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Abstract
A formal framework is given for the postulate char-
acterizability of a class of belief revision opera-
tors, obtained from a class of partial preorders using
minimization. It is shown that for classes of posets
characterizability is equivalent to a special kind of
definability in monadic second-order logic, which
turns out to be incomparable to first-order definabil-
ity. Several examples are given of characterizable
and non-characterizable classes. For example, it is
shown that the class of revision operators obtained
from posets which are not total is not characteriz-
able.

1 Introduction
How to incorporate changes into a knowledge base is a fun-
damental problem of AI, referred to as the problem of be-
lief change. The main approach to belief change is the AGM
approach pioneered by [Alchourrón, Gärdenfors, and Makin-
son, 1985]. There is a large variety of results characterizing
classes of belief change operators in terms of rationality pos-
tulates [Hansson, 1999].

Are there cases where no characterization can be given?
In view of the many positive results, it seems natural to

ask this question. Non-axiomatizability and undefinability
questions are much studied in mathematical logic and simi-
lar issues were also considered in modal logic [Blackburn, de
Rijke, and Venema, 2001] and dynamic epistemic logic [van
Ditmarsch, van der Hoek, and Kooi, 2007].

Having tools to prove non-characterizability could be use-
ful when one tries to understand the properties of a class of
revision operators. While the standard presentations of belief
change start with a set of postulates and then find a match-
ing class of revision operators, there may be situations when
a class of revision operators comes first. This may happen,
for example, when one considers a class of revision operators
which is a natural variant of previously considered ones, such
as belief bases instead of belief sets. Also, one may intro-
duce a class of efficiently computable revision operators for
practical purposes. In these cases one may inquire what are
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the properties of the given class of revision operators? For in-
stance, does it form a “nice” class, which can be characterized
by postulates?

Proving non-characterizability presupposes a formal defi-
nition of a postulate. However, as noted in the survey [Fermé
and Hansson, 2011]

“theories of belief change developed in the AGM
tradition are not logics in a strict sense, but rather
informal axiomatic theories of belief change. In-
stead of characterizing the models of belief and be-
lief change in a formalized object language, the
AGM approach uses a natural language (ordinary
mathematical English) to characterize the mathe-
matical structures under study.”

As far as we know, the first result on characterizability
for belief revision was given by [Schlechta, 2004] in the
framework of distance semantics [Lehmann, Magidor, and
Schlechta, 2001]. This work was extended by [Ben-Naim,
2006].

In this paper, we provide a formal framework for study-
ing characterizability based on the approach of [Katsuno and
Mendelzon, 1991]. A revision operator ∗ is considered to as-
sign a revised knowledge baseK ∗ϕ to every knowledge base
K and every revising formula ϕ. However, the results remain
valid if one considers ∗ to act on a fixed knowledge base K
and an arbitrary revising formula ϕ. We are not discussing
iterated revision here, so there is no interaction between the
revisions of different knowledge bases. Katsuno and Mendel-
zon prove the following results:

a) There is a finite set of postulates such that a revision op-
erator satisfies these postulates iff there is a faithful total pre-
order representing it with minimization.

b) There is a finite set of postulates such that a revision op-
erator satisfies these postulates iff there is a faithful partial
preorder representing it with minimization.

c) There is a finite set of postulates such that a revision oper-
ator satisfies these postulates iff there is a faithful poset rep-
resenting it with minimization.

Part a) is a finite version of Grove’s characterization of
the AGM postulates in terms of systems of spheres [Grove,
1988]. Part b) is about a more general class of operators and
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the postulates characterizing it are different from a). The pos-
tulates in c) turns out to be the same as in b), i.e., every oper-
ator satisfying the postulates in b) can already be represented
by a faithful poset.

We consider the following general question. Let R be a
family of partial preorders. Is there a finite set of postulates
such that a revision operator satisfies these postulates iff there
is a faithful partial preorder fromR representing it with min-
imization? The general setup is illustrated below1.

This problem corresponds to situations when the partial
preorders over the possible worlds are known to satisfy cer-
tain properties, and the question is what additional properties
of the revision operators are entailed by this extra informa-
tion. For example, total orders mean that any two models can
be compared. Bounded height means that the length of any
chain of comparable models is bounded; thus, in a sense, our
ability to rank models is limited. Another interesting class
(not considered in this paper) is that of orders of bounded
dimension [Trotter, 1992]. Here the assumption is that the
comparison between two models is determined by a bounded
number of underlying criteria, each represented by a total or-
der, and a model is preferred to another if it is preferred ac-
cording to each criterion.

