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Abstract

We investigate fundamental properties of three-
valued semantics for abstract dialectical frame-
works (ADFs). In particular, we deal with real-
izability, i.e., the question whether there exists an
ADF that has a given set of interpretations as its se-
mantics. We provide necessary and sufficient con-
ditions that hold for a set of three-valued interpre-
tations whenever there is an ADF realizing it un-
der admissible, complete, grounded, or preferred
semantics. Moreover, we discuss how to construct
such an ADF in case of realizability. Our results
lay the ground for studying the expressiveness of
ADFs under three-valued semantics. As a first ap-
plication we study implications of our results on the
existence of certain join operators on ADFs.

1 Introduction

Abstract dialectical frameworks (ADFs) [Brewka and
Woltran, 2010] have been introduced as a generalization of
Dung’s argumentation frameworks (AFs) [Dung, 1995]. In
contrast to AFs, where relations between arguments are re-
stricted to bilateral attacks, the acceptance of a statement in
an ADF may depend on an arbitrary function of the accep-
tance of other statements. This way, it allows for expressing
more complex dependencies between arguments. Tradition-
ally, the semantics of AFs is based on so-called extensions,
i.e., sets of arguments that are in some sense compatible with
each other. Extensions can also be seen as dedicated (two-
valued) interpretations of propositional logic where each ar-
gument stands for a propositional variable. Caminada and
Gabbay [2009] introduced a labeling based semantics for
AFs, where every argument is assigned one of the labels in,
out, or undec with respect to a labeling. Thus, a labeling
can be seen as a three-valued interpretation. When an argu-
ment is in or out it means that it is accepted or rejected,
respectively. The third label undec allows for expressing
a point of view without an explicit judgment on the accep-
tance or rejection of the argument. Brewka ef al. [2013] in-
troduced various three-valued semantics also for ADFs that
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generalize corresponding labeling semantics for AFs. In this
work, our aim is to characterize these semantics. In particu-
lar, we deal with the question whether a given set V' of three-
valued interpretations is realizable by an ADF, i.e., whether
there is an ADF that has V' as its set of admissible, complete,
grounded, respectively, preferred interpretations. We address
the problem by providing necessary and sufficient conditions
that hold for V' whenever there is an ADF realizing V' under
these semantics. In doing so, we continue a series of works on
signatures of argumentation semantics [Dunne et al., 2014,
Baumann et al., 2014; Dyrkolbotn, 2014; Strass, 2015]. This
important line of research fosters the understanding of argu-
mentation formalisms and is a prerequisite for studying di-
verse aspects of their expressiveness (cf. [Gogic et al., 1995;
Dunne et al., 2014; Baumann et al., 2014; Strass, 2015;
Eiter er al., 2013]). With suitable realizability characteriza-
tions at hand we can, e.g., compare what different formalisms
(or one formalism under different semantics) can express,
show whether a language is suitable to capture a given prob-
lem, or identify expressive subclasses of a formalism.

While other previous works deal with AFs, Strass [2015]
also addressed ADFs, investigating realizability under two-
valued semantics, in particular stable and model seman-
tics [Brewka er al., 2013]. We close a gap by characterizing
the three-valued semantics introduced by Brewka et al. For
admissible semantics we identify interpretations that must be
admissible if all interpretations in a given set V' are consid-
ered admissible. It turns out that V" is realizable exactly when
it already contains these induced interpretations. In the case
of grounded and preferred semantics the characterization de-
pends on simple syntactic conditions on V. For complete se-
mantics, we reduce the existence of a realizing ADF to the
existence of a characterization function and provide a com-
plexity argument in favor of this solution. In addition, we
provide a couple of simpler conditions that are necessary but
not sufficient for complete realizability. Our results are based
on constructive proofs and we discuss how to obtain an ADF
realizing a set V' whenever V is realizable.

As a first application of our characterizations we analyze
whether there can be a join operator for ADFs that adheres to
a certain desired requirement. Here, we get different results
for different semantics, e.g., while the answer is positive for
admissible semantics, we show that no such operator can exist
for complete semantics.



