1991].

3 Simplifying A Logic Program
A consequence of a program is a consistent set of literals
that are satisfied by every answer set of the program. A
consequence is positive if it is a set of atoms. Some conse-
quences can simplify the logic program in the manner that,
the resulting program consists of two parts, a part without
any atoms appearing in the consequence and the facts of
the consequence. WFM(P) is such a consequence that is
commonly used to simplify the program in the grounding
engines, like lparse [Syrjänen, 2000], gringo [Gebser et al.,
2007b], and the grounding engine for DLV [Leone et al.,
2002], of modern ASP solvers. In this section, we consider
how to extend the idea to other consequences of the program.

Let L be a consequence of a DLP P , we define trn(P,L)
to be the program obtained from P by

1. deleting each rule r that has an atom p ∈ body+(r) with
¬p ∈ L, and

2. replacing each rule r that has an atom p ∈ head(r)
or p ∈ body−(r) with ¬p ∈ L by a rule r′ such that
head(r′) = head(r) \ L−, body+(r′) = body+(r), and
body−(r′) = body−(r) \ L−.

We define trp(P,L) to be the program obtained from P by
1. deleting each rule r that has an atom p ∈ head(r) or
p ∈ body−(r) with p ∈ L, and

3070

2. replacing each rule r that has an atom p ∈ body+(r)
with p ∈ L by a rule r′ such that head(r′) =
head(r), body+(r′) = body+(r)\L+, and body−(r′) =
body−(r).

Note that trn(P,L) (resp. trp(P,L)) does not contain any
atoms in L− (resp. L+) and trp(trn(P,L), L) does not con-
tain any atoms occurring in L.

The following property explains why WFM(P) can be
used to simplify the program P .

Proposition 3 Let P be a DLP and L =WFM(P).

(i) P and trp(trn(P,L), L) ∪ {p ← | p ∈ L} have the
same set of answer sets.

(ii) P ∪ {← p | ¬p ∈ L} is strongly equivalent to

trp(trn(P,L), L) ∪ {p← | p ∈ L} ∪ {← p | ¬p ∈ L}.

Both conditions in Proposition 3 would no longer be true,
if L is larger than WFM(P).

Example 1 Consider the logic program P0:

a← b, b← not c, c← not b, ← not a.

WFM(P0) = ∅, L = {a} is a consequence of P0, and
trp(trn(P0, L), L) = {b ← not c, c ← not b}. Notice that,
{a, c} is an answer set of trp(trn(P0, L), L)∪{p← | p ∈ L},
but not an answer set of P0.

Proposition 4 Let L be a consequence of a DLP P .

• P and trn(P,L) have the same set of answer sets.
• P ∪ {← p | ¬p ∈ L} is strongly equivalent to
trn(P,L) ∪ {← p | ¬p ∈ L}.

• An answer set of P is always an answer set of
trp(P,L)∪{p←| p ∈ L}, but not vice versa in general.

Proof Sketch: For any nonempty set E of atoms,
under L, the loop formula LF (E,P) is equiva-
lent to LF (E, trn(P,L)), and LF (E,P) implies
LF (E, trp(P,L) ∪ {p←| p ∈ L}).

Given a consequence L of a DLP P , we can simplify the
program by trn(P,L) which would no longer contain atoms
appearing in L−. However, we cannot use trp(P,L) to sim-
plify P in general.

Example 2 Consider the logic program P1:

a← b, c← a, b← c, c← d, a← f,

d← not e, e← not d, ← not a, f ← a.

L = {a, f} is a consequence of P1, and trp(P1, L) is:

c←, b← c, c← d, d← not e, e← not d.

The only answer set of P1 is {a, b, c, d, f}. However,
trp(P1, L) has two answer sets: {b, c, d} and {b, c, e}.

In the next section, we consider when the conditions in
Proposition 3 would be true for a positive consequence L.