Our goal is to “characterize postulate characterizability”.
This is achieved for families of partial orders by showing
that the answer to the question is positive iff the family is
definable by a ∀MSOmin sentence, which is a special kind
of monadic second-order sentence. Interestingly, ∀MSOmin

definability turns out to be incomparable to first-order defin-
ability. We use the characterization to give several examples
of characterizable and non-characterizable classes of revision
operators. The negative results are proved using a “forget-
ful” version of the Ajtai-Fagin variant of Ehrenfeucht-Fraı̈ssé
games [Ajtai and Fagin, 1990; Libkin, 2004].

In Sections 2-7 of the paper we set up the framework for
the discussion of characterizability and provide the tools used
in the second part of the paper. Sections 8-10 define the
classes of revision operators considered, and prove the re-
sults on characterizability, resp., non-characterizability. Sec-
tion 11 contains a diagram summarizing the relationships be-
tween characterizability and logical definability. Due to lack
of space, proofs are outlined only or omitted.

1As discussed later on, the mapping from posets to operators is a
bijection, unlike in the general case of partial preorders. Therefore
we restrict ourselves to posets in this paper.

2 Preliminaries
We consider propositional logic knowledge bases K over a
fixed finite set of variables. We writeKn to indicate thatK is
over n variables. A knowledge base is represented by a sin-
gle formula 2. Truth assignments (or interpretations, models,
possible worlds) are assignments of truth values to the vari-
ables. The set of truth assignments satisfying a formula ϕ is
denoted by |ϕ|. Given a set A of truth assignments, 〈A〉 is
some formula ϕ such that |ϕ| = A.

Given a knowledge base K, a belief revision operator ∗ as-
signs a formulaK∗ϕ to every formula ϕ. Here ϕ is called the
revising formula, and K ∗ ϕ is called the revised knowledge
base.

A partial preorder is R = (X,≤), where X is a finite
ground set and ≤ is a reflexive, transitive binary relation. A
poset (or partial order) is, in addition, antisymmetric. Ele-
ments a and b are comparable if a ≤ b or b ≤ a holds.
Otherwise they are incomparable. The comparability graph
of R is the undirected graph over X such that for any pair of
vertices (a, b) is an edge iff a ≤ b or b ≤ a. Elements a and
b in a partial preorder are twins, denoted by a ≈ b, if a ≤ b
and b ≤ a. An element a is minimal if there is no b such that
b < a, where b < a iff b ≤ a but a 6≤ b. If X ′ ⊆ X then
a is minimal in X ′ if a ∈ X ′ and there is no b ∈ X ′ such
that b < a. The set of minimal elements of X ′ is denoted by
min≤X

′, or simply minX ′ if ≤ is clear from the context.
Partial preorders will be used to represent preferences

over truth assignments, with truth assignments satisfying the
knowledge base being most preferred3. This assumes that
partial preorders considered have a special structure, referred
to as regularity in this paper.
Definition 2.1. (Regular partial preorders) A partial pre-
order is regular if

1. every minimal element is smaller than any non-minimal
element and

2. the number of elements is a power of 2.

The first assumption means that every truth assignment sat-
isfying the knowledge base is preferred to every truth assign-
ment not satisfying it. This is a standard assumption in belief
change theory. The second assumption is made because the
number of truth assignments is always a power of two, and
we identify the elements of the partial preorder with truth as-
signments. From the point of view of partial preorders these
are mild technical assumptions which do not have an essen-
tial effect on definability. An example of a non-regular par-
tial preorder is the 4-element poset with a < b, c < d and no
other comparability. Condition 1 is satisfied, for example, if
there is a unique minimal element.

The following is one of the standard representations of an
epistemic state, i.e., a knowledge base with additional epis-
temic information used in the belief change operations.

2We note that because of finiteness this representation corre-
sponds to the belief set framework. Computational complexity is-
sues are not discussed here thus the details of the representation are
irrelevant.

3Following standard usage, a ≤ b is taken to mean that a is
preferred to b.
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Definition 2.2. (Faithful partial preorder) A faithful partial
preorder for a knowledge base Kn is a pair F = (R, t),
where R = (X,≤) is a regular partial preorder and t : X →
{0, 1}n is a bijection between the elements ofX and truth as-
signments, such that a ∈ X is minimal iff t(a) satisfies Kn.

