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Abstract

Parameterized complexity is a well recognized ve-
hicle for understanding the multitude of complexity
AI problems typically exhibit. However, the promi-
nent problem of belief revision has not undergone a
systematic investigation in this direction yet. This
is somewhat surprising, since by its very nature of
involving a knowledge base and a revision formula,
this problem provides a perfect playground for inves-
tigating novel parameters. Among our results on the
parameterized complexity of revision is thus a versa-
tile fpt algorithm which is based on the parameter of
the number of atoms shared by the knowledge base
and the revision formula. Towards identifying the
frontier between parameterized tractability and in-
tractability, we also give hardness results for classes
such as co-W[1], para-ΘP

2 , and FPTNP[f(k)].

1 Introduction
Belief revision [Alchourrón et al., 1985] is a core formalism
of Artificial Intelligence (see e.g. [Peppas, 2008]) aiming for
a formal way of adapting one’s beliefs in the light of new
information. Following Katsuno and Mendelzon [1991], we
consider revision in the setting where beliefs and new infor-
mation are given as propositional formulas. Operators like the
one by Satoh [1988] characterize the result of revision by a
set of models representing the adapted belief base.

Understanding the computational complexity of reasoning is
an indispensable step towards the design of practically efficient
systems. Unfortunately, Eiter and Gottlob [1992] have shown
that many revision operators suffer from a high computational
complexity in the general case of propositional logic. For
instance, deciding whether a formula follows from the result
of a revision in terms of Satoh’s operator has been shown to be
ΠP

2 -complete. Those results were later strengthened in terms
of model checking by Liberatore and Schaerf [2001]. While
these two papers studied easier cases in terms of the HORN
fragment, other fragments that might lead to tractability have
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not been thoroughly investigated; a recent analysis [Creignou
et al., 2013] for KROM formulas being a notable exception.

Inspecting these results, it becomes clear that tractability
requires rather strong restrictions on the involved formulas,
i.e., the knowledge base and the revision formula. On the
other hand, these components might be of vastly different size
and shape. For exploiting this potential heterogeneity of the
two components towards novel tractability results, parame-
terized complexity and parameterized algorithmics [Downey
and Fellows, 1999] are the formal tools of choice. Here the
complexity is not measured with respect to the input size
alone but also with respect to one or multiple features of
the instance that are expressed as an integer value, the so-
called parameter. Parameterized complexity has been inves-
tigated already in several AI domains (see e.g. [Fellows et
al., 2012; Gottlob and Szeider, 2008; Gottlob et al., 2010;
Lackner and Pfandler, 2012]) and such results have been suc-
cessfully put to practice, in particular in the area of argumen-
tation [Dvořák et al., 2012; 2014].

In this paper we utilize parameterized complexity theory
for belief revision with the aim to keep the restrictions on the
theory and new information as independent and relaxed as
possible without destroying tractability. Our analysis not only
gives new insights on the different sources of complexity of
revision, but also provides the basis for novel implementations.
We shall focus here on Satoh’s operator and start our analysis
by generalizing already established tractable cases from [Eiter
and Gottlob, 1992] as well as the only fpt result we are aware
of, viz. [Pichler et al., 2009] which utilizes the combined
treewidth parameter. The main contributions of our work are:
• We generalize existing tractability results due to Eiter and

Gottlob [1992] via backdoors to Horn and show certain lim-
its of the treewidth approach, in particular we provide para-
coNP-hardness if treewidth is bound independently in the
knowledge base T and the revision formula ϕ. Furthermore,
also combining bounded treewidth of ϕ with the restriction of
T to be Horn results in para-coNP-hardness.
• Towards a generic algorithm, we identify a novel parame-

ter, namely the cardinality of the variables shared by knowl-
edge base T and revision formula ϕ. Our algorithm is fpt
when adding (possibly independent) parameters that make
T ’s and ϕ’s satisfiability fpt. We show that these additional
bounds are necessary, since otherwise completeness for the
class FPTNP[f(k)] is obtained. FPTNP[f(k)] contains prob-
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lems that can be computed by an fpt-algorithm that may make
f(k) many NP oracle calls. From a practical perspective, this
result is interesting since it shows that the problem at hand can
by implemented via an iterative SAT-procedure.
• Finally, we show that a relaxation of the bound on the

shared vocabulary to a bound on the maximum symmetric
distance between models of T and ϕ is less promising since
this increases the complexity to para-ΘP

2 -hardness.

2 Background
Propositional Logic. We consider propositional logic over
some fixed universe U of propositional atoms and standard
connectives ∨, ∧, and ¬. A literal is an atom a or a negated
atom ¬a. A clause is a set of literals. A clause is called Horn
if at most one of its literals is positive. Unless otherwise stated,
formulas are in conjunctive normal form (CNF). For formula ϕ
we denote the set of its clauses by C(ϕ) and its set of atoms by
var (ϕ). A formula is called Horn if all of its clauses are Horn.
We denote by HORN the class of Horn formulas. We represent
an interpretation by a set I ⊆ U containing all variables set to
true. If interpretation I satisfies formula ϕ, we call I a model
of ϕ, denoted by I |= ϕ. By Mod(ϕ) we denote the set of
models of ϕ (over U ). For formulas ϕ and ψ we denote by
ϕ |= ψ that Mod(ϕ) ⊆ Mod(ψ). A truth assignment τ for
a set V ⊆ U is a function that assigns a truth value to each
variable in V . We denote by ϕ[τ ] the formula obtained from
formula ϕ by deleting all clauses satisfied by τ and by deleting
all literals that are set to false by τ from the remaining clauses.