4 Strong and Weak Reliable Sets
In this section, we introduce notions of the strong reliable set
and the weak reliable set, so that they specify sufficient and
necessary conditions when a positive consequence L satisfies
condition (ii) and (i) in Proposition 3 respectively. We also
explore computational complexity on identifying a strong or
a weak reliable set.

Given a DLP P , a set U of atoms is a strong reliable
set of P , if for every nonempty subset E of U and every
SE-model (X,Y) of P , there exists a rule r ∈ R−(E,P)
such that head(r) ∩ X ⊆ E, body+(r) ⊆ X ∪ U , and
body−(r) ∩ (Y ∪ U) = ∅.
Proposition 5 If U is a strong reliable set of a DLP P ,
then for every SE-model (X,Y) of P , U ⊆ X , and U is a
consequence of P .

Proof Sketch: From the definition, for every SE-model
(X,Y) of P and every nonempty subset E of U , U \E ⊆ X
implies E ∩X 6= ∅. P is finite, then U ⊆ X .
Theorem 1 Let P be a DLP and U a set of atoms. P is
strongly equivalent to trp(P,U) ∪ {p←| p ∈ U} if and only
if U is a strong reliable set of P .

Proof Sketch: ⇐: From Proposition 5, for every SE-model
(X,Y) of P , U ⊆ X . Then both programs have the same set
of SE-models.
⇒: Assume that U is not a strong reliable set of P , then

there exists a nonempty subset E of U and a SE-model
(X,Y) of P that prevent U to be a strong reliable set.
From the definition, X \ E satisfies PY , so (X \ E, Y)
is also a SE-model of P , which conflicts to the fact that
(X\E, Y) is not a SE-model of trp(P,U)∪{p←| p ∈ U}.

So given a positive consequence L of a DLP P , the
condition (ii) in Proposition 3 is true if and only if L is a
strong reliable set of P .

Before defining the notion of the weak reliable set, we
introduce a notation. Given a DLP P and a set U of atoms,
a SE-model (X,Y) of P is called a U -equilibrium model
of P , if U ⊆ Y , Y \ U = X \ U and there does not exist
another set X ′ such that X ′ \U ⊂ X \U and (X ′ ∪U, Y) is
a SE-model of P . We show that, a U -equilibrium model of
P is related to an answer set of trp(P,U).

Lemma 1 Let P be a DLP and U a set of atoms. A SE-
interpretation (X,Y) is a SE-model of trp(P,U) if and only
if there exists a SE-model (X∗, Y ∗) of P such that X∗ =
X ∪ U and Y ∗ = Y ∪ U .

Proposition 6 Let P be a DLP and U a set of atoms. A set S
is an answer set of trp(P,U) if and only if there exists a U -
equilibrium model (X,Y) of P such thatX\U = Y \U = S.

Proof Sketch: ⇐: (X,Y) is a U -equilibrium model of P ,
thenX∪U = Y ∪U and (X∪U, Y ∪U) is a SE-model of P .
So (X \ U, Y \ U) is a SE-model of trp(P,U). Meanwhile,
there does not exist a set X ′ such that X ′ \ U ⊂ X \ U
and (X ′ ∪ U, Y ∪ U) is a SE-model of P . From Lemma 1,
(X ′ \ U, Y \ U) is a SE-model of trp(P,U). So X \ U is an
answer set of trp(P,U).
⇒: S is answer set of trp(P,U), then (S ∪ U, S ∪ U)

is a SE-model of P and there does not exists a set S′ such

3071

that S′ ⊂ S and (S′, S) is a SE-model of trp(P,U). From
Lemma 1, (S′ ∪ U, S ∪ U) is a SE-model of P . Then
(S ∪ U, S ∪ U) is a U -equilibrium model of P .

