Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

MERGEXPLAIN: Fast Computation of Multiple Conflicts for Diagnosis

Kostyantyn Shchekotykhin! and Dietmar Jannach? and Thomas Schmitz?
! Alpen-Adria University Klagenfurt, Austria
e-mail: kostyantyn.shchekotykhin@aau.at
>TU Dortmund, Germany
e-mail: {firstname.lastname } @tu-dortmund.de

Abstract

The computation of minimal conflict sets is a cen-
tral task when the goal is to find relaxations or
explanations for overconstrained problem formu-
lations and in particular in the context of Model-
Based Diagnosis (MBD) approaches. In this pa-
per we propose MERGEXPLAIN, a non-intrusive
conflict detection algorithm which implements a
divide-and-conquer strategy to decompose a prob-
lem into a set of smaller independent subproblems.
Our technique allows us to efficiently determine
multiple minimal conflicts during one single prob-
lem decomposition run, which is particularly help-
ful in MBD problem settings. An empirical eval-
uation on various benchmark problems shows that
our method can lead to a significant reduction of
the required diagnosis times.

1

The computation of minimal conflicts (or nogoods) is a cen-
tral task in various Al reasoning approaches [Junker, 2001].
In particular in the field of Model-Based Diagnosis (MBD),
conflicts are often used as a basis to systematically deter-
mine possible explanations, i.e. diagnoses, for an unexpected
behavior of the system under observation [de Kleer and
Williams, 1987; Reiter, 1987]. Specifically, [Reiter, 1987]
showed that diagnoses correspond to the hitting sets of con-
flicts, where each conflict corresponds to a subset of the
components which cannot all work correctly given the ob-
servations. Reiter then used this property in his breadth-first
hitting-set tree (HS-tree) diagnosis algorithm.

The general principle of these early MBD approaches
has since then been applied to a variety of diagnosis prob-
lems ranging from fault localization in electronic circuits,
over hardware descriptions in VHDL, to various types of
software artifacts like program specifications, ontologies, or
knowledge-based systems [Friedrich er al., 1999; Mateis et
al., 2000; Jannach and Schmitz, 2014; White et al., 2010;
Shchekotykhin er al., 2012]. One of the reasons for the broad
applicability of approaches based on hitting sets is that the di-
agnosis principle is independent of the underlying knowledge
representation and reasoning technique. In [Reiter, 1987],

Introduction

3221

only the existence of a general Theorem Prover (TP) —a com-
ponent capable of returning conflicts — is assumed to exist.

From a technical perspective, different approaches exist to
implement a TP. First, one can try to directly embed a con-
flict identification mechanism into the underlying reasoning
method and, e.g., try to detect the conflicts during consistency
checking [Baader and Penaloza, 2008; de Kleer, 1989]. The
other approach is to use “non-intrusive” algorithms, which
implement conflict-detection algorithms that are independent
from the inner workings of the underlying reasoning tech-
nique. These algorithms therefore only rely on the existence
of basic and very general reasoning functionality like consis-
tency or entailment checking.

Junker’s QUICKXPLAIN [Junker, 2004b] (QXP for short)
is an example of a very efficient non-intrusive conflict detec-
tion technique designed to find one minimal conflict based on
a divide-and-conquer strategy. Junker’s technique was origi-
nally developed in the context of constraint problems. Since
the general scheme is independent of the underlying reasoner,
it has been applied in many of the above-mentioned hardware
and software diagnosis approaches.

In most of these works, QXP is used to compute conflicts
on-demand during the construction of the HS-tree, since we
cannot generally assume that all conflicts are known in ad-
vance [Pill et al., 2011]. One limitation of this approach is
that QXP will only return one conflict in each call and will
be “restarted” with a slightly different configuration when the
next search node is created.

In this work, we propose MERGEXPLAIN (MXP for
short), a non-intrusive conflict detection algorithm which
adopts the general divide-and-conquer principle of QXP, but
is designed to compute several minimal conflicts — if they
exist — during one problem analysis run. The main design
rationale of MXP is that (a) being able to identify multiple
conflicts early on can help to speed up the overall diagnosis
process, e.g., due to better conflict “reuse” [Reiter, 1987]; and
that (b) the identification of additional conflicts is faster when
we investigate only smaller subsets of the original compo-
nents due to the “decompose-and-merge” strategy of MXP.

The paper is organized as follows. After a problem char-
acterization in Section 2 we present the details of MXP in
Section 3 and discuss the properties of the algorithm. Section
4 presents the results of an extensive empirical evaluation us-
ing various diagnosis benchmark problems.

2 Preliminaries

2.1 The Diagnosis Problem

We use the definitions of [Reiter, 1987] to characterize a di-
agnosable system, diagnoses, and conflicts.

Definition 1 (Diagnosable System). A diagnosable system
is a pair (SD, CompSs) where SD is a system description (a
set of logical sentences) and COMPS represents the system’s
components (a finite set of constants).

A diagnosis problem arises when a set of logical sentences
OBSs, called observations, is inconsistent with the normal be-
havior of the system (SD, Comps). The normal behavior is
represented in SD with a unary “abnormal” predicate AB(.).

Definition 2 (Diagnosis). Given a diagnosis problem (SD,
Cowmps, OBS), a diagnosis is a minimal set A C COMPS such
that SD U OBs U {aB(c)|c € A} U {—aB(c)|c € Comps\A}
is consistent.

A diagnosis therefore corresponds to a minimal subset of
the system components which, if assumed to be faulty (and
thus behave abnormally) explain the system’s behavior, i.e.,
are consistent with the observations.