Belief Revision. The problem of belief revision is speci-
fied as follows: Given a knowledge base (i.e., a formula)
T and a formula ϕ, find a revised knowledge base T ◦ ϕ,
such that ϕ is true in all models of T ◦ ϕ and the change
compared to the models of T is “minimal”. Note that T , ϕ
and ψ are throughout the paper assumed to represent theory,
revision formula and query formula. The approach to be-
lief revision we deal with in this paper relies on a so-called
model-based operator. Such operators usually utilize a model
distance M∆M ′ = (M \ M ′) ∪ (M ′ \ M) which yields
the set of atoms differently assigned in interpretations M
and M ′. Assuming that T is consistent (we tacitly make
this assumption throughout the paper), the operator due to
Satoh [1988] can be defined as follows: Mod(T ◦ ϕ) =
{J ∈ Mod(ϕ) | ∃I ∈ Mod(T ) s.t. I∆J ∈ ∆min(T, ϕ)},
∆min(T, ϕ) = min⊆{I∆J | I ∈ Mod(T ), J ∈ Mod(ϕ)},
with min⊆ selecting minimal elements with respect to set
inclusion. The decision problem BR is ΠP

2 -complete even in
case ψ is a single atom [Eiter and Gottlob, 1992].

Cautious (or skeptical) reasoning. (BR)
Instance: CNF formulas T and ϕ, and arbitrary for-

mula ψ with var (ψ) ⊆ var (T ) ∪ var (ϕ).
Problem: Decide if T ◦ ϕ |= ψ holds.

Parameterized Complexity. Recall that FPT denotes the
class of parameterized problems for which there exists an algo-
rithm that decides the problem in time f(k) ·nO(1), where f(·)
is an arbitrary computable function that only depends on the
parameter k. A parameterized reduction of a parameterized

problem Π to a parameterized problem Π′ is an fpt algorithm
that transforms an instance (I, k) of Π to an instance (I ′, k′)
of Π′ such that: (i) (I, k) is a yes-instance of Π if and only
if (I ′, k′) is a yes-instance of Π′, and (ii) k′ = g(k), where
g(·) is an arbitrary computable function that only depends on
k. Hardness and completeness with respect to parameterized
complexity classes is defined analogously to the concepts from
classical complexity theory, using parameterized reductions.
The following parameterized classes will be needed in this
paper: FPT ⊆ co-W[1] ⊆ para-coNP ⊆ FPTNP[f(k)] ⊆
para-ΘP

2 . The class co-W[1] is the co-class of W[1], the first
level of the so-called W-hierarchy. A prominent complete
problem for W[1] is the INDEPENDENT SET problem parame-
terized by the size of the required independent set [Downey
and Fellows, 1995]. Hence its co-problem is complete for
co-W[1]. Parameterized problems in the W-hierarchy share
the property that they can be solved in polynomial time if
the parameter value is fixed to a constant. On the other hand
para-coNP and para-ΘP

2 contain those parameterized prob-
lems that can be reduced via a parameterized reduction to a
coNP-complete or ΘP

2 -complete problem respectively. The
class FPTNP[f(k)] was recently introduced by de Haan and
Szeider [2014b] and contains all problems that can be solved
by an fpt-algorithm that can use f(k) many calls to an NP or-
acle [de Haan and Szeider, 2014a]. Two important parameters
that we use in this paper are treewidth (see e.g. [Bodlaender,
1993]) and backdoors (see e.g. [Gaspers and Szeider, 2012]).
Treewidth and Backdoors. A tree decomposition of a graph
G = (V,E) is a pair (H,χ), where H is a tree and χ maps
each node t of H (we use t ∈ H as a shorthand below) to
a bag χ(t) ⊆ V , such that (i) for each v ∈ V , there is an
t ∈ H , s.t. v ∈ χ(t); (ii) for each {v, w} ∈ E, there is an
t ∈ H , s.t. {v, w} ⊆ χ(t); and (iii) for each t1, t2, t3 ∈ H ,
s.t. t2 lies on the path from t1 to t3, χ(t1) ∩ χ(t3) ⊆ χ(t2)
holds. The width of a tree decomposition is defined as the
cardinality of its largest bag χ(t) minus one. The treewidth
of a graph G, denoted as tw(G), is the minimum width over
all tree decompositions of G. To build tree decompositions
for propositional formulas, we use their incidence graphs. For
formula χ such a graph consists of a vertex for each clause and
each variable occurring in χ, and has as edges all unordered
pairs {x, c} where x ∈ var (χ) appears in clause c ∈ C(χ).

A strong HORN-backdoor set of a propositional formula χ
is a set B of variables such that χ[τ ] ∈ HORN for each truth
assignment τ over the variables B. This means, the cardinality
of such a HORN-backdoor set measures the “distance” of χ
to the class of HORN formulas. We denote with B(χ) the
smallest HORN-backdoor set of χ.