Given a DLP P , a set U of atoms is a weak reliable set
of P , if for every nonempty subset E of U and every U -
equilibrium model (X,Y) of P , there exists a rule r ∈
R−(E,P) such that head(r)∩X ⊆ E, body+(r) ⊆ X ∪U ,
and body−(r) ∩ (Y ∪ U) = ∅.

Similar to the proof of Proposition 5, we have the following
proposition.
Proposition 7 If U is a weak reliable set of a DLP P , then
for every U -equilibrium model (X,Y) of P , U ⊆ X , and U
is a consequence of P .

Theorem 2 Let P be a DLP and U a set of atoms. P and
trp(P,U) ∪ {p ←| p ∈ U} have the same set of answer sets
if and only if U is a weak reliable set of P .

Proof Sketch: ⇐: From Proposition 7, for every U -
equilibrium model (X,Y) of P , U ⊆ X , then X = Y . From
Proposition 6, for every answer set S of trp(P,U), there ex-
ists a U -equilibrium model (S∪U, S∪U) of P , then S∪U is
an answer set P . So P and trp(P,U) ∪ {p ←| p ∈ U} have
the same set of answer sets.
⇒: If U is not a weak reliable set of P , then there exists a

U -equilibrium model (X,Y) of P and a nonempty subset E
of U that prevent U to be a weak reliable set of P . Similar to
the proof for Theorem 1, (X \ E, Y) is also a U -equilibrium
model of P . Then Y is not an answer set of P but Y is an
answer set of trp(P,U) ∪ {p←| p ∈ U}.

So given a positive consequence L of a DLP P , the con-
dition (i) in Proposition 3 is true if and only if L is a weak
reliable set of P .
Proposition 8 Let P be a DLP and U a set of atoms. If U is
a strong reliable set of P , then U is a weak reliable set of P .

Proposition 9 If U1 and U2 are strong (resp. weak) reliable
sets of a DLP P , then U1 ∪ U2 is also a strong (resp. weak)
reliable set of P .

Given a DLP P , there exists the greatest strong (resp. weak)
reliable set of P , denoted by GSRS(P) (resp. GWRS(P)),
i.e., the union of all possible strong (resp. weak) reliable sets.
Proposition 10 Let P be a DLP and U a set of atoms.
• Deciding whether U is a strong reliable set of P is

coNP-complete.
• Deciding whether U is a weak reliable set of P is coNP-

hard.
• Deciding whether U is equivalent to GSRS(P) (resp.
GWRS(P)) is coNP-hard.
• Deciding whether an atom p is in GSRS(P) (resp.
GWRS(P)) is coNP-hard.

Proof Sketch: The first item is a coNP problem, as we can
guess a nonempty subsetE ofU and a SE-model (X,Y) of P
which prevents U to be a strong reliable set.

The hardness is proved by converting the UNSAT problem
to these problems. Let t and e be new atoms not appearing in
a set C of clauses, and Atoms(C) the set of atoms in C. We
can construct a DLP P from C by:

• adding rules t ∨ e ∨
∨

p∈Atoms(C) p← and t← e,
• for each clause C ∈ C, adding the rule e ∨

∨
¬p∈C p ←∧

q∈C q, and
• for each atom p ∈ Atoms(C), adding rules t ← p and
p← e.

It can be verified that U = Atoms(C) ∪ {t, e} is a strong
reliable set of P if and only if C is not satisfiable. More-
over, U is a strong reliable set of P iff it is a weak reliable
set of P iff U = GSRS(P) = GWRS(P) iff e ∈ GSRS(P).

Even when P is an NLP, it is still hard to recognize a strong
or a weak reliable set.
Proposition 11 Let P be an NLP and U a set of atoms.
• Deciding whether U is a strong (resp. weak) reliable set

of P is coNP-complete.
• Deciding whether U is equivalent to GSRS(P) (resp.
GWRS(P)) is coNP-hard.
• Deciding whether an atom p is in GSRS(P) (resp.
GWRS(P)) is coNP-hard.