Two general classes of MBD algorithms exist. One relies
on direct problem encodings and the aim is often to find one
diagnosis quickly, see [Feldman et al., 2010b; Metodi et al.,
2014; Nica et al., 2013]. The other class relies on the com-
putation of conflicts and their hitting sets (see next section).
Such diagnosis algorithms are often used when the goal is to
find multiple or all minimal diagnoses. In the context of our
work, techniques of the second class can immediately profit
when the conflict generation process is done more efficiently.

2.2 Diagnoses as Hitting Sets

Finding all minimal diagnoses corresponds to finding all min-
imal hitting sets (HS) of all existing conflicts [Reiter, 1987].

Definition 3 (Conflict). A conflict CS for (SD, Comps,
OBs) is a set {c1,...,c;} C ComPs such that SD U OBS
U{—aB(c;) | ¢; € CS} is inconsistent.

Assuming that all components of a conflict work correctly
therefore contradicts the observations. A conflict CS is mini-
mal, if no proper subset of CS is also a conflict.

To find the set of all minimal diagnoses for a given prob-
lem, [Reiter, 1987] proposed a breadth-first HS-tree algo-
rithm with tree pruning and conflict reuse. Later on, a num-
ber of algorithmic variations were suggested in the literature
which, e.g., use problem-specific heuristics [Stumptner and
Wotawa, 2001], greedy search, or apply parallelization tech-
niques [Jannach ef al., 2015], see also [de Kleer, 2011].

2.3 QUICKXPLAIN (QXP)

QXP was developed in the context of inconsistent constraint
satisfaction problems (CSPs) and the computation of expla-
nations. E.g., in case of an overconstrained CSP, the problem
consists in determining a minimal set of constraints which
causes the CSP to become unsolvable for the given inputs. A
simplified version of QXP [Junker, 2004b] is shown in Al-
gorithm 1. The rough idea of QXP is to apply a recursive
procedure which relaxes the input set of faulty constraints C

3222

Algorithm 1: QUICKXPLAIN(B,C)

Input: B: background theory, C: the set of possibly
faulty constraints
Output: A minimal conflict CS C C
1 if isConsistent(B U C) then return 'no conflict’;
2 else if C = () then return (;
3 return GETCONELICT(B, B,C)

function GETCONFLICT (B, D, C)
if D # () A — isConsistent(3) then return (;
if |C| = 1 then return C;
Split C into disjoint, non-empty sets C; and Cq
D5 <+ GETCONFLICT (BUCq, C1, Cs)
D1 < GETCONFLICT (B U Do, D>, Cy)
return D; U Dy

DN 7 I N

by partitioning it into two sets C; and Cy (line 6). If C; is a
conflict the algorithm continues partitioning C; in the next re-
cursive call. Otherwise, i.e., if the last partitioning has split
all conflicts in C, the algorithm extracts a conflict from the
sets C; and Cq. This way, QXP finally identifies single con-
straints which are inconsistent with the remaining consistent
set of constraints and the background theory.

Theorem 1 ([Junker, 2004b]). Let B be a background the-
ory, i.e., a set of constraints considered as correct, and C be
a set of possibly faulty constraints. Then, QUICKXPLAIN al-
ways terminates. If BUC is consistent it returns "no conflict’.
Otherwise, it returns a minimal conflict CS.

2.4 Using QXP During HS-Tree Construction

Assume that MBD is applied to find an error in the defini-
tion of a CSP. The CSP comprises the set of possibly faulty
constraints C. These are the elements of Comps. The system
description SD corresponds to the semantics of the constraints
in C. Finally, the observations OBs are encoded as unary con-
straints and are added to the background theory 3. During the
HS-tree construction, QXP is called whenever a new node is
created and no conflict reuse is possible. As a result, QXP can
either return one minimal conflict, which can be used to la-
bel the new node, or return ’no conflict’, which would mean
that a diagnosis is found at the tree node. Note that QXP
can be used with other algorithms, e.g., preference-based
search [Junker, 2004a] or boolean search [Pill and Quaritsch,
2012], in the same way as with the HS-tree algorithm.

3 MERGEXPLAIN (MXP): Algorithm Details

3.1 General Considerations

The pseudo-code of MXP, which unlike QXP can return
multiple conflicts at a time, is given in Algorithm 2. MXP,
like QXP, is generally applicable to a variety of problem do-
mains. The mapping to the terminology used in MBD (SD,
Cowmps, OBs) is straightforward as discussed in the previous
section. In the following, we will use the notation and sym-
bols from [Junker, 2004b], e.g., C or B, and constraints as a
knowledge representation formalism.

Note that there are applications of MBD in which the func-
tion isConsistent has to be “overwritten” to take the specifics
of the underlying knowledge representation and reasoning
system into account. The ontology debugging approach pre-
sented in [Shchekotykhin er al., 2012] for example extends
isConsistent with the verification of entailments of a logical
theory. MXP can be used in such scenarios after the corre-
sponding adaptation of the implementation of isConsistent.

Furthermore, MXP can be easily extended for cases in
which the MBD approach has to support the specification of
(multiple) test cases, i.e., sets of formulas that must be consis-
tent or inconsistent with the system description, e.g., [Felfer-
nig et al., 2004; Friedrich and Shchekotykhin, 2005].

3.2 Algorithm Rationale

MXP (Algorithm 2) accepts two sets of constraints as inputs,
B as the assumed-to-be-correct set of background constraints
and C, the diagnosable components/constraints.