3 Horn, Treewidth and Beyond
We start with an fpt-result for the setting where |var (ϕ)| is
considered as the parameter and where T is HORN. Actually,
this result is implicit in the proof of [Eiter and Gottlob, 1992,
Theorem 8.3], where a polynomial time result was shown if
the length of ϕ is bounded by a constant.

Proposition 1. (implicit in [Eiter and Gottlob, 1992, Theorem
8.3]) BR parameterized by |var (ϕ)| is fpt if T ∈ HORN.
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A successful technique to generalize tractability results is
to move from the restrictions to HORN formulas (or other
tractable fragments of SAT) to the backdoor approach and
use, e.g., strong HORN-backdoor sets. Using this formalism it
is possible to generalize the result of Proposition 1 from the
restriction to HORN formulas to propositional formulas which
are close to being HORN and hence have a small backdoor.

Theorem 2. BR parameterized by |B(T )|+ |var (ϕ)| is fpt.

Proof. Let B be a strong HORN-backdoor set of T . The basic
idea is to iterate over all (2|B| many) assignments τ to B and
to simplify T accordingly. Since T [τ ] ∈ HORN, checking
whether (T [τ ] ◦ ϕ) |= ψ holds is in FPT by Theorem 1.

Notice that this result does not hold if BR is parameterized
by |B(T )| only. In fact, BR remains coNP-complete if T, ϕ ∈
HORN [Eiter and Gottlob, 1992, Theorem 7.2], which also
immediately yields para-coNP-hardness. Another important
structural parameter is the combined treewidth of T , ϕ, and ψ.

Proposition 3. [Pichler et al., 2009, Theorem 1] BR is fpt
when parameterized by tw(T ∧ ϕ ∧ ψ).

These initial fpt results possess quite strong conditions on
T and ϕ. As we will see in the next section, the key to gain
more versatile fpt results is to parameterize on joint properties
of T and ϕ. Before that, we show that further independent
relaxations on T and ϕ indeed increase complexity. Our first
result in this direction is concerned with the situation when
treewidth of T as well as of ϕ are bound individually. Then,
we study the case of bound treewidth on ϕ where T is HORN.

Theorem 4. BR is para-coNP-hard if parameterized by
tw(T ) + tw(ϕ).

Proof. We show coNP-hardness for the acyclic case, i.e.,
tw(T ) = tw(ϕ) = 1 via reduction from the SAT prob-
lem. There we are given a formula χ in CNF and have to
decide whether χ is satisfiable. Given an instance of SAT
χ = c1 ∧ c2 ∧ · · · ∧ cm where c1, . . . , cm are clauses, we con-
struct an instance (T, ϕ, ψ) of BR as follows. Let var (χ) = V .
We create 2m new copies of the set V , denoted by V1, . . . , Vm
and V ′1 , . . . , V

′
m. For variable x ∈ V we denote the i-th copy

by xi and the i-th copy of its primed version by x′i. Addi-
tionally, let r be a new propositional variable. For clause
ci of χ we replace its variables with their i-th copy and
add the literal ¬r. We call the resulting clause γi, e.g., for
c2 = (x ∨ ¬y ∨ z), γ2 = (x2 ∨ ¬y2 ∨ z2 ∨ ¬r). Then
T = (γ1 ∧ γ2 ∧ · · · ∧ γm) ∧

∧
x∈V

∧
1≤i≤m(xi → x′i),

ϕ =
∧
x∈V

∧
1≤i≤m(x′i → x) ∧ (x → xi), and ψ = ¬r.

Note that the incidence graphs of T and ϕ are acyclic.
Next, we show the correctness of the reduction. Assume

that χ is a yes-instance, i.e., there exists M ∈ Mod(χ). We
construct an interpretation M ′, which is a model of T and
ϕ. For all x ∈ V and all 1 ≤ i ≤ m we assign x ∈ M ′ iff
xi ∈M ′ iff x′i ∈M ′ iff x ∈M . Additionally, r ∈M ′. Since
M satisfies all clauses ci, it holds that M ′ satisfies all clauses
γi. The additional implication clauses in T and ϕ are satisfied
by M ′ since all the different copies of the same variable agree
on the truth value. Hence, M ′ is indeed a model of T and of ϕ.

Therefore, M ′ ∈ Mod(T ◦ ϕ). But since r ∈ M ′, it follows
that Mod(T ◦ ϕ) 6|= ¬r. Hence, (T, ϕ, ψ) is a no-instance.

For the other direction, assume that (T, ϕ, ψ) is a no-
instance, i.e., there exists a model M ∈ Mod(T ◦ ϕ) with
r ∈M . First we show thatM is a model of T ∧ϕ. To this end,
we show that there is an interpretationM∗, which is a model of
T ∧ ϕ. This immediately yields ∆min(T, ϕ) = {∅}. We con-
struct the interpretationM∗ as follows: Let r 6∈M∗ and for all
x ∈ V and all 1 ≤ i ≤ m we assign x ∈M∗ iff xi ∈M∗ iff
x′i ∈M∗. The latter part ensures that all implication clauses in
T and ϕ are satisfied. Since r 6∈M∗, it follows that M∗ triv-
ially satisfies all clauses γi, 1 ≤ i ≤ m. Hence, M∗ is indeed
a model of T ∧ϕ and we have ∆min(T, ϕ) = {∅}. Therefore,
we know that M is a model of T ∧ϕ, since M ∈ Mod(T ◦ϕ)
holds by assumption. Next we construct the interpretation
M ′ = M ∩ V and show that M ′ is a model of χ. Since
r ∈M and each clause γi is satisfied by M , there is a literal
from Vi in γi that is true in M . By construction, x ∈ M iff
xi ∈M and hence x satisfies also clause ci in M ′. Since this
holds for all clauses c1, . . . , cm, interpretation M ′ is indeed a
model of χ and χ is a yes-instance.