2 Preliminaries

Unless stated otherwise, we assume that S is a fixed non-
empty and finite set of statements. Intuitively, a statement
can be seen as a position in a conversation and corresponds
to an argument in the context of AFs. Following Brewka and
Woltran [2010], an ADF is a tuple (S, L, C'), where S is the
set of statements and L C S2 is a set of links between state-
ments. The idea is that the relation L determines for each
statement s on which other statements its acceptance might
depend. We call such a statement a parent of s and denote the
set of parents of s by par(s) = {s’ | (s’,s) € L}. The final
component C' = {Cy | s € S} of an ADF is a set of total
functions C, : 2P%"(*) — [t f}, one for each statement s.
Cs is called acceptance condition of s and if it maps some
R C par(s) to t that means that s is accepted if all state-
ments in R are accepted and all statements in par(s) \ R are
rejected. We denote the set of all ADFs by D.

For convenience, we will use a more compact notation for
ADFs, in which the parent relation L is implicit and accep-
tance conditions are represented by propositional formulas
(acceptance formulas): We represent an ADF as above as a
set D that contains one pair (s, ) for each s € S where ¢
is a propositional formula over S such that for each R C 5,
Cs(R) = tiff R = ¢ (where R is viewed as a two-valued
propositional interpretation and = is defined as usual).

We define semantics for ADFs as in Brewka et al. [2013]
using a slightly different notation. A (three-valued) interpre-
tation v is a function v : S — {t,f,u}, assigning every
statement one of the truth values true (t), false (f), or unde-
fined (u). Next, we introduce some notation that helps us to
work with interpretations. For an interpretation v we use the
sets T, ={se€ S |v(s)=t},F, ={s €5 |v(s) =1},
and U, = {s € S | v(s) = u} to collect the statements
with the same truth values under v. TF, = T, UF, is the
set of defined statements under v and V' denotes the set of
all interpretations. We sometimes represent interpretations
by listing their defined statements, where statements mapped
to f are barred, e.g., the interpretation v with T, = {a},
F, = {b}, U, = {c} is denoted by ab. Furthermore, the
interpretation that maps all statements to u is denoted by vy,.
The information ordering <; between interpretations is de-
fined as <;= {{v,v') € V* | T, C T,,F, C Fy}. Thus,
for two different interpretations v and v/, v <; v’ means that
v’ extends v by assigning more statements a classical truth
value. We write v <; v/ if v <; v and v # v'. The se-
mantics for ADFs we are interested in are defined via two-
valued extensions of three-valued interpretations with respect
to the information ordering. Hence, we identify three-valued
interpretations that do not assign u to any statement with its
corresponding two-valued interpretation. Such an interpre-
tation assigns a truth value to a propositional formula in the
standard way. By Vo, = {v € V | U, = (0} we denote the
set of two-valued interpretations. Given an interpretation v,
the set [v]a = {va € Vo | v <; v} collects the two-valued
extensions of v.

The central device for defining three-valued semantics for
ADFs is the consensus operator that maps an interpretation
v to another interpretation v/, where, intuitively, v’ maps
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statements to truth values of their acceptance formulas on
which the two-valued extensions of v agree: Given an ADF
D, the consensus for an interpretation v is the interpreta-
tion I'p(v), where Tr, )y = {s | (s,0) € D,v'(p) =
tforeveryv’ € [v]o} and Fr )y = {s | (s,¢) €
D,v'(p) = £ forevery v’ € [v]a}.

Definition 1 ([Brewka et al., 2013]) Let D be an ADF. An
interpretation v is

admissible for D if v <; T'p(v);

complete for D if v =T'p(v);

grounded for D if v is complete for D and every v' € V
with v’ <; v is not complete for D;

preferred for D if v is admissible for D and every v' € V
with v <; v’ is not admissible for D.

By adm(D), com(D), grd(D), respectively, pre(D), we de-
note the set of admissible, complete, grounded, respectively,
preferred interpretations for D.

It is known that every grounded and every preferred interpre-
tation for a given ADF D is complete for D and that every
complete interpretation is admissible for D [Brewka et al.,
2013]. For intuition on the different types of semantics we
refer to Baroni ef al. [2011] who discuss them for AFs. Due
to space limitations we present only selected proofs.