In case C U B is inconsistent, MXP returns a set of minimal
conflicts T" by calling the recursive function FINDCONFLICTS
in line 3. This function again accepts 53 and C as an input and
returns a tuple (C’,T"), where I is a set of minimal conflicts
and C’ C C is a set of constraints that does not contain any
conflicts, i.e., B U’ is consistent.

The logic of FINDCONFLICTS is similar to QXP in that we
decompose the problem into two parts in each recursive call
(lines 7-9). Differently from QXP, however, we look for con-
flicts in both splits C; and C, independently and then com-
bine the conflicts that are eventually found in the two halves
(line 10). If there is, e.g., a conflict in the first part and one
in the second, FINDCONFLICTS will find them independently
from each other. Of course, there might also be conflicts in C
whose elements are spread across both C; and Cs, that is, the
set C1 U C4 U B is inconsistent. This situation is addressed in
lines 11-15. The computation of a minimal conflict is done by
two calls to GETCONFLICT (Algorithm 1). In the first call this
function returns a minimal set X C Cj such that X UC, U B
is a conflict (line 12). In line 13, we then look for a subset of
C}, say Y, such that Y U X corresponds to a minimal conflict
CS. The latter is added to I (line 15). In order to restore the
consistency of C; U C) U B we have to remove at least one
element o € CS from either C} or C5. Therefore, in line 14
the algorithm removes e € X C CS from Cj.

3.3 Example

Consider a CSP consisting of six constraints {co, ..., ¢5 }. The
constraint ¢y is considered correct, i.e. B = {co}. Let {{co,
1, c3}s {co, ¢5}, {ca, c4}} be the set of minimal conflicts.
Algorithm 2 proceeds as follows (Figure 1).

Since the input CSP (BUC) is not consistent, the algorithm
enters the recursion. In the first step, FINDCONELICTS parti-
tions the input set (line 7) into the two subsets C1={c¢1,¢2,¢3}
and Co={c4,c5} and provides them as input to the recursive
calls (lines 8 and 9). In the next level of the recursion —
marked with (2) in Figure 1 — the input is found to be inconsis-
tent (line 5) and again partitioned into two sets (line 7). In the
subsequent calls, (3) and (4), the two input sets are found to be

'The calls in line 8 and 9 can in fact be executed in parallel.

3223

Algorithm 2: MERGEXPLAIN(S, C)

Input: B: background theory, C: the set of possibly
faulty constraints
Output: I, a set of minimal conflicts
1 if —isConsistent(B) then return "no solution’;
2 if isConsistent(B U C) then return ();
3 (_,T') « FINDCONFLICTS(B,C)
4 return I';

function FINDCONFLICTS (B, C) returns a tuple (C',T")
5 if isConsistent(B U C) then return (C, 0);

¢ | if|C| =1 then return (0, {C});

7 Split C into disjoint, non-empty sets C; and Co

8 (C1,T1) < FINDCONFLICTS(B,C1)

9 (C},T9) < FINDCONELICTS (B, C2)

10 I'«T7UTly;

1 while —isConsistent(C; UC, U B) do

2 X + GETCONELICT(BUC,,C5,C})

13 CS + X UGETCONFLICT(B U X, X, C})
14 Ci < Ci\{a} whereav € X

15 I'~Tu{Cs}

16 return (C; UC,,T')

consistent (line 5) and, therefore, the set {c1, c2, c3} has to be
analyzed using GETCONFLICT (lines 12 and 13) defined in Al-
gorithm 1. GETCONFLICT returns the conflict {¢1,c3}, which
is added to I'. Finally, FINDCONFLICTS removes c¢; from the
set C} and returns the tuple ({ca,c3}, {{c1,c3}}) to (D.

Next, the “right-hand” part of the initial input, the set
Cy={c4,c5}, is provided as input to FINDCONFLICTS (5). Since
C is inconsistent, it is partitioned into two sets C1={c4} and
Co={cs}. The first recursive call (6) returns ({c4}, §) since the
input in consistent. The second call @, in contrast, finds that
the input comprises only one constraint that is inconsistent
with the background theory B. Therefore, it returns (0,{{cs}}
in line 6. Since C; UCh = {c4} U0 is consistent with B, FIND-

congLicts (5) returns ({c4}, {{c5}}) to (D.

Finally, in (D) the set of constraints C; U Ch = {ca,c3} U
{c4} is found to be inconsistent with 55 (line 11) and GETCON-
FLICT is called. The method returns the conflict {ca,c4} and
¢2 is removed from Cj. The resulting set {cs,c4 } is consistent
and MXP returns I'={{cy,c3}, {c5}, {ca, ca}}.

3.4 Properties of MERGEXPLAIN

Theorem 2. Given a background theory B and a set of con-
straints C, Algorithm 2 always terminates and returns

e ’no solution’, if B is inconsistent,
e 0, if BUC is consistent, and

e a set of minimal conflicts T', otherwise.