Theorem 5. BR is para-coNP-hard if parameterized by
tw(ϕ) even if T ∈ HORN.

Proof. Actually, we show coNP-hardness in the case where
ϕ is acyclic, i.e., tw(ϕ) = 1. We give a reduction from the
co-problem of the NP-complete INDEPENDENT SET problem.

Let an instance of INDEPENDENT SET be given by G =
(V,E) and k > 0. The question is, whether there exists a set
of exactly k vertices V ′ ⊆ V such that there exists no edge
between vertices in V ′. Let V = {v1, . . . , vm}. By slight
abuse of notation we use the vertices ofG also as propositional
variables. Thus, we fix the set of variables var (T ∪ ϕ) =
{r, v1, . . . , vm} ∪ {v11 , . . . , v1m, . . . , vk1 , . . . , vkm}, where for
1 ≤ i ≤ m the variables v1i , . . . , v

k
i are k new copies of the

variable vi and r is a new variable.
Similar to the proof of [Lackner and Pfandler, 2012, Theo-

rem 14] we make use of the following subformulas to encode
the INDEPENDENT SET problem. The crucial difference in
this proof is the distribution of the subformulas to T and ϕ.
We define χIS =

∧
{vi,vj}∈E(¬vi∨¬vj), χ1 =

∧
1≤l≤k (vl1∨

· · · ∨ vlm), χ2 =
∧

1≤i≤m
∧

1≤l<l′≤k(¬vli ∨ ¬vl
′

i ), and χ3 =∧
1≤i≤m

∧
1≤l≤k(vli → vi).

The role of χIS is to permit only interpretations over
{v1, . . . , vm} that correspond to an independent set in G. For-
mula χ1 ensures that for each copy l with 1 ≤ l ≤ k there is
an index i with 1 ≤ i ≤ m representing a vertex that is added
to the independent set. In formula χ2 it is ensured that at most
one copy of each vertex can be set to true. Finally, in formula
χ3 the copies vli are mapped back to the original vertices vi in
order to represent the independent set candidate.

The important step is now to distribute these subformulas as
follows. In order to construct a BR instance (T, ϕ, ψ) we set
T = r → (χIS ∧ χ2 ∧ χ3), ϕ = χ1, and ψ = ¬r. Notice that
T can be transformed into CNF by adding the literal¬r to each
clause of χIS∧χ2∧χ3. Observe that T ∈ HORN and tw(ϕ) =
1, since each variable in var (ϕ) occurs only once in ϕ.

3151



For the correctness we show that there is a model M ∈
Mod(T ◦ ϕ) with r ∈M (i.e., (T, ϕ, ψ) is a no-instance) iff
G has an independent set of size k (i.e., yes-instance of INDE-
PENDENT SET). To this end, consider the models in Mod(T ),
of which there are two types. The first type t1 contains the
models M with r 6∈M , whereas the second type t2 contains
models M ′ such that r ∈M ′ and M ′ |= χIS ∧ χ2 ∧ χ3.

Assume there is w.l.o.g. an independent set I ⊆ V with
I = {v1, . . . vk} (of size exactly k). Then, due to construction
of the subformulas χIS, χ1, χ3, χ3, we can construct a model
M such that v ∈ M for all v ∈ {r, v1, . . . , vk, v11 , . . . , vkk},
whereas all other variables are set to false. One can verify that
M is also model of T ∧ϕ and that M is of type t2. Notice that
the first property yields that ∆min(T, ϕ) = {∅} and hence
M ∈ Mod(T ◦ϕ) whereas the second property yields r ∈M .

For the reverse direction assume that there is a modelM∗ ∈
Mod(T ◦ ϕ) with r ∈M∗. Observe that for all models M ∈
Mod(ϕ) with r 6∈M it holds that M ∈ Mod(T ). Hence, we
have ∆min(T, ϕ) = {∅}. Combining this with the assumption
that M∗ ∈ Mod(T ◦ ϕ) it follows that M∗ |= T . But since
r ∈M∗, i.e. it is of type t2, we know thatM∗ |= χIS∧χ2∧χ3.
From M∗ |= ϕ it follows that M∗ |= χ1. Since the models of
formula χIS ∧ χ1 ∧ χ2 ∧ χ3 correspond to independent sets
of G of size k [Lackner and Pfandler, 2012, Theorem 14], it
follows that V ∩M∗ is an independent set of G of size k.

With help of the construction used in the proof of Theo-
rem 5, we obtain the following result where the number of
clauses in ϕ, |C(ϕ)|, is used as a parameter.
Corollary 6. BR is co-W[1]-hard if parameterized by |C(ϕ)|
even if T ∈ HORN.