3 Characterizing Three-Valued Semantics

Before analyzing concrete semantics, we want to start with a
general observation about the nature of three-valued seman-
tics for ADFs. That is, there is no three-valued semantics un-
der which every set of interpretations can be realized. More
precisely, there is no function o : D — 2V assigning a set of
interpretations to an ADF such that for every V' C V) there is
some ADF D € D with o(F) = V. This is due to a sim-
ple cardinality argument: there are more sets of three-valued
interpretations than ADFs. There are 22" Boolean functions
in n variables and, in order to build an ADF, one of these
functions is required for each statement. As a consequence,
the number of ADFs with n statements is 22" . On the other
hand, for n statements, there are 3™ three-valued interpreta-
tions. Therefore, 23" sets of interpretations exist. The claim
holds as for every natural number n we have 272" < 23",

Approaching from this negative result we now turn our at-
tention to the question which sets can be realized under differ-
ent semantics and how. As a teaser, we want to provide some
numbers for ADFs with three statements on a side note: There
are 16,777,216 ADFs with three statements and 134,217,728
corresponding sets of interpretations. From the latter, only
77,712 can be realized under admissible semantics, 16,618
under complete semantics, 2088 under preferred semantics,
and, finally, only 27 under grounded semantics.

3.1 Admissible Semantics

In this section, we want to characterize sets V' of interpreta-
tions that constitute the admissible interpretations of an ADF.
We start with the observation that the admissibility of inter-
pretations of an ADF require other interpretations to be ad-
missible as well. For identifying them, we introduce the fol-
lowing notion that depends on a set of interpretations.
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Figure 1: All interpretations for S = {a, b} arranged in the
lattice (V, <;). Circled nodes represent interpretations from
a given set V, where dotted circles express membership in
V.4 (@) and dashed circles in VI¢E (b). V' is adm-closed.

adm adm

Definition 2 Let V' C V be a set of interpretations and v € V
an interpretation. We call v adm-induced by V' if for every
s € TF, and every vy € [v]y there is some v’ € V such that
v <; vg and V'(s) = v(s).

V;gﬂl denotes the set of interpretations adm-induced by V.

Note that the definition implies that V' C V24 ; hence every
element of V' is adm-induced by V, but the converse does not
hold for arbitrary sets of interpretations. If it does we call V'
adm-closed:

Definition 3 Let V' C V be a set of interpretations. 'V is
adm-closed if V24 C V.

adm

It turns out that adm-closedness is a necessary condition
for realizability under admissible semantics.

Proposition 1 For every ADF D, adm(D) is adm-closed.
Proof. Consider some interpretation v € adm(D)™ . It
suffices to show that v € adm(D), i.e. that for all (s, p) € D
where s € TF,, and all v, € [v]s it holds that vy(¢) = v(s).
Consider some arbitrary (s, ) € D where s € TF, and
some vy € [v]p. From v € adm(D)"™ , we get that there
is some v € adm(D) with v'(s) = v(s) and v/ <; wva.
But then, from v’ € adm(D) and vy € [v']2, we get that
va(¢) = v'(s). Thus, also va(p) = v(s). O

Next, we show constructively that adm-closedness is also a
sufficient condition for realizability. As we will see, if V' is re-
alizable under admissible semantics, only a particular subset
of V is sufficient to determine all admissible interpretations.
This subset is formed by the adm-defining interpretations of
each statement as defined next.

Definition 4 Given V. C V and s € S, the set of adm-
defining interpretations of s in V' is

Vdef

adm

(s)={veV]|seTF,N

N

v eV <;v

Uu ).

As depicted in Figure 1, this set consists of the <;-minimal
interpretations in which a Boolean value is assigned to s.
Based on that notion, we can define acceptance formulas for
statements that allow us to construct a canonical ADF for a
given set of interpretations.
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Definition 5 Let V' C V be a set of interpretations. The
canonical acceptance formula of a statement s € S in'V is

given by ¥y (s) = ¥ (s) V ¥y, (s) where

7/)\1;(8): \/ ( /\ s'A /\ _‘8/) and
veVAet (s),s€T, €Ty s'€F,
p)=msA A (Y sV V)

VeV (s),5€F, €Ty s€F,

The canonical ADF of V' is given by
CAN (V) = {(s,vv(s)) | s € S}.
Note that CAN (V) is a well-defined ADF.