Proof Sketch: As P is an NLP, whether a SE-model (X,Y)
is a U -equilibrium model can be checked in polynomial time.
So deciding whether U is a weak reliable set of an NLP P is
a coNP-problem.

The hardness is proved by converting the UNSAT problem
to these problems.

Let e, t, and t′ be new atoms not appearing in a set C of
clauses, and Atoms(C) the set of atoms in C. We can con-
struct an NLP P from C by:
• adding rules e← t, t← not t′, t′ ← not t, and← t′, e,
• for each atom p ∈ Atoms(C), adding the rule p ← e,

and
• for each clause C ∈ C, adding the rule e ←

∧
¬p∈C p ∧∧

q∈C ¬q.

It can be verified that U = Atoms(C) ∪ {e, t} is a strong
reliable set of P if and only if C is not satisfiable. More-
over, U is a strong reliable set of P iff U is a weak reliable
set of P iff U = GSRS(P) = GWRS(P) iff e ∈ GSRS(P).

Now we provide an alternative definition of strong reliable
sets, which implies an approach to recognize a strong reliable
set of a DLP.
Proposition 12 Let P be a DLP and U a set of atoms. U
is a strong reliable set of P if and only if U ⊆ X for every
SE-model (X,Y) of P .
Proof Sketch: From the definition, if U ⊆ X for every
SE-model (X,Y) of P , then U is a strong reliable set of P .
Proposition 5 proves the other direction.

From [Pearce et al., 2001], a DLP P can be translated to a
propositional formula π(P), such that (X,Y) is a SE-model
of P iff X ∪ Ŷ is a model of π(P), where Ŷ is a set of new
atoms for each atom in Y . Based on this result, the following
proposition provides an approach to identify a strong reliable
set of a DLP.
Proposition 13 Let P be a DLP and U a set of atoms. U
is a strong reliable set of P if and only if π(P) |=

∧
U in

propositional logic.

3072

Though, it is difficult to verify whether a positive conse-
quence U is a strong or a weak reliable set of a program P ,
there are some easy cases as follows.

Proposition 14 If U is a positive consequence of a positive
logic program P , then U is a strong reliable set of P .

From Proposition 13, given a DLP P , we can compute a
consequence L by using efficient inference rules, like unit
propagation, on the CNF form of π(P). Then L+ is a strong
reliable set of P andL can be used to simplify the program P .

The notions of the strong and the weak reliable sets also
provide a guideline to explore classes of positive consequence
that could be used to simplify the program. We provide such
an example in the next section.

5 Reliable Sets Under a Consequence
Guided by the definition of strong reliable sets, we introduce
a sufficient condition for a consequence to simplify a logic
program. We also provide an algorithm to identify the class
of consequences specified by this sufficient condition. We
show that for some programs, the consequence in the class is
larger than the well-founded model.

Given a DLP P and a consistent set L of literals, a set U
of atoms is a reliable set of P under L, if for every nonempty
subset E of U , there exists a rule r ∈ R−(E,P) such that
head(r) \ L− ⊆ E and U ∪ (L \ L+) |= body(r).

Let L be a consequence of a DLP P . A reliable set of P
under L is also a strong (resp. weak) reliable set of a DLP
constructed from P and L.

Proposition 15 Let P be a DLP, U a set of atoms, and L a
consequence of P . If U is a reliable set of P under L, then U
is a strong and a weak reliable set of the program:

P ∪ {← not p | p ∈ L} ∪ {← p | ¬p ∈ L}.

Proof Sketch: U is a reliable set of P under L. From the
definition, for any SE-model (X,Y) of P with L+ ⊆ Y
and L− ∩ Y = ∅ and any nonempty subset E of U , if
U \ E ⊆ X , then E ∩ X 6= ∅. There is a finite number of
atoms, then U ⊆ X . So there exists a rule r ∈ R−(E,P)
such that head(r) ∩ X ⊆ E, body+(r) ⊆ X ∪ U and
body−(r) ∩ (Y ∪ U) = ∅. U is a strong and a weak reliable
set of the new program.