Proof. We reduce from the co-problem of INDEPENDENT SET
parameterized by the size of the independent set k, which is
co-W[1]-complete. In the construction used in the proof of
Theorem 5, |C(ϕ)| is bounded by k. Therefore, the reduction
is an fpt-reduction, which yields the result.

4 Shared Variables
If we take a closer look at the constructions used in the proofs
of Theorem 4 and 5, we realize that the number of shared
variables, i.e., |var (T ) ∩ var (ϕ)|, is unbounded. As it turns
out in our next result, using these shared variables as parameter
yields a versatile fpt-result.
Theorem 7. Let S = var (T ) ∩ var (ϕ) and let pT and pϕ be
parameters such that for any assignment τ to S ∪ var (ψ) the
SAT problem of T [τ ] and ϕ[τ ], respectively, can be decided
by an fpt-algorithm. Then BR parameterized by |S|+pT +pϕ
is fpt for queries ψ of constant size.

Proof. The postulated algorithm is Algorithm 1. Intuitively,
this algorithm computes first all partial models on the shared
variables. The crucial observation is that the symmetric set
difference of models of T and ϕ is restricted to shared vari-
ables. Hence, it suffices to restrict the expensive minimality
check to those partial models.

We now show the correctness of this algorithm. We claim
thatMT after line 5 contains all truth assignments τ to the vari-
ables in S and ψ such that τ can be extended to a model of T .

Similarly, the setMϕ after line 5 contains all truth assignments
τ to the variables in S and ψ such that τ can be extended to a
model of ϕ. To this end, note that line 2 enumerates all subsets
of the variables in S and ψ. Line 3 extends such a subset to a
truth assignment. In lines 4-5 we test if this truth assignment
can be extended to a model of T and ϕ respectively, and if this
is true, we store the assignment in MT and Mϕ respectively.
Next, we want to compute ∆min(T, ϕ) = min⊆({I∆J |
I ∈ Mod(T ), J ∈ Mod(ϕ)}). We claim that for the set D
in line 6 it holds that D = {X ∪ ¬X | X ∈ ∆min(T, ϕ)},
where ¬X = {¬x | x ∈ X}. Note that the first difference
between line 6 and the definition of ∆min(T, ϕ) is that we
consider the symmetric set difference between assignments
(containing positive and negative literals) instead of models
(containing positive literals only). But this does not change the
correctness, since models I and J disagree on variable x iff the
corresponding assignments I and J disagree on literals x and
¬x. The second difference between line 6 and the definition of
∆min(T, ϕ) is that we consider only assignments over the vari-
ables of S and var (ψ) instead of assignments over all variables.
To see that this does not change the correctness, consider a
arbitrary set δ ∈ ∆min(T, ϕ). We will show that var (δ) ⊆ S.
Assume towards a contradiction that this does not hold, i.e.,
there exists a variable x ∈ var (δ) with x ∈ var (T ) (the case
x ∈ var (ϕ) is symmetric) and x 6∈ S. By definition there ex-
ists I ∈ Mod(T ) and J ∈ Mod(ϕ) such that I∆J = δ. Since
x ∈ δ we know that I and J do not agree on the truth value of
x. But since x 6∈ ϕ there exists J ′ ∈ Mod(ϕ) which differs
from J only in the truth value of x. Note that the resulting
symmetric set difference I∆J ′ is strictly smaller than δ, vio-
lating that δ ∈ ∆min(T, ϕ). Hence, indeed var (δ) ⊆ S and it
is enough to compute the symmetric set differences over as-
signments over variables that contain at least all variables of S.
Next, if we compare line 7 with the definition of Mod(T◦ϕ) =
{J ∈ Mod(ϕ) | ∃I ∈ Mod(T ) s.t. I∆J ∈ ∆min(T, ϕ)}, we
can observe two differences. First, we get again a set of
assignments instead of a set of models (containing positive
literals only). Second, the resulting assignments are restricted
to the variables in S and var (ψ). Formally, we have the rela-
tion R = {(J ∩ (S ∪ var (ψ))) ∪

⋃
x∈J∩(S∪var (ψ)) ¬x | J ∈

Mod(T ◦ ϕ)}. Finally, we have to check T ◦ ϕ |= ψ. This
means we go over each model of T ◦ ϕ and check if any of
these models does not satisfy ψ (lines 8-9). Note that it is
indeed enough to go over assignments I ∈ R since the truth
value of all variables in var (ψ) is fixed in these assignments.

For the complexity, note that the loop in line 2 is executed
2|S∪var (ψ)| times. Since the two SAT calls can be executed
by an fpt-algorithm with respect to parameters pT and pϕ, we
get an overall time for this loop of O∗(2|S∪var (ψ)|(f(pT ) +
g(pϕ))), where f and g are computable functions only de-
pending on pT and pϕ, respectively. Furthermore, the size
of MT and Mϕ after line 5 is bounded by 2|S∪var (ψ)| as well.
Therefore, fpt for |S|, pT and pϕ follows.

Observe that the above result actually gives a family of fpt-
results for BR with the parameter “number of shared variables”
in common. In addition, since the revision formula ϕ usually
does not contribute new knowledge to all parts of the theory,
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Algorithm 1: Fpt-algorithm of Theorem 7
Input: Formulas T, ϕ and ψ.
Output: Decision whether T ◦ ϕ |= ψ holds.