Proposition 2 Let V' be an adm-closed set of interpretations.
Then, V = adm(CAN (V).

Proof. (C) Towards a contradiction, consider some in-
terpretation v € V such that v ¢ adm(CAN(V)). From
the latter we conclude that there is some s € TF, and
some v € [v]2 such that va(thy(s)) # wv(s). Moreover,
asv € V and s € TF, there must be some v' € VI (s)
with v/ <; v <; vy with v'(s) = v(s). Consider the case
that s € T,. Then, from ve(vy (s)) # v(s) follows that
va (¢ (s)) = f. Consequently, also

va( /\ s A /\ -s') =f.

s'e€T s s'eF

Hence, there is some s’ € TF, such that v'(s") # wva(s'),
being a contradiction to v’ <; vs. For the case that s € F,,
we have v2 (1), (s)) = t and, in particular,

va( \/ s’V \/ s') =t.

s’€T,r s'€F

Again, there must be some s’ € TF,/ such that v'(s") #
va(s") which contradicts v" <; vs.

(D) Now assume v € adm(CAN (V) butv & V. As V' is
adm-closed, v is not adm-induced by V. As a consequence,
there is some s € TFy and some vy € [v]2 such that (%) for
each v/ € V&I (s) it cannot hold that v/ <; vs. From v €
adm(CAN(V)) we get that vo(¥y(s)) = v(s). Consider
the case that s € T,,. Then, from v2 (v (s)) = t follows that
v2(1h (s)) = t as we know that s € T,, implies v2 (17, (s)) =
f. Hence, by definition of ;- (s), there is some v' € V&£ (s)
such that v" <; vo. This is a contradiction to (x). In case that
s € F,, it must hold that v3(¢y,(s)) = f. Again, this means
that there is some v’ € Vadderf](s) such that v’ <; va, leading
to a contradiction to (*). O

We are ready to characterize realizability for admissible se-
mantics.

Theorem 1 Let V' C V be a set of interpretations. There is
an ADF D such that adm(D) = V iff V is adm-closed.

Proof. The ‘if’-direction follows from Proposition 2 and the
‘only if’-direction from Proposition 1. ]

While adm-closedness characterizes sets of admissible in-
terpretations, checking the property for a given set V' is ex-
pensive: we need to check for every interpretation v that is
not contained in V' whether it is adm-induced by V. Follow-
ing the definition of being adm-induced, this would require



to find a v’ € V with v/ <; vy and v'(s) = v(s) for every
two-valued extension vy of v and every s € TF,,.

In the remainder of the section, we show how we can nar-
row the search for such a v’. To this end, we need the follow-
ing notions.

Definition 6 Let v,v’ € V be interpretations. Then,
e v and v’ are compatible if (T, NF,,)U (T, NF,) = 0;

e if v and v' are compatible we denote the interpretation
v with Tyn = T,UTy and Fyv = F,UF, byvlv'.

Compatibility of two interpretations v and v" means that they
do not assign conflicting Boolean truth values to a statement.
As a consequence, if v and v’ are compatible then they have
a common successor with respect to the <;-relation. In par-
ticular, v L v" is a well-defined interpretation that is such a
successor. We can make the following observation.

Proposition3 Let V. C V be a set of interpretations and
v, 0" € V such that v' and v" are compatible. Then,
o U e vind,
Proof. Consider some s € TF,, for v = v/ LI v” and some
vg € [v]2. We have v'(s) = v(s) or v”(s) = v(s). Without
loss of generality assume v’(s) = v(s). The conjecture holds
as ’U/ Si V2. O
We call a set V' C V of interpretations upward-closed if
v Uov” € V for all v',v" € V that are compatible. The
intuition behind the naming is that the property has an upward
effect with respect to the information ordering in the sense
that v’ and v imply the presence of v’ LIv"" which lies higher
than v and v’ in the corresponding lattice (as in Figure 1).
The next result follows from Theorem 1 and Proposition 3.

Proposition 4 For every ADF D, adm(D) is upward-closed.

If we assume non-emptyness and upward-closedness for
the given set of interpretations—properties that are easy to
check, we only need to consider interpretations v’ with v <;
v’ to determine whether an interpretation v is adm-induced.