From Proposition 15, Theorem 1 and 2, the notion can be
used to simplify a logic program.

Corollary 3 Let P be a DLP, U a set of atoms, and L a con-
sequence of P . If U is a reliable set P under L, then

(i) P and trp(U) ∪ {p ←| p ∈ U} have the same set of
answer sets.

(ii) P ∪ {← not p | p ∈ L} ∪ {← p | ¬p ∈ L} is strongly
equivalent to

trp(P,U) ∪ {p←| p ∈ U}
∪ {← not p | p ∈ L} ∪ {← p | ¬p ∈ L}.

The strongly equivalent relation mentioned in the previous
corollary can be further specified in the following theorem.

Theorem 4 Let P be a DLP, U a set of atoms, and L a con-
sistent set of literals.

{r | r ∈ P, head(r) \ L− ⊆ U ∪ L+}
∪ {← p | ¬p ∈ L} ∪ {← not p | p ∈ L}

is strongly equivalent to
{p← | p ∈ U} ∪ {← p | ¬p ∈ L} ∪ {← not p | p ∈ L}

if and only if U is a reliable set of P under L.
Proof Sketch: Let P1, P2 stand for these programs respec-
tively.
⇐: U is a reliable set of P under L implies U is a strong

reliable set of P1 under L. The direction can be proved from
Corollary 3.
⇒: Assume that U is not a reliable set of P under L, then

there exists a nonempty subset E of U which prevents U to
be a strong reliable set of P under L. It can be verified that
(U ∪ L+) \E satisfies PU∪L+

1 , so ((U ∪ L+) \E,U ∪ L+)
is a SE-model of P1, which conflicts to the fact it is not a
SE-model of P2.

Proposition 16 If U1 and U2 are reliable sets of a DLP P
under a consistent set L of literals, then U1 ∪ U2 is also a
reliable set of P under L.
Given a DLP P and a consistent set L of literals, there
exists the greatest reliable set of P under L. We denote it by
GRS(P,L), i.e., the union of all possible reliable sets of P
under L.
Example 3 (Example 2 continued) Recall that L = {a, f}
is a consequence of P1. From the definition, GRS(P1, L) =
∅. L′ = {¬e} is another consequence of P1, and
GRS(P1, L

′) = {a, b, c, d, f}.
Proposition 17 Let P be a DLP, U a set of atoms, and L a
consequence of P .
• Deciding whether U is a reliable set of P under L is

coNP-complete.
• Deciding whether U is equivalent to GRS(P,L) is

coNP-hard.
• Deciding whether an atom p is in GRS(P,L) is coNP-

hard.
Proof Sketch: The first item is a coNP problem, as we can
guess a corresponding setE which prevents U to be a reliable
set of P under L.

In the proof of Proposition 10, the set U =
Atoms(C) ∪ {t, e} is a strong reliable set of P iff U is a reli-
able set of P under ∅ iffU = GRS(P, ∅) iff e ∈ GRS(P, ∅).

When P is an NLP, GRS(P,L) can be computed effi-
ciently. In the following, we provide such a polynomial time
algorithm, which can also be used to compute a subset of
GRS(P,L) for a DLP P .

Let P be a DLP, X a set of atoms and L a set of literals.
TP,L(X) = {p | there is a rule r ∈ P such that p ∈ head(r),

(L \ L+) ∪X |= body(r) ∧
∧

q∈head(r)\{p}

¬q}.

TP,L is a monotonic operator. We use T (P,L) to denote the
least fixed point of TP,L.

3073

Proposition 18 Let P be an NLP and L a consistent set of
literals. GRS(P,L) = T (P,L).

Proof Sketch: (1) If U is a reliable set of P under L, then
TP,L(U) is also a reliable set of P under L. So T (P,L) ⊆
GRS(P,L).