1 MT = ∅, Mϕ = ∅
2 foreach J ∈ 2S∪var (ψ) do
3 I = J ∪

⋃
x∈(S∪var (ψ))\J ¬x

4 if T [I] is satisfiable then MT = MT ∪ {I}
5 if ϕ[I] is satisfiable then Mϕ = Mϕ ∪ {I}
6 D = min⊆({I∆J | I ∈MT , J ∈Mϕ})
7 R = {J ∈Mϕ | ∃I ∈MT s.t. I∆J ∈ D}
8 foreach I ∈ R do
9 if I 6|= ψ then return no

10 return yes

but rather introduces new information on a certain subject, one
can hope that the number of shared variables is rather small
even if theory T is large. The advantage of this result is that
it becomes possible to combine any tractable fragments that
make that satisfiability problem for T and ϕ fpt. Furthermore,
notice that the choice of pT and pϕ is completely independent.
This yields a modular approach that can be instantiated with
any reasonable combination of tractable fragments. For exam-
ple, we obtain an fpt-result where we decouple the treewidth
of T from the treewidth of ϕ if we additionally parameterize
by |var (T ) ∩ var (ϕ)|. Compared to the hardness result in
Theorem 4 we see that the number of shared variables is the
essential parameter to obtain the fpt-result.

Although parameterizing by the number of shared variables
provides an important bridge towards tractability, considering
this parameter in isolation does not yield an fpt result.

Theorem 8. BR is FPTNP[f(k)]-complete if parameterized
by |S|, where S = var (T ) ∩ var (ϕ).

Proof. We start by showing membership in FPTNP[f(k)].
Let (T, ϕ, ψ) be an arbitrary instance of BR with var (T ) ∩
var (ϕ) = S and k = |S|. As discussed in the proof of The-
orem 7, ∆min(T, ϕ) is restricted to variables in S. Hence,
an upper bound for the number of minimal symmetric differ-
ences is given by

∣∣∆min(T, ϕ)
∣∣ ≤ 2k. We can test for each

symmetric difference Z with a single NP oracle call if (i) it is
minimal, or (ii) whether there exist models M and M ′ such
thatM |= T , M ′ |= ϕ withM∆M ′ = Z andM ′ 6|= ψ. Thus,
we can decide whether T ◦ ϕ |= ψ holds by invoking O(2k)
calls to an NP oracle.

We prove hardness via reduction from the FPTNP[f(k)]-
complete problem BH(LEVEL)-SAT [de Haan and Szeider,
2014a] with parameter k, s.t. the constructed instance (T, ϕ, ψ)
satisfies |S| ≤ k. We recall first the definition of the unpa-
rameterized problem BHn-SAT. An instance of this problem
is given by I = (χ1, . . . , χn), where each χi is a formula.
If n = 1, then I is a yes-instance iff χ1 is satisfiable. If
n ≥ 2 is odd then I is a yes-instance iff χn is satisfiable or
(χ1, . . . , χn−1) is a yes-instance of BHn−1-SAT. Otherwise,
if n ≥ 2 is even then I is a yes-instance iff χn is unsatisfiable
and (χ1, . . . , χn−1) is a yes-instance of BHn−1-SAT. A prob-
lem instance of the parameterized problem BH(LEVEL)-SAT

is now such a sequence I = (χ1, . . . , χk) with parameter k,
and we ask whether I is a yes instance of BHk-SAT.

Let now I = (χ1, . . . , χk) be an arbitrary instance of
BH(LEVEL)-SAT. W.l.o.g. we assume disjoint vocabular-
ies for each pair of formulas. We define T =

∧
1≤i≤k qi

and ϕ = (r(I) → q) ∧
∧

1≤i≤k(qi → χi) where q and
the qis are fresh variables, and r(·) is a recursive func-
tion. If k = 1, then r(I) = q1. If k ≥ 2 is odd, then
r(I) = (qk ∨ (r(χ1, . . . , χk−1))). If k ≥ 2 is even, then
r(I) = (¬qk ∧ (r(χ1, . . . , χk−1))). We can transform ϕ
straightforwardly to CNF. Finally let ψ = q.

We show that (T, ϕ, ψ) is a yes-instance of BR iff I is a
yes-instance of BH(LEVEL)-SAT. First, consider the two
cases for each χi: (i) χi is unsatisfiable, or (ii) χi is satisfiable.
If χi is unsatisfiable, then (qi → χi) ≡ ¬qi. Thus, for all
M ∈ Mod(T ◦ ϕ) we have qi /∈ M . If χi is satisfiable,
then there is a model Mi |= χi. Now suppose that there is
a model M ∈ Mod(T ◦ ϕ), s.t. qi /∈ M . It follows that for
an MT |= T we have MT∆M ∈ ∆min(T, ϕ). Let M ′ =
(M \ var (χi)) ∪ (Mi ∩ var (χi)) ∪ {qi, q}. Clearly, M ′ |=
(qi → χi) and M ′ |= (r(I) → q) and thus M ′ |= ϕ. Define
the following model of T : M ′T = M ′ ∪ {qj | 1 ≤ j ≤ k}.
It is straightforward to see that both M ′∆M ′T and M∆MT

are subsets of the shared variables {qj | χj ∈ I}. We can
conclude that M ′∆M ′T ⊂ M∆MT (they differ only in qi,
since qi ∈MT ), contradicting that M ∈ Mod(T ◦ ϕ).