Proof. In the first case, given an inconsistent background the-
ory B, the algorithm terminates in line 1 and returns 'no so-
lution’. In the second case, if the set 3 U C is consistent, then
no subset of C is a conflict. MXP terminates and returns (.
Finally, if the set 5UC is inconsistent, the algorithm enters
the recursion in line 3. The function FINDCONFLICTS in each

Ci={c1,c2,c3} Co ={ca, 5}

@] {ea}, {es

({ea,ca} 7:{{017 cs}h)

51})
T'={{c1,e3},{es}}U{{ca,ca}}

C ={cs3,cq
e
= {c1, (2} Cy = {cs}
<{01 C2
@:| {es}, >
F:Q)U{{Lh(g}}
C={cc3

\

N\

\
Cl = {04} C2 = {(,5}

eT.o
®:| {0, ({51

1sConsistent v’

/ \

@. BUC:{Co,Cl,CQ} @ BUC:{CO7C3}

*| isConsistent v " | isConsistent v

BUC = {(0,(5}
. BUC= {(’07 64} .
©: isConsistent v/ ' fé?’inizstent ;

Figure 1: MERGEXPLAIN recursion tree. Each node shows values of selected variables in the FINDCONFLICTS function.

call partitions the input set C into two sets C; and Cs. The par-
titioning continues until either the found set of constraints C is
consistent or a singleton conflict is detected. Therefore, every
recursion branch ends after at most log|C| — 1 calls. Con-
sequently, FINDCONFLICTS terminates if the conflict detection
loop in lines 11-15 always terminates.

We consider two situations. If the set C; U C} is consis-
tent with 3, the loop terminates. Otherwise, in each iteration
at least one conflict in the set C; U C} is resolved. This fact
follows from Theorem 1 according to which the function GET-
CoNELICT in Algorithm 1 always returns a minimal conflict if
the input parameter C is inconsistent with B. Since the num-
ber of conflicts is finite and in each iteration one of the con-
flicts in C] U C} is resolved in line 14, the loop will terminate
after a finite number of iterations. Consequently, Algorithm 2
terminates and returns a set of minimal conflicts I". O

Corollary 1. Given a consistent background theory B and a
set of inconsistent constraints C, Algorithm 2 always returns
a set of minimal conflicts I" such that there exists a diagnosis
A; CUgs,er OSi

The proof follows from the fact that — similar to the HS-
tree algorithm — a conflict is resolved by removing one of its
elements from the set of constraints C; in line 14. The loop
in line 11 guarantees that every conflict CS; € C{ UC} is
hit. Consequently, FINDCONFLICTS hits every conflict in the
input set C and the set of constraints {ay, .. ., «,} removed
in every call of line 14 is a superset or equal to a diagnosis of
the problem. The construction of at least one diagnosis from
the found conflicts I' can be done by the HS-tree algorithm.

MXP can in principle use several strategies for the reso-
lution of conflicts in line 14. The strategy used in MXP by
default is conservative and allows us to find several conflicts
at once. Two additional elimination strategies can be used
inline 14: 1) ¢} < C;\ X or 2) C; < C{ \ CS and
Ch «+ C4\ CS. These more aggressive strategies result in
a smaller number of conflicts returned by MXP in each call
but each call returns the results faster. However, for the latter
strategies MXP might not return enough minimal conflicts
for the HS-tree algorithm to compute at least one diagnosis.
For instance, let {{c1,c2},{c1,c3}, {ca,ca}} be the set of

all minimal conflicts. If MXP returns I' = {{¢y, ¢a } }, which
is one of the possible valid outputs, then the HS-tree algo-
rithm fails to find the diagnosis as {¢;, co} must be hit twice.
In this case, the HS-tree algorithm must call MXP multiple
times or another algorithm for diagnosis computation must be
used, e.g. [Shchekotykhin et al., 2014].

Corollary 2. Algorithm 2 is sound, i.e., every set CS € T'isa
minimal conflict, and complete, i.e., given a diagnosis prob-
lem for which at least one minimal conflict exists, Algorithm 2
returns T # ().

The soundness of the algorithm follows from Theorem 1,
since the conflict computation of MXP uses the GETCONFLICT
function of QXP. The completeness is shown as follows: Let
B be a background theory and C a set of faulty constraints,
i.e., BUZC is inconsistent. Assume MXP returns I' = 0, i.e.,
no minimal conflicts are found. However, this is impossible,
since the loop in line 11 will never end. Consequently, Algo-
rithm 2 will not terminate which contradicts our assumption.
Hence, it holds that MXP is complete.

4 Evaluation

We have evaluated the efficiency of computing multiple con-
flicts at once with MXP using a number of different diagno-
sis benchmark problems. As a baseline for the comparison,
we use QXP as a Theorem Prover, which returns exactly one
minimal conflict at a time. Furthermore, we made measure-
ments with a variant of MXP called PMXP in which the lines
8 and 9 are executed in parallel in two threads on a multi-core
computer.

4.1 Benchmark Problems

We made experiments with different benchmark problems.
First, we used the five first systems of the DX Competition
(DXC) 2011 Synthetic Track. For each system, 20 scenar-
ios are specified in which artificial faults were injected. In
addition, we made experiments with a number of CSP prob-
lems from the CSP solver competition 2008 and several CSP
encodings of real-world spreadsheets. The injection of faults
was done in the same way as in [Jannach et al., 2015].

3224

System || #C | #V | #F #D #D | |D| [#Cf||Cf]
74182 | 21|28 [4-5| 30-300 139 |4.66| 4.9 | 3.3
74L85 || 35 |44 |1-3| 1-215 66.4 |3.13| 5.9 | 8.3
74283 || 38 |45 (2-4|180-4,991|1,232.7(4.42|78.8 [16.1
74181 || 67 |79 |3-6]10-3,828 | 877.8 |4.53| 7.8 |10.6
c432 ||162|196]2-5| 1-6,944 |1,069.3|3.38|15.0(19.8

Table 1: Characteristics of selected DXC benchmarks. #C:
number of constraints, #V: number of variables, #F: number
of injected faults, #D: range of the number of diagnoses, #D:
average number of the diagnoses, ﬁ: average diagnosis size,
#Cf: average number of conflicts, m: average conflict size.