Lemma 1 Let V' C V be a non-empty upward-closed set of
interpretations and v € V. Then, v € V.4 iff for every vy €
[v]2 there is an interpretation v' € V withv <; v' <; va.

Proof. (=) Consider some vy € [v]z and the set V' =
{v' e V| v <, vg,8 € TF,,v(s) = v'(s)}. As elements of
V' are mutually compatible, there is an interpretation v} such
that Ty; = Uy ey Tor and Fyy = U,y For. Note that
v} is the result of iteratively joining the elements of V' using
the Ll-operator. Hence, as V' is upward-closed and V' C V
we have by Proposition 3 that v), € V. Clearly, v <; vs.
Consider some s € TF,. As v € V24 there must be some
v’ € V withv' <; vg and v(s) = v'(s). From that we get
that v/ € V' and, consequently, v4(s) = wv(s). It follows
that v5 is the interpretation we are looking for because also
vh <; vg holds. (<) The conjecture follows immediately
from Definition 2. (]

In this light, we can reformulate the realizability result for
admissible semantics as follows.

Theorem 2 Let V' C V be a set of interpretations. There is
an ADF D such that adm(D) =V iff

(i) V is non-empty,

(ii) upward-closed, and

(iii) for every v € V such that for every vy € [v]g there is
some v € V withv <; v' <; vy we havev € V.

The first condition makes explicit that every ADF has an ad-
missible interpretation. In particular, it is easy to see that vy, is
admissible for every ADF. In contrast to upward-closedness,
condition (777) has an effect that is downward-directed with
respect to the information ordering, i.e., the membership of
the interpretations v’ in V' enforces the membership of v that
lies on a lower level of the corresponding lattice.

3.2 Complete Semantics

For complete semantics we start with a couple of necessary
conditions for sets com(D), where D is an ADF. The first
condition is downward-oriented. We will need the following
counterpart of the L-operator.

Definition 7 Let v,v' € V be interpretations. We denote the
interpretation v" with Ty = T, N Ty and Fypr = F, NF,
byvuv'.

Proposition 5 Ler D be an ADF and v',v"” € com(D).
Then, there is some v € com(D) withv <; v' and v <; v"".

Note that v <; v’ and v <; v" means that v <; v’ Mv" .
Example 1 Assume S = {a, b, c} and consider the ADF

D = {{a,(maAN—-bA-c)V (aN-bA-c)V
(an=bAc)V(aNbAC)),
(by,(maN=bAc)V(aAbAc)),
{c,(aN=bA=-c)V (aNbAC))}.

D has three complete interpretations, vy, abc, and ab. Re-
garding Proposition 5, vy is the interpretation with vy <;
abc M ab that has to be complete because abc and ab are.
However, the interpretation abc M ab = a, is not complete.

The example shows that, unlike conditions (4¢) and (i%i) of
Theorem 2 that fully determine the interpretations implied to
be admissible, in Proposition 5, v" and v" being complete im-
plies only that one from a class of interpretations is complete.

The next proposition can be considered as an upward-
directed counterpart of Proposition 5.

Proposition 6 Ler D be an ADF and v',v" € com(D) com-
patible interpretations. Then, there is some v € com(D) with
v U <, v

The difference to upward-closedness is that, similar as in
Proposition 5, the implied complete interpretation v is not
uniquely determined by v’ and v"'.

The next three results, however, allow to infer concrete in-
terpretations to be complete under special circumstances. If
we consider two complete interpretation that share a direct
successor with respect to the information ordering, then the
latter is also complete.

Proposition 7 Let D be an ADF and v',v" € com(D) such
that T,y = Ty U{s} and F,,v = F oy U{s} for some statement
s € S. Then, v' Mv"” € com(D).
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Intuitively, in contrast to the general case (cf. Proposition 5),
for the common direct successor of v and v"’ there is no fur-
ther statement whose truth value under one of the two-valued
extensions of v’ Mv” can spoil completeness. A similar argu-
ment justifies the following result.

Proposition 8 Let D be an ADF, vh, vy € Vi, such that
Ty = Ty U{s} or Tyn = Ty U {s} for some statement
s €S, and vh, vy MY € com(D). Then, v € com(D).

The next necessary condition is upward-directed and in-
fers a two-valued interpretation to be complete if there are
<;-predecessors that are complete and jointly assign all state-
ments a Boolean truth value. Note that the result is not an
immediate consequence of Proposition 6.