(2) If there is an atom p ∈ U , U is a reliable set of P
under L, and p /∈ T (P,L), then U \ {p} 6⊆ T (P,L). So
GRS(P,L) ⊆ T (P,L).

Note that, T (P,L) can be computed in polynomial time,
then GRS(P,L) can be computed efficiently for NLPs.

Proposition 19 Let P be a DLP and L a consistent set of
literals. T (P,L) ⊆ GRS(P,L).

We show that GRS(P,L) also extends the well-founded
operator.
Proposition 20 Let P be a DLP,L1 andL2 be consistent sets
of literals with L1 ⊆ L2. The following hold:
• WFM(P)+ ⊆ GRS(P,¬WFM(P)−).
• GRS(P,L1) ⊆ GRS(P,L2).

Example 4 Consider the NLP P2:

a← not b, b← not a, ← a.

WFM(P2) = ∅, L = {¬a, b} is a consequence of P2, and
T (P2, L) = GRS(P2, L) = {b}.
Example 5 Consider the DLP P3:

a ∨ b←, a← b, b← a.

GRS(P3, ∅) = {a, b}, T (P3, ∅) = ∅, and WFM(P3) = ∅.
We also provide an algorithm for computing GRS(P,L),

when P is a DLP. Given a DLP P , a set X of atoms, and
a set L of literals, the operator RSP,L(X) is defined in Al-
gorithm 1. Note that, RSP,L(X) is monotonic. We use
RS(P,L) to denote the least fixed points of the corresponding
operators.

Algorithm 1: RSP,L(X)

1 A := X;
2 H := {head(r) \L− | r ∈ P, head(r)∩ body+(r) = ∅,
3 X ∩ head(r) = ∅, and
X ∪ (L \ L+) |= body(r)};

4 for each C ∈ H do
5 if |C| = 1 or
6 for each p ∈ C, C ⊆ RSP,L(X ∪ {p}) then
7 A := A ∪ C;

8 return A

Proposition 21 Let P be a DLP and L a consistent set of
literals. GRS(P,L) = RS(P,L).

Proof Sketch: The proof is similar to Proposition 18.
Additionally with the fact that, if C 6⊆ RSP,L(X ∪ {p}) for
some p ∈ C, then for the set E = C \ {p}, there does not
exist a corresponding rule r ∈ R−(E,P), which prevents
C ∪X to be a reliable set of P under L.

Now we compare the reliable set under a consequence of
a program with the results computed from the approximation
of the well-founded operator. Given a logic program P ,
we can preprocess P by the grounding engine gringo [Geb-
ser et al., 2007b] (or lparse) and receive the simplified
program P ′. In specific, P ′ is consisted from two parts
P ∗ and R, where no atoms in WFM∗(P) occurring in
P ∗, R = {p ←| p ∈ WFM∗(P)}, and WFM∗(P) is an
approximation of WFM(P) by gringo. We can compute a
consequence of P ∗ by applying unit propagation to the set
of clauses obtained from the rules in P ∗. For example, let
P ∗ = {p ∨ q ←, q ← not r, ← r}, the corresponding set of
clauses is {p ∨ q, q ∨ r, ¬r}, and the consequence computed
by applying unit propagation is {¬r, q}. Notice that both
gringo and lparse do not compute the full well-founded
model, unit propagation would produce useless conse-
quences for programs that have no answer sets. Then we also
characterize the benchmark by the number of programs that
have no answer sets. Based on such consequence L, we can
compute T (P ∗, L). From Proposition 18 and 19, it is equal
to GRS(P ∗, L) if P ∗ is an NLP; it is a subset of GRS(P ∗, L)
if P ∗ is a DLP. In the following, for the program P ′ grounded
by gringo, we use GRS∗ to denote such T (P ∗, L).