In addition to these benchmark problems, we developed a
diagnosis problem generator, which can be configured to gen-
erate (randomized) diagnosis problems with varying charac-
teristics, e.g., with respect to the number of conflicts, their
size, or their position in the system description SD.

4.2 Measurement Method

We implemented all algorithms in a Java-based MBD frame-
work, which uses Choco as an underlying constraint solver,
see [Jannach er al., 2015]. The experiments were conducted
on a laptop computer (Intel i7, §GB RAM). As a performance
indicator we use the time needed (“wall clock™) for comput-
ing one or more diagnoses. The reported running time num-
bers are averages of 100 runs of each problem setting that
were done to avoid random effects. We furthermore randomly
shuffled the ordering of the constraints in each run to avoid ef-
fects that might be caused by a certain positioning of the con-
flicts in SD. For the evaluation of MXP we used the most ag-
gressive elimination strategy (2) as described in Section 3.4.

Since MXP can return more than one conflict at a time, it
is expected to be particularly useful when the problem is to
find a set of » first (leading) diagnoses, e.g., in the context of
applying MBD to software debugging [Jannach and Schmitz,
2014; Shchekotykhin et al., 2012]. We therefore report the re-
sults for the tasks “find-one-diagnosis” (as an extreme case)
and “find-n-diagnoses”. When the task is to find all diagnoses,
the performance of MXP is similar to that of QXP as all ex-
isting conflicts have to be determined?.

4.3 Results

DXC Benchmark Problems Table 1 shows the character-
istics of the analyzed and CSP-encoded DXC benchmark
problems. Since we consider multiple scenarios per system,
the number of faults and the corresponding diagnoses can
vary strongly across the experiment runs.

Table 2 shows the observed performance gains when us-
ing MXP instead of QXP in terms of absolute numbers (ms)
and the relative improvement. For the problem of finding

2“Direct encodings” are typically more efficient than the HS-tree
algorithm when the problem is to find one single diagnosis. A com-
parison with such approaches is however beyond the scope of our
work, as we are interested in problem settings in which the HS-tree
algorithm is favorable and no assumptions about the underlying rea-
soner should be made.

System || QXP-5 | MXP-5 || QXP-1 | MXP-1

[ms] | Improv. [ms] | Improv.
74182 17.0 19% 17.0 19%
741.85 20.9 15% 16.1 19%
74283 61.2 29% 53.8 32%
74181 691.8 45% 637.0 47%
c432 707.5 25% 503.9 37%

Table 2: Performance gains for DXC benchmarks when
searching for the first n diagnoses of minimal cardinality.

Scenario #C | #V |#F| #D | |D| | #Cf | |Cf|
c8 523123918 | 4 625 7 | 1.6
costasArray-13 8788 |2 | >5|3.6|>565(45.6
domino-100-100 100100| 3 | 81 2 2 15
graceful-K3-P2 60 | 154 |>117]2.94| >12 |29.2
mknap-1-5 71391 2 1 1 2
queens-8 28| 8 |15 9 [109] 15 |28
hospital payment 381754 40 4 4 3
profit calculation 28 |140| 5| 42 |4.25] 11 9
course planning 457|583 2 3024 | 2 2 |555
preservation model || 701 {803 | 1 | 22 1 1 22
revenue calculation || 93 [154| 4 | 1452 | 3 3 |15.7

Table 3: Characteristics of selected CSP settings.

the first 5 diagnoses (QXP-5/MXP-5), the observed improve-
ments range from 15% up to 45%. For the extreme case of
finding one single diagnosis, even slightly stronger improve-
ments can be observed. The improvements when searching
for, e.g., the first 10 diagnoses are similar for cases in which
significantly more than 10 diagnoses actually exist.

Constraint Problems / Spreadsheets The characteristics
for the next set of benchmark problems (six CSP competition
instances, five CSP-encoded real-world spreadsheets with in-
jected faults [Jannach ef al., 2015]) are shown in Table 3.

The results for determining the five first minimal diagnoses
are shown in Table 4. Again, performance improvements
of up to 54% can be observed. The obtained improvements
vary quite strongly across the different problem instances: the
higher the complexity of the underlying problem, the stronger
are the improvements achieved with our new method. Only
in the two cases in which only one single conflict exists (see
Table 3), the performance can slightly degrade as MXP per-
forms an additional check if further conflicts among the re-
maining constraints exist.

Systematically Generated MBD Problems To be able to
systematically analyze which factors potentially influence the
obtained performance improvements, we developed an MBD
problem generator in which we could vary (i) the overall
number of Comps, (ii) the number of conflicts and their av-
erage size (and as a consequence the number of diagnoses),
and (iii) the position of the conflicts in the database. We con-
sidered the last aspect because the performance of QXP and

3The results for finding one diagnosis follow the same trend.

3225

Scenario QXP MXP

[ms] [ms] | Impr.
c8 615 376 39%
costasArray-13 1,379,842 | 629,366 | 54%
domino-100-100 417 389 7%
graceful-K3-P2 1611 1123 30%
mknap-1-5 32 36 | -11%
queens-8 281 245 13%
hospital payment 1,717 1,360 | 21%
profit calculation 86 76 12%
course planning 2,045 1,544 25%
preservation model 371 391 -5%
revenue calculation 109 87 21%

Table 4: Results for CSP benchmarks and spreadsheets when
searching for 5 diagnoses.