Proposition 9 Let D be an ADF and V' C com(D) such that
v € Vo, Ty, = Uyey To and Fy, = J, ey Fo. Then, we
have vy € com(D).

The following example shows that the necessary conditions
expressed in Propositions 5-9 are not sufficient to guarantee
realizability under complete semantics.

Example 2 Assume S = {a,b,c} and consider the set V =
{vu,a, b, ¢, abc}. V fullfills the properties stated for com(D)
in Propositions 5-9, nevertheless it can be shown (using the
notion of a com-characterization we introduce below) that
there is no ADF that has V as its complete interpretations.

Intuitively, the complete semantics is difficult to capture
because there are many possible reasons why an interpreta-
tion is or is not complete. For example, in case an interpre-
tation v is complete, for each statement s € U,, there must
be one two-valued extension v of v under which s is true
and another v under which s is false. However, these v5 and
v are not necessarily complete and thus we do not know to
which truth values they map s. Therefore, we cannot iden-
tify v and v4 without knowing the ADF. Conversely, if v is
an interpretation that is not complete, we do in general not
know which statements are the culprit for that. We can, how-
ever, formulate necessary and sufficient conditions for a set
V to be realizable that are not based on simple pattern-based
checking of the presence or absence of interpretations in V.
Completeness of an interpretation in an ADF depends on the
truth values that its two-valued extensions assign to the ac-
ceptance formulas of each statement. We use the notion of a
com-characterization, defined next, for providing such truth
values (encoded as two-valued interpretation) without refer-
ence to an ADF.

Definition 8 Let V' C V be a set of interpretations. A func-
tion f : Vo — Vs is a com-characterization of V' if for each
v € V we have v € V exactly when for every s € S

o v(s) # u implies f(v2)(s) = v(s) for all vy € [v]2 and

e v(s) = uimplies s € Ty, and s € Fy(,yy for some

vy, vy € [v]2.

Given a com-characterization for V' we can construct an

ADF that has V' as its set of complete interpretations.
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Proposition 10 Let V' C V be a set of interpretations, f a
com-characterization for V, and Dy the ADF where the ac-
ceptance formula for each statement s is given by

\/ /\ s’ A /\ -8’

’U2€V2,S€Tf(v2) s'€Ty, s'€Fy,

Then, com(Dy) = V.

Proof. First, observe that for every two-valued interpretation
vg and every s € S we have f(v2)(s) = va(ps).

(C) Let v € com(Dy) be an interpretation and s € S a
statement. Consider the case that s € U,,. Sincev = I'p, (v),
by definition of I'p ., there must be two two-valued interpre-
tations va, v € [v]2 such that va(ps) = t and v5(p,) = £.
By our initial observation, we get s € Tf(,,) and s € Fy(,y).
Now, consider the case that s € TF,,. Let v5 be a two-valued
interpretation with vy € [v]. Since v = T'p,(v) we have
v(s) = va(ps). Therefore, by our observation it must also
hold that f(v2)(s) = v(s). Thus we have v € V as for every
s € S, v meets the respective condition of Definition 8.

(2) Consider an interpretation v such that v & com(Dy).
We will show that v & V. As v ¢ com(Ds) we have
v # I'p,(v). Let s € S be a statement such that v(s) #
I'p,(v)(s). Consider the case that s € TF,. Asv # I'p, (v),
there must be some vy € [v]y with va(ps) # v(s) and con-
sequently f(v2)(s) # v(s). Thus, by Definition 8 we have
v & V. Now consider the case that s € U,,). As then
I'p,(v)(s) # u we have that for some x € {t,f} we have
va(ps) = x for each vy € [v]2. But then it must also hold
that f(v2)(s) = x for each vy € [v]2. Again, by Definition 8
we have v € V. O
Note that, unlike the canonical ADF for a set V' that we de-
fined for admissible semantics, the ADF Dy is not unique for
V but depends on a concrete f.

Example 3 Let D be the ADF from Example 1. A com-
characterization of com(D) is given by f:

Ps =

Vg ‘abc abc abé abc abé abc abé

f(v92) ' abc abe

Note that D corresponds to Dy as obtained in Proposition 10.

abc abé abc abé abé

The existence of a com-characterization is not only a suffi-
cient but also a necessary condition for realizability.