It follows that ∆min(T, ϕ) = {{qi | χi unsatisfiable }}. If
I is a yes-instance of BH(LEVEL)-SAT, we can derive that for
anM ∈ Mod(T ◦ϕ) it holds thatM |= r(I), and thus q ∈M
and M |= ψ. If (T, ϕ, ψ) is a yes-instance of BR, then all
models M ∈ Mod(T ◦ ϕ) satisfy ψ = q, and thus M |= r(I).
This implies that I is a yes-instance of BH(LEVEL)-SAT.

5 Maximum Hamming Distance
Finally, we investigate a further natural relaxation for cap-
turing distance between T and ϕ. Define the maximum
Hamming distance between T and ϕ as |∆|max

(T, ϕ) =
max ({|(I∆J) ∩ S| | I ∈ Mod(T ), J ∈ Mod(ϕ)}), where
S = var (T ) ∩ var (ϕ). In words, |∆|max

(T, ϕ) delivers the
maximum number of shared variables that are assigned differ-
ently in a model of T and a model of ϕ. Bounding S implies a
bound on |∆|max

(T, ϕ). However, parameter |∆|max
(T, ϕ)

is not enough for membership in FPTNP[f(k)].

Theorem 9. BR is para-ΘP
2 -hard if parameterized by maxi-

mum Hamming distance.

Proof. We use a reduction from the ΘP
2 -complete problem

UOCSAT [Kadin, 1989] such that the constructed instance
has a maximum Hamming distance of 5. Let Γ = c1∧· · ·∧cn
be an arbitrary instance of UOCSAT, where Γ is a formula in
CNF with clauses c1, . . . , cn. Γ is a yes-instance of UOCSAT
if it is the case that for all interpretations satisfying a maximum
number of clauses of Γ it holds that they satisfy the same
clauses. For the reduction we utilize encodings for cardinality
constraints. In particular we use so-called at-most constraints,
atMost(i,X), which evaluate to true under an interpretation
M iff |M ∩X| ≤ i. Furthermore, exact(i,X) states that
exactly i variables are assigned to true. One can construct
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FPT co-W[1] hard para-coNP hard FPTNP[f(k)] complete para-ΘP
2 hard

T HORN, |var (ϕ)| (Prop. 1) |C(ϕ)| (Cor. 6) tw(T ) + tw(ϕ) (Thm. 4) |S| (Thm. 8) max. Hamming dist. (Thm. 9)
|B(T )|+ |var (ϕ)| (Thm. 2) T HORN, tw(ϕ) (Thm. 5)

tw(T ∧ ϕ ∧ ψ) (Prop. 3)
|S|+ pT + pϕ (Thm. 7)

Table 1: Parameterized complexity landscape for BR (S = var (T ) ∩ var (ϕ)).

formulas for such constraints which are polynomial in size
(see [Roussel and Manquinho, 2009, Section 22.2.3.]).

For our reduction, we introduce three sets of variables: L =
{li | 1 ≤ i ≤ n}, R = {ri | 0 ≤ i ≤ n}, and A =
{ai | 0 ≤ i ≤ n}. We translate the given formula to Γ∗ =
(l1 ∨ c1) ∧ · · · ∧ (ln ∨ cn). One of the main subformulas for
the reduction is χ = Γ∗ ∧

∧
ri∈R(ri ↔ exact(i, L)). That is,

it contains the instrumented original formula with the fresh
literals lj and variables ri such that any model of χ assigns
ri to true iff i variables from L are assigned to true. A basic
observation is that, ifM |= χ then there is an iwith 0 ≤ i ≤ n
such that M |= ri and for j 6= i it holds that M 6|= rj . In
addition, M satisfies at least n− i clauses of Γ. The formula
χ can be transformed to an equivalent formula in CNF. The
problematic conjuncts are (ri ↔ exact(i, L)). We can change
these to (ri → exact(i, L)), which can be transformed to
CNF in polynomial time, and add further clauses to ensure
that exactly one ri is true in a model of χ. All the formulas in
the sequel of this proof can be easily transformed to CNF, but
for the sake of readability we will use non-CNF formulas.

Construct ϕ = χ ∧ χ′ ∧ ((α → β) → q) ∧
∧
ai∈A(ri ↔

ai) with α = (
∧
ri∈R ri ↔ r′i), β = (

∧
li∈L li ↔ l′i), and

q as a fresh variable. Within this proof if G is a formula,
then we denote by G′ the formula obtained by uniformly
renaming all atoms with a prime. Define T = (

∧
ai∈A ¬ai) ∧

atMost(1, R′) ∧ R′ < R ∧ exact(1, R), where R′ < R =∧
r′j∈R′(r′j → (

∨
j<i ri)). To finish our instance let ψ = q.