MXP can largely depend on this aspect*. If, e.g., there is only
one conflict and the conflict is represented by the two “left-
most” elements in SD, QXP’s divide-and-conquer strategy
will be able to rule out most other elements very fast.

We evaluated the following configurations regarding the
position of the conflicts (see Table 5): (a) Random: The el-
ements of each conflict are randomly distributed across SD;
(b) Left/Right: All elements of the conflict appear in exactly
one half of SD; (¢) LaR (Left and Right): Conflicts are both
in the left and right half, but not spanning both halves; (d)
Neighb.: Conflicts appear randomly across SD, but only in-
volve “neighboring” elements.

One specific rationale of evaluating these constellations in-
dividually is that conflicts in some application domains (e.g.,
when debugging knowledge bases) might represent “local”
inconsistencies in SD.

Since the conflicts are known in advance in this experi-
ment, no CSP solver is needed to determine the consistency
of a given set of constraints in TP. Since zero computation
times are unrealistic, we added simulated consistency check-
ing times in each call to the TP. The value of the simulated
time quadratically increases with the number of constraints to
be checked and is capped in the experiments at 10 millisec-
onds. We made additional tests with different consistency
checking times to evaluate to which extent the improvements
obtained with MXP depend on the complexity of an individ-
ual consistency check for the underlying problem. However,
these tests did not lead to any significant differences.

Table 5 shows some of the results of this simulation. In this
measurement, we also include the results of the parallelized
PMXP variant. The following observations can be made.

(1) The performance of QXP strongly depends on the po-
sition of the conflicts. In the probably most realistic Random
case, MXP helps to reduce the computation times around 20-
30%. In the constellations that are ‘“unfortunate” for QXP, the
speedups achieved with MXP can be as high as 75%. When
QXP is “lucky” and all conflicts are clustered in the left part
of SD, some improvements or light deteriorations can be ob-
served for MXP. The latter two situations (all conflicts are

*We assume a splitting strategy in which the elements are simply
split in half in the middle with no particular ordering of the elements.

#Cp | #Cf | |Cf| | Cf Pos. QXP | MXP | PMXP
[ms] Impr. | Impr.
50 5 2 | Random 351 27% 30%
50 5 2 Left 161 6% 10%
50 5 2 Right 481 69% 70%
50 5 2 LaR 293 51% 57%
50 5 2 | Neighb. 261 54% 58%
100 | 5 2 | Random 417 33% 35%
100 | 5 2 Left 181 14% 17%
100 | 5 2 Right 622 75% 76%
100 | 5 2 LaR 351 58% 63%
100 | 5 2 | Neighb. 314 62% 65%
50 | 15 4 | Random || 2,300 22% 20%
50 | 15 4 Left 452 -8% -4%
50 | 15 4 Right 1,850 72% 73%
50 | 15 4 LaR 3,596 22% 18%
50 | 15 4 | Neighb. || 166,335 | 43% 43%

Table 5: Results when varying the problem characteristics.

clustered in one half) are actually quite improbable but help
us better understand which factors influence the performance.

(2) When comparing the results of the first two blocks in
the table, it can be seen that the improvements achieved with
MXP are stronger when there are more components in SD
and more time is needed for performing the individual con-
sistency checks. This is in line with the results of the other
experiments.

(3) Parallelization can help to obtain modest additional im-
provements. The strongest improvements are observed for the
LaR configuration, which is intuitive as PMXP by design ex-
plores the left and right halves independently in parallel. Note
that in the experiments with the DXC and the CSP bench-
mark problems, in most cases we could not observe runtime
improvements through parallelization. This is caused by two
facts. First, the consistency checking times are often on av-
erage below 1 ms, which means that the relative overhead
of starting a new thread can be comparably high. Second, the
used CSP solver causes some additional overheads and thread
synchronization when used in multiple threads in parallel.

5 Related Work

In [Junker, 2004b], Junker informally sketches a possible ex-
tension of QXP to be able to compute multiple “preferred ex-
planations” in the context of Preference-Based Search (PBS).
The general goal of Junker’s approach is partially similar to
our work and the proposed extended version of QXP could
in theory be used during the HS-tree construction as well.
Technically, Junker proposes to set a choice point when-
ever a constraint ¢; is found to be consistent with a partial re-
laxation during search and thereby look for (a) branches that
lead to conflicts not containing ¢; and (b) branches leading to
conflicts in which the removal of ¢; leads to a solution.
Unfortunately, it is not fully clear from the informal
sketch in [Junker, 2004b] where the mentioned choice point
should be set. If applied in line 5 of Algorithm 1, conflicts
are only found in the left-most inconsistent partition. The
method would then return only a small subset of all conflicts

3226

MERGEXPLAIN would return. If the split is done for every
c; consistent with a partial relaxation during PBS, the result-
ing diagnosis algorithm corresponds to the binary BHS-tree
method [Lin and Jiang, 20031, which according to the exper-
iments in [Pill ef al., 2011] is not generally favorable over
HS-Tree algorithms, in particular when we are searching for
a limited set of diagnoses.

From the algorithm design, note that QXP applies a con-
structive conflict computation procedure prior to partitioning,
whereas MXP does the partitioning first — thereby removing
multiple constraints at a time — and then uses a divide-and-
conquer conflict detection approach. Finally, our method can,
depending on the configuration, make a guarantee about the
existence of a diagnosis given the returned conflicts without
the need of computing all existing conflicts.