Theorem 3 Let V' C V be a set of interpretations. There
is an ADF D such that com(D) = V iff there is a com-
characterization for V.

Proof. (Sketch) The ‘if’-direction follows from Proposi-
tion 10. It remains to show that for any ADF D there is a
com-characterization for com(D). In particular, we define
the function fp as fp(v2)(s) = va(ps) for every v € Vo
and s € S with (s,ps) € D. The remainder of the proof
shows com(D) = V along the lines as com(Dy) = V was
shown in the proof of Proposition 10, but now the argument
of the initial observation of the former proof (that is based on
the structure of D) is provided by the definition of fp. [

One could ask whether checking the existence of a com-
characterization for checking whether V' is realizable has ad-
vantages over directly checking the definition of realizability



itself, i.e., enumerating all ADFs and checking com(D) = V.
In order to answer this question, we next give a complexity
result. For the theorem we assume that the set .S of all state-
ments is not predefined.

Theorem 4 Given a finite, non-empty set S as the set of all
statements and a set V' C 'V of interpretations, the problem
of deciding whether there is an ADF D such that com(D) =
V" is in NEXPTIME.

The proof of Theorem 4 is based on guessing a candidate for a
com-characterization and checking whether it fulfills the con-
ditions of Definition 8. The result shows that we do much bet-
ter than in a naive approach where first an ADF D is guessed
and then V' = com(D) is tested by checking v € com(D) for
every interpretation. Remember that there are 3" many inter-
pretations where n is the cardinality of .S and note that check-
ing whether a given interpretation is complete is hard for the
complexity class DP (as shown by Strass and Wallner [2014])
which necessitates an NP-oracle call for each interpretation.

3.3 Grounded Semantics

As shown by Brewka ef al. [2013], every ADF has a single
grounded interpretation, in particular that is the minimal com-
plete interpretation with respect to the information ordering.
The existence of a unique minimal complete interpretation is
also reflected by Proposition 5.

Lemma 2 For everyv € V, {5 is a com-characterization for
{v}, where

fo(v2)(s) =

The lemma implies that every singleton set of statements can
be realized under complete semantics. For each ADF real-
izing such a set, grounded and complete semantics coincide.
Therefore, also constructing such an ADF is similar as under
complete semantics. We get the following realizability result
for grounded semantics.

{ v(s) ifs € TF, andv <; vy

—wq(s) else

Theorem 5 Let V' C V be a set of interpretations. There is
an ADF D such that grd(D) = V iff V has cardinality 1.

Note that singleton sets of interpretations can be realized un-
der all four semantics we consider.

3.4 Preferred Semantics

While the grounded interpretation is the minimal complete in-
terpretation of an ADF, the preferred interpretations are those
complete interpretations that are maximal with respect to the
information order. At the same time they are the maximal ad-
missible interpretations [Brewka er al., 2013]. From this we
get that the set of preferred interpretations must be incompa-
rable as defined next, since the set of admissible interpreta-
tions is upward-closed.

Definition 9 A ser V' C V of interpretations is incomparable
if all two v',v" € V withv' # v" are not compatible.

For selecting the <;-maximal interpretations from a set
V' C V of interpretations, we introduce the notation Vi =
{veV|v<;v forv' € Vimplies v = v'}.

The realizability result for preferred semantics can then be
given as follows.

Theorem 6 Let V' C V be a set of interpretations. There is
an ADF D such that pre(D) = V iff V is non-empty, incom-
parable, and V = V.

For constructing an ADF for a given V' that satisfies the con-
ditions of Theorem 6, the idea is to create an adm-closed set
V' with V = V'". Then, the canonical ADF CAN (V') for
V’ has V as its set of preferred interpretations. In order to
obtain V" it suffices to start with V" and iteratively add adm-
induced interpretations. In this process, whenever, the inter-
mediate set V" of interpretations is upward-closed, an arbi-
trary adm-induced interpretation can be added without chang-
ing the <;-maximal interpretations by Lemma 1. Whenever
V" is not upward-closed, there is some v’,v” € V" with
v’ U v” € V. Then, one can safely add v' LI v/ which is
admissible induced by V" and can be shown not to influence
the <;-maximal interpretations either.