We now state some properties of the instance (T, ϕ, ψ).
The instance can be computed in polynomial time w.r.t. Γ. All
three formulas are satisfiable. It holds that |∆|max

(T, ϕ) ≤ 5,
since the shared vocabulary is A∪R∪R′ and all models of ϕ
may assign only one variable per set to true, while all models
of T may assign at most one variable of R′ to true and exactly
one variable of R to true (and none of A). Further, it cannot be
the case that both ri and r′i are in a model of T . It cannot be the
case that ∅ ∈ ∆min(T, ϕ). For eachD ∈ ∆min(T, ϕ) it holds
that ai ∈ D for some 0 ≤ i ≤ n. For two models Mϕ, MT

s.t. Mϕ |= ϕ and MT |= T we have {ai} = Mϕ∆MT only
if {ri, r′j} ⊆ Mϕ for some j < i. A last crucial observation
is that if Mϕ |= ϕ and {ri, r′i} ⊆ Mϕ, then there is a model
MT |= T such that Mϕ∆MT = {ai, r′i}, and there is no
M ′T such that M ′T |= T and Mϕ∆M ′T ⊂ Mϕ∆MT (the set
{ai, r′i} is a minimal symmetric difference we can achieve).

Let n − d be the maximum number of clauses of Γ that
can be simultaneously satisfied. Further let M1,M2 be two
interpretations such that M1 |= ϕ with M1 |= rd ∧ r′d and
M2 |= ϕ with M2 |= rd1 ∧ r′d1 such that d < d1. We show
that (i) M1 ∈ Mod(T ◦ ϕ), and (ii) M2 /∈ Mod(T ◦ ϕ). For
(i), we first show that there is no Mϕ such that Mϕ |= ϕ and
{rd, r′j , ad} ⊆ Mϕ for j < d. Suppose to the contrary that

such an Mϕ exists. Then Mϕ satisfies n − j clauses of Γ′

where n− j > n− d. This is a contradiction to n− d being
the maximum number of clauses simultaneously satisfiable
for Γ. By the observations above, we know that {ad, r′d} is
a minimal symmetric difference we can find for M1 when
comparing it to all models of T . We now show that there are
no Mϕ |= ϕ and MT |= T such that Mϕ∆MT ⊂ {ad, r′d}.
Due to the observations above, we cannot find such models
such that the symmetric difference is a proper subset and does
not contain ad. To achieve the symmetric difference of {ad}
we would need a model of ϕ that assigns rd and r′j to true for
some j < d. This is a contradiction. Thus M1 ∈ Mod(T ◦ϕ).
The second case (ii) follows analogously, just note that we
can find in this case a model of ϕ and model of T such that
the symmetric difference contains only ad1 . It follows that
{M ∈ Mod(T ◦ϕ) |M |= α}∩var (Γ) = {M ′ |M ′ satisfies
a maximum number of clauses of Γ} ∩ var (Γ).

We now show that (T, ϕ, ψ) is a yes-instance of BR iff Γ
is a yes-instance of UOCSAT. Assume Γ is a yes-instance
of UOCSAT. This implies that if an M ∈ Mod(T ◦ ϕ) sat-
isfies α (M |= α) it holds that M |= β (otherwise M would
encode two different interpretations of Γ satisfying a maxi-
mum number of clauses, but satisfying different clause sets).
Thus M |= ψ. The other direction can be shown analogously:
if two models satisfying a maximum number of clauses for
Γ exist, s.t. they satisfy different clauses, then there is an
M ∈ Mod(T ◦ ϕ), s.t. M |= α, M 6|= β, and q /∈M .

We complement this result by an upper bound on the re-
quired number of calls to a SAT-solver in order to solve the
problem. The number of possible symmetric differences pro-
jected to the shared variables S is bounded by

∑d
i=0

(|S|
i

)
,

with d the maximum Hamming distance. We can bound this
by
∑d
i=0

(|S|
i

)
≤ (1 + |S|)d. Thus, we can bound the number

of required NP oracle calls by O((1 + |S|)d).

6 Discussion
In this work we have studied the parameterized complexity
of belief revision for parameters beyond treewidth. We sum-
marize our results in Table 1. In particular, we have explored
to what extend it is possible to decouple the theory from the
revision formula. The parameter “shared variables” turned
out to be crucial to obtain fpt-results in the decoupled setting.
Ultimately, this parameter led to a versatile, modular fpt-result
where tractable fragments of the theory and the revision for-
mula can be combined arbitrarily. Moreover, if we do not rely
on tractable fragments the problem becomes complete for the
recently introduced class FPTNP[f(k)]. This result is interest-
ing as it adds a natural problem to this rather unexplored class,
and, furthermore, it shows the applicability of a SAT-based
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procedure that can solve the problem with a restricted number
of calls if the parameter is bounded. Our result also comple-
ments the work of Delgrande et al. [2007], who presented
algorithms and implementations based on SAT-solvers for be-
lief change problems, and provides further evidence that the
usage of such solvers is a promising and interesting direction
for devising systems in the area of belief revision.

We envisage the study of further belief revision operators,
such as Dalal’s operator [Dalal, 1988], in a parameterized
setting. For other operators, the results might be very differ-
ent as the computational complexity is heavily influenced by
the choice of the operator (cf. [Creignou et al., 2013]). Fur-
thermore, we want to investigate to what extend the shared
variables are key towards tractability for other belief change
formalisms, like belief merging, contraction, or update.
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