We have implemented a program to computeGRS∗ for pro-
grams grounded by gringo (version 4.4.0). Table 1 contains
average sizes of consequences and GRS∗ of P ∗ for different
instances from 3 classes of NLPs and 2 classes of DLPs, and
average times for computing these notions 1.

These benchmarks were frequently used to compare the
performance of ASP solvers [Denecker et al., 2009; Gebser
et al., 2013]. If a class’s name contains “(N)” (resp. “(D)”)
then instances in the class are NLPs (resp. DLPs). In the ta-
ble, a number under “#ins” denotes the number of instances in
the corresponding class, a number under “#NAS” denotes the
number of instances which have no answer sets in the cor-
responding class and a number under “#WFM” denotes the
average number of facts in grounded programs, which is also
the size of positive consequence in WFM∗(P ′).

Table 1: Comparing WFM and GRS∗

Benchmark #ins #NAS #WFM Consequence GRS∗

size time(s) size time(s)

15-Puzzle(N) 9 0 85 1452 1379.27 0 5.96
Factoring(N) 5 3 0 2805 435.82 148 23.49
SchurNumbers(N) 5 0 48 284 46.60 91 0.74
Mutex(D) 7 7 3224 2935 128.10 0 0.01
RQBF(D) 15 15 80 11 0.07 0 0.00

The result shows that for some programs in benchmarks,
GRS∗ is larger than the results computed from the approxi-
mation of the well-founded operator. The performance could
be improved when a larger consequence is considered. We
have also implemented a program for Algorithm 1 to com-
pute GRS(P,L) for DLPs. However the program requires a
long running time and returns nothing more than GRS∗ for
benchmarks.

6 Conclusions
In this paper, we consider when a consequence of a logic pro-
gram can be used to simplify a logic program so that the re-
sulting program would no longer contain atoms appearing in

1.http://ss.sysu.edu.cn/%7ewh/simplifying.html

3074

the consequence. We introduce notions of the strong and the
weak reliable set of a program. We show that a logic program
is strongly equivalent to the simplified program if and only
if the consequence is a strong reliable set, and they have the
same answer sets if and only if the consequence is a weak reli-
able set. We explore computational complexity on identifying
a strong or a weak reliable set and provide an approach to ver-
ify a strong reliable set. These notions can provide a guideline
to explore classes of consequences that could be used to
simplify a logic program. As an example, we introduce the
notion of the reliable set under a consequence of a program,
which extends the well-founded model and provides a suffi-
cient condition for a consequence to simplify a logic program.
We also provide an algorithm to compute the notion. We
plan to extend the idea to other notions of equivalence, such
as relativized, uniform equivalence, and hyperequivalence,
and find out corresponding applications in future.

7 Acknowledgments
We are grateful to Fangzhen Lin for many helpful and infor-
mative discussions. We would also like to thank Xiaoping
Chen and his research group for their useful discussions.
Jianmin Ji’s research was partially supported by the National
Natural Science Foundation of China under grant 61175057,
the National Natural Science Foundation for the Youth of
China under grant 61403359, as well as the USTC Key Direc-
tion Project and the USTC 985 Project. Hai Wan thanks Natu-
ral Science Foundation of Guangdong Province of China (No.
S2012010009836), and Guangzhou Science and Technology
Project (No. 2013J4100058) for the support of this research.

References
[Chen et al., 2013] Xiaoping Chen, Jianmin Ji, and Fangzhen Lin.

Computing loops with at most one external support rule.
ACM Transactions on Computational Logic (TOCL), 14(1):3–40,
2013.

[Clark, 1978] Keith L. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Databases, pages 293–322. Plenum
Press, New York, 1978.

[Denecker et al., 2009] Marc Denecker, Joost Vennekens, Stephen
Bond, Martin Gebser, and Mirosław Truszczyński. The second
answer set programming competition. In Proceedgins of the 10th
International Converence on Logic Programming and Nonmono-
tonic Reasoning (LPNMR-09), pages 637–654. Springer, 2009.