In general, our work is related to a variety of (complete)
approaches from the MBD literature which aim to find di-
agnoses more efficiently than with Reiter’s original method.
Existing works for example tried to speed up the process by
exploiting existing hierarchical, tree-like or distributed struc-
tural properties of the underlying problem [Stumptner and
Wotawa, 2001; Wotawa and Pill, 2013], through paralleliza-
tion [Jannach et al., 2015], or by solving the dual problem
[Satoh and Uno, 2005; Stern et al., 2012; Liffiton et al.,
2015]. A main difference to these previous works is that we
make no assumption about the underlying problem structure
in our approach and leave the general HS-tree procedure un-
changed. Instead, our aim is to avoid a full restart of the con-
flict search process when constructing a new node by looking
for potentially existing additional conflicts in each call, and
to thereby speedup the overall process.

Beside complete methods, a number of approximate diag-
nosis approaches have been proposed in the last years, which
for example use stochastic and heuristic search [Li and Yun-
fei, 2002; Feldman et al., 2010a]. The relation of our work
to these approaches is limited as we are focusing on applica-
tion scenarios where the goal is to find a few first diagnoses
more quickly but at the same time maintain the completeness
property. Finally, for some domains, “direct” and SAT-based
encodings, e.g., [Metodi e al., 2012], have shown to be very
efficient to find one or a few diagnoses in recent years. Most
“direct” methods are however again incomplete and require
the use of additional techniques like iterative deepening if the
goal is to find more than one minimal diagnosis.

The concept of conflicts plays a central role in differ-
ent other reasoning contexts than Model-Based Diagnosis,
e.g., explanations or dynamic backtracking. Specifically, in
recent years a number of approaches were proposed in the
context of the maximum satisfiability problem (MaxSAT),
see [Morgado er al., 2013] for a recent survey. In these do-
mains the conflicts are referred to as unsatisfiable cores or
Minimally Unsatisfiable Subsets (MUSes); Minimal Correc-
tion Subsets (MSCes) on the other hand correspond to the
concept of diagnoses in this paper. In [Davies and Bacchus,
2013] or [Ignatiev et al., 2014], for example, different al-
gorithms were recently proposed to find one solution to the
MaxSAT problem, which corresponds to the problem of find-
ing one minimal/preferred diagnosis. Other techniques such
as MARcoO [Liffiton et al., 2015] aim at the enumeration of

3227

conflicts. In general, many of these algorithms use a simi-
lar divide-and-conquer principle as we do with MXP. How-
ever, such algorithms — including the ones listed above —
often modify the underlying knowledge base by adding re-
laxation variables to clauses of a given unsatisfiable formula
and then use a SAT solver to find the relaxations. This strat-
egy roughly corresponds to the direct diagnoses approaches
discussed above. MXP, in contrast, acts completely indepen-
dently of the underlying knowledge representation language.
Moreover, the problem-independent decomposition approach
used by MXP is a novel feature which — to the best of our
knowledge — is not present in the existing conflict detection
techniques from the MaxSAT field. Specifically, it allows our
algorithm to find multiple conflicts more efficiently because
it searches for them within independent small subsets of the
original knowledge base. In addition, MXP can find conflicts
in knowledge bases formulated in very expressive knowledge
representation languages, such as description logics, which
cannot be efficiently translated to SAT, see also [Shcheko-
tykhin et al., 2014].

6 Conclusions

We have proposed and evaluated a novel, general-pur-
pose and non-intrusive conflict detection strategy called
MERGEXPLAIN, which is capable of detecting multiple con-
flicts in a single call. An evaluation on various benchmark
problems revealed that MERGEXPLAIN can help to signifi-
cantly reduce the required computation times when applied
in a Model-Based Diagnosis setting in which the goal is to
find a defined number of diagnoses and in which no assump-
tion about the underlying reasoning engine should be made.

One additional property of MERGEXPLAIN is that the
union of the elements of the returned conflict sets is guaran-
teed to be a superset of one diagnosis of the original problem.
Recent methods like the one proposed in [Shchekotykhin et
al., 2014] can therefore be applied to find one minimal diag-
nosis quickly.

Acknowledgements

This work was supported by the Carinthian Science Fund
(KWF) contract KWF-3520/26767/38701, the Austrian Sci-
ence Fund (FWF) and the German Research Foundation
(DFG) under contract numbers I 2144 N-15 and JA 2095/4-1
(Project “Debugging of Spreadsheet Programs”).

References

[Baader and Penaloza, 2008] Franz Baader and Rafael Pe-
naloza. Axiom Pinpointing in General Tableaux. J. Logic
Comput., 20(1):5-34, 2008.

[Davies and Bacchus, 2013] Jessica Davies and Fahiem Bac-

chus. Postponing optimization to speed up MAXSAT solv-
ing. In Proceedings of CP, pages 247-262, 2013.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing Multiple Faults. Artif. Intell.,
32(1):97-130, 1987.

[de Kleer, 1989] Johan de Kleer. A Comparison of ATMS
and CSP Techniques. In IJCAI, pages 290-296, 1989.

[de Kleer, 2011] Johan de Kleer. Hitting set algorithms for
model-based diagnosis. In DX Workshop, pages 100-105,
2011.

[Feldman et al., 2010a] A Feldman, G Provan, and A van
Gemund. Approximate Model-Based Diagnosis Using
Greedy Stochastic Search. Journal of Artifcial Intelligence
Research, 38:371-413, 2010.

[Feldman et al., 2010b] Alexander Feldman, Gregory
Provan, Johan de Kleer, Stephan Robert, and Arjan van
Gemund. Solving Model-Based Diagnosis Problems with
Max-SAT Solvers and Vice Versa. In DX Workshop, pages
185-192, 2010.