4 Semantical Consideration on Joining ADFs

Having characterizations for the realizability of a semantics
is a starting point for studying the expressiveness of a for-
malism. For example, Strass [2015] uses realizability re-
sults to compare the expressiveness of ADFs, AFs, and logic
programs under two-valued semantics. An application in
answer-set programming is to decide whether a given pro-
gram can be replaced by another from a syntactically simpler
class and to construct the latter if possible [Eiter et al., 2013].
Our results are targeted towards similar applications, e.g., de-
ciding whether a given ADF can be replaced by a bipolar
ADF [Brewka and Woltran, 2010] with the same semantics
or an AF under the corresponding labeling semantics [Cami-
nada and Gabbay, 2009].

In this section we deal with another interesting problem
that can be addressed using the new characterizations and is
related to composing ADFs. In particular, we deal with the
question whether for a given semantics o, there can be a join
operator @ : D? — D on ADFs such that for every two
ADFs D; and D5 we have o(D1 ® D) = o(D1) No(Ds).
One could argue that this property, i.e., that the result of a
join accepts exactly those interpretations that are accepted by
both operands, is a reasonable requirement for a join opera-
tion in specific settings. As an example, consider cases where
the two operand ADFs represent two separate discussions and
the join should give a cautious summary on common conclu-
sions.! The following result shows that there is such a desired
®-operator for admissible semantics.

Theorem 7 Let Dy and Do be ADFs. Then, there is an ADF
D such that adm(D) = adm(D;) Nadm(Dy).

The proof is based on showing that the intersection of two
adm-closed sets is adm-closed.

For complete semantics, on the other hand, we get a neg-
ative result. That is, given two ADFs D; and D5, there
might be no third ADF D such that com(D) = com(D;) N
com(Ds). The following ADFs with three statements provide

"Note that different operators for composing ADFs are appropri-
ate for different purposes as argued by Gaggl and Strass [2014].
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a counterexample for the general case:

Dy = {{a,a A=b A —c), (b,ma AbA—c),
{e,(aN—bA=C)V (maAbA—e))}

Dy = {{a,aAN=bAc),(b,maANbAC),
(e,ma A =bA—c)}

We have that com(D;) = {vy,a,b,abe} and com(Dy) =
{vu, a, b,ab}. However, there is no ADF D with com(D) =
{vu, a, b} because by Proposition 6, a common <;-successor
of a and b would be missing.

As a side node, if S is restricted to at most two statements,
there exists an ADF D with com(D) = com(D;)Ncom(Ds)
whenever com (D7) N com(Ds3) is non-empty.

For grounded semantics, given Theorem 5, it is easy to see
that there is only an ADF that realizes grd(D1) N grd(Ds) if
grd(D;) and grd(D-) coincide.

Finally, for preferred semantics, a join fulfilling the desired
requirement is possible under the condition that the intersec-
tion of preferred interpretations is non-empty.

Theorem 8 Let Dy and Do be ADFs. Then, there is an ADF
D such that pre(D) = pre(D1) N pre(Dz) iff pre(Dy) N
pre(Dsy) # 0.

5 Discussion and Conclusion

In this paper we addressed the question whether for a given
set of three-valued interpretations, there is an ADF that real-
izes it. Our results lay the ground for investigating the ex-
pressiveness of ADFs under the four semantics we consid-
ered. Interestingly, works on realizability for AFs [Dunne et
al., 2014; Baumann et al., 2014; Dyrkolbotn, 2014] do not
cover complete semantics that turned out to be the hardest
to characterize in our setting. For AFs, two variants of re-
alizability have been considered: strict realizability [Dunne
et al., 2014] that corresponds to the problems we studied,
where the arguments that may be used in the realizing AF
are pre-determined, and weaker forms [Baumann et al., 2014;
Dyrkolbotn, 2014] where auxiliary arguments may be used.
Considering auxiliary statements is also an interesting topic
for further work on realizability for ADFs. A natural next
step is investigating realizability for important subclasses of
ADFs such as bipolar ADFs or AFs under labeling semantics.
Together with our current results this would allow us to de-
termine under what circumstances ADFs can be replaced by
syntactically simpler ones.
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