[Drescher et al., 2008] Christian Drescher, Martin Gebser, Torsten
Grote, Benjamin Kaufmann, Arne König, Max Ostrowski, and
Torsten Schaub. Conflict-driven disjunctive answer set solving.
In Proceedings of the 11th International Conference on Prin-
ciples of Knowledge Respresentation and Reasoning (KR-08),
pages 422–432, 2008.

[Eiter et al., 2004] Thomas Eiter, Michael Fink, Hans Tompits, and
Stefan Woltran. Simplifying logic programs under uniform and
strong equivalence. In Logic Programming and Nonmonotonic
Reasoning, 7th International Conference, LPNMR 2004, Fort
Lauderdale, FL, USA, January 6-8, 2004, Proceedings, pages
87–99, 2004.

[Ferraris, 2005] Paolo Ferraris. Answer sets for propositional theo-
ries. In Proceedings of the 8th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-05), Dia-
mante, Italy, September 5-8, 2005, pages 119–131, 2005.

[Gebser et al., 2007a] Martin Gebser, Benjamin Kaufmann, André
Neumann, and Torsten Schaub. clasp: A conflict-driven answer
set solver. In Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-
07), pages 260–265. Springer, 2007.

[Gebser et al., 2007b] Martin Gebser, Torsten Schaub, and Sven
Thiele. Gringo: A new grounder for answer set programming. In
Proceedings of the 9th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR-07), pages
266–271. Springer, 2007.

[Gebser et al., 2013] Martin Gebser, Benjamin Kaufmann, and
Torsten Schaub. Advanced conflict-driven disjunctive answer set
solving. In Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI-13), pages 912–918. AAAI
Press, 2013.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lif-
schitz. Classical negation in logic programs and disjunctive
databases. New generation computing, 9(3-4):365–385, 1991.

[Lee and Lifschitz, 2003] J. Lee and V. Lifschitz. Loop formulas
for disjunctive logic programs. In Proceedings of the 19th In-
ternational Conference on Logic Programming (ICLP-03), pages
451–465, 2003.

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and Francesco
Scarcello. Disjunctive stable models: Unfounded sets, fix-
point semantics, and computation. Information and computation,
135(2):69–112, 1997.

[Leone et al., 2002] Nicola Leone, Gerald Pfeifer, Wolfgang Faber,
Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Georg Gott-
lob, Giovambattista Ianni, Giuseppe Ielpa, Christoph Koch, et al.
The dlv system. In Proceedings of the 8th European Conference
on Logics in Artificial Intelligence (JELIA-02), pages 537–540.
Springer-Verlag, 2002.

[Lierler and Maratea, 2004] Yuliya Lierler and Marco Maratea.
Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-
04), pages 346–350. Springer, 2004.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and
Agustı́n Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic (TOCL), 2(4):526–541,
2001.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. Assat: Com-
puting answer sets of a logic program by sat solvers. Artificial
Intelligence, 157(1):115–137, 2004.

[Pearce et al., 2001] David Pearce, Hans Tompits, and Stefan
Woltran. Encodings for equilibrium logic and logic programs
with nested expressions. In Proceedings of the 10th Portuguese
Conference on Artificial Intelligence (EPIA-01), pages 306–320.
Springer, 2001.

[Syrjänen and Niemelä, 2001] Tommi Syrjänen and Ilkka Niemelä.
The smodels system. In Proceedings of the 6th International
Conference on Logic Programming and Nonmotonic Reasoning
(LPNMR-01), pages 434–438. Springer, 2001.

[Syrjänen, 2000] Tommi Syrjänen. Lparse 1.0 user’s manual. 2000.
[Turner, 2003] Hudson Turner. Strong equivalence made easy:

nested expressions and weight constraints. Theory and Practice
of Logic Programming, 3(4):609–622, 2003.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A Ross, and
John S Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM (JACM), 38(3):619–649, 1991.

3075