[Felfernig et al., 2004] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based diagnosis of configuration knowledge
bases. Artif. Intell., 152(2):213-234, 2004.

[Friedrich and Shchekotykhin, 2005] Gerhard Friedrich and
Kostyantyn Shchekotykhin. A General Diagnosis Method
for Ontologies. In ISWC, pages 232-246, 2005.

[Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-Based Diagnosis of Hard-
ware Designs. Artif. Intell., 111(1-2):3-39, 1999.

[Ignatiev ef al., 2014] Alexey Ignatiev, Antonio Morgado,
Vasco Manquinho, Ines Lynce, and Joao Marques-Silva.
Progression in Maximum Satisfiability. In ECAI, pages
453-458, 2014.

[Jannach and Schmitz, 2014] Dietmar Jannach and Thomas
Schmitz. Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach. Autom. Softw.
Eng.,2014.

[Jannach et al., 2015] Dietmar Jannach, Kostyantyn
Shchekotykhin, and Thomas Schmitz. Parallelized
Hitting Set Computation for Model-Based Diagnosis. In
AAAI pages 1503-1510, 2015.

[Junker, 2001] Ulrich Junker. QUICKXPLAIN: Conflict De-
tection for Arbitrary Constraint Propagation Algorithms.
In IJCAI (CONS-1), 2001.

[Junker, 2004a] Ulrich Junker. Preference-Based Search and
Multi-Criteria Optimization. Ann. Oper. Res., 130:75-115,
2004.

[Junker, 2004b] Ulrich Junker. QUICKXPLAIN: Preferred
Explanations and Relaxations for Over-Constrained Prob-
lems. In AAAI pages 167-172, 2004.

[Li and Yunfei, 2002] Lin Li and Jiang Yunfei. Computing
Minimal Hitting Sets with Genetic Algorithm. In DX’02
Workshop, pages 1-4, 2002.

[Liffiton et al., 2015] Mark H. Liffiton, Alessandro Previti,
Ammar Malik, and Joao Marques-Silva. Fast, Flexible
MUS Enumeration. Constraints, pages 1-28, 2015.

[Lin and Jiang, 2003] Li Lin and Yunfei Jiang. The compu-
tation of hitting sets: Review and new algorithms. Infor-
mation Processing Letters, 86(4):177-184, May 2003.

[Mateis et al., 2000] Cristinel Mateis, Markus Stumptner,
Dominik Wieland, and Franz Wotawa. Model-Based De-
bugging of Java Programs. In AADEBUG, 2000.

3228

[Metodi et al., 2012] Amit Metodi, Roni Stern, Meir Kalech,
and Michael Codish. Compiling Model-Based Diagnosis
to Boolean Satisfaction. In Proceedings AAAI 2012, pages
793-799, 2012.

[Metodi et al., 2014] Amit Metodi, Roni Stern, Meir Kalech,
and Michael Codish. A Novel SAT-Based Approach to
Model Based Diagnosis. J. Artif. Intell. Res., 51:377-411,
2014.

[Morgado et al., 2013] Antonio Morgado, Federico Heras,
Mark Liffiton, Jordi Planes, and Joao Marques-Silva. It-
erative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18(4):478-534, 2013.

[Nica ef al., 2013] Tulia Nica, Ingo Pill, Thomas Quaritsch,
and Franz Wotawa. The Route to Success — A Perfor-
mance Comparison of Diagnosis Algorithms. In IJCAI,
pages 1039-1045, 2013.

[Pill and Quaritsch, 2012] Ingo Pill and Thomas Quaritsch.
Optimizations for the Boolean Approach to Computing
Minimal Hitting Sets. In ECAI, pages 648-653, 2012.

[Pill et al., 2011] Ingo Pill, Thomas Quaritsch, and Franz
Wotawa. From Conflicts to Diagnoses: An Empirical Eval-
uation of Minimal Hitting Set Algorithms. In DX Work-
shop, pages 203-211, 2011.

[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis from
First Principles. Artif. Intell., 32(1):57-95, 1987.

[Satoh and Uno, 2005] Ken Satoh and Takeaki Uno. Enu-
merating Minimally Revised Specifications Using Dual-
ization. In JSAI *05 Workshop, pages 182—-189, 2005.

[Shchekotykhin et al., 2012] Kostyantyn Shchekotykhin,
Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler.
Interactive ontology debugging: Two query strategies for
efficient fault localization. J. Web Semant., 12-13:88—103,
2012.

[Shchekotykhin et al., 2014] Kostyantyn Shchekotykhin,
Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss.
Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation. In ECAI,
pages 813-818, 2014.

[Stern et al., 2012] Roni Stern, Meir Kalech, Alexander
Feldman, and Gregory Provan. Exploring the Duality in
Conflict-Directed Model-Based Diagnosis. In Proceedings
AAAI 2012, pages 828-834, 2012.

[Stumptner and Wotawa, 2001] Markus ~ Stumptner and
Franz Wotawa. Diagnosing tree-structured systems. Artif.
Intell., 127(1):1-29, 2001.

[White et al., 2010] Jules White, David Benavides, Dou-
glas C. Schmidt, Pablo Trinidad, Brian Dougherty, and
Antonio Ruiz Cortés. Automated Diagnosis of Feature
Model Configurations. J. Syst. Software, 83(7):1094—
1107, 2010.

[Wotawa and Pill, 2013] F Wotawa and I Pill. On classifica-
tion and modeling issues in distributed model-based diag-
nosis. Al Comm., 26(1):133-143, 2013.