In the standard definition the partial preorder is defined
over the set of truth assignments. For our discussion it is
more convenient to separate the partial preorder and the la-
beling of its elements by truth assignments. Similar distinc-
tions are made in modal logic as well [Blackburn, de Rijke,
and Venema, 2001].

3 Revision Using Minimization
One of the basic approaches to belief change is to perform
minimization using epistemic states represented by faithful
partial preorders.
Definition 3.1. (Revision using minimization) The revision
operator ∗F for K, determined by a faithful partial preorder
F for K, using minimization is

K ∗
F
ϕ = 〈min≤ t

−1(|ϕ|)〉.
Thus the revised knowledge base is satisfied by the min-

imal satisfying truth assignments of the revising formula.
Faithfulness implies that if the revising formula is consistent
with the knowledge base then the revised knowledge base is
the conjunction of the knowledge base and the revising for-
mula.

The definition is illustrated in the figure below. Let n = 2
and the knowledge base be K = x1 ∧ x2. Then F1, F2 and
F3 are faithful partial preorders for K. The double line in F3

indicates that t−1(01) and t−1(00) are twins. Consider the
revising formula ϕ = x̄1. Elements belonging to t−1(|ϕ|) are
shown as black dots and the elements of min≤ t

−1(|ϕ|) are
in ovals. Then it holds that

K ∗F1
ϕ = x̄1 ∧ x2 and K ∗F2

ϕ = K ∗F3
ϕ = x̄1.

Note that the regular partial preorders underlying F1 and
F2 are posets, the first one is total and the second one is not.
The revision operator ∗F1 satisfies the postulate “if K and ϕ
are inconsistent then |K ∗ϕ| is a singleton”. The revision op-
erator ∗F2 does not satisfy the postulate. Also, note that the
regular partial preorders underlying F2 and F3 are not iso-
morphic, but the corresponding revision operators are identi-
cal. The difference between revision operators determined by
partial preorders and posets, indicated by this example, can
be formulated as follows.

Definition 3.2. A revision operator ∗ is poset-based if it is of
the form ∗F for some faithful poset F .
Lemma 3.3. a) There are non-isomorphic regular partial
pre-orders R1 and R2 such that there are faithful partial pre-
orders F1 = (R1, t1) and F2 = (R2, t2) with ∗F1 = ∗F2 .

b) Let K be a knowledge base, and ∗ be a poset-based
revision operator. Then there is a unique faithful poset F
such that ∗ = ∗F .

4 Postulates and Characterizability
Consider the AGM postulate

if K ∧ ϕ is satisfiable, then K ∗ ϕ = K ∧ ϕ. (1)

HereK,K ∗ϕ and ϕ can be considered as unary predicates
over the set of truth assignments, and thus the above postulate
can be rewritten as

[∃x(K(x)∧ϕ(x))]→ [∀x
(
(K ∗ϕ)(x)↔ (K(x)∧ϕ(x))

)
]. (2)

Postulates refer to a fixed knowledge base K, and are im-
plicitly universally quantified over formula symbols such as
ϕ. They express general requirements that are supposed to
hold for all revising formulas. Our proposed definition gen-
eralizes this example. This definition is one possibility to for-
malize the notion of a postulate, It seems natural and covers
most postulates considered for belief revision operators (but
see the remark after the definition). In order to emphasize
that this is just one, though hopefully basic, notion, we refer
to such postulates as basic.
Definition 4.1. (Basic postulate) A basic postulate P
is a first-order sentence with unary predicate symbols
K,ϕ1, . . . , ϕ` and K ∗ µ1, . . . ,K ∗ µm, where µ1, . . . , µm
are Boolean combinations of ϕ1, . . . , ϕ`.

A revision operator satisfies a basic postulate for a knowl-
edge base K if the basic postulate holds for all ϕ1, . . . , ϕ`,
with the variables ranging over the set of sets of truth assign-
ments.

Allowing for Boolean combinations as arguments to the
belief revision operator is necessary as many postulates use
such constructs. For example, the AGM postulates refer to
K ∗ (ϕ ∧ ψ). Definition 4.1 covers most postulates in [Kat-
suno and Mendelzon, 1991] and in Section 7.3 of [Hansson,
1999]. The postulate of relevance seems to be an example
which is not covered by this definition. Using terminology to
be introduced later on, its standard definition is still monadic
second-order but it contains a quantifier alternation.

The definition of characterizability applies to revision op-
erators within the partial preorder minimization framework.
Classes of revision operators can be defined by specifying a
class of partial preorders.
Definition 4.2. (R-revision operator) Let R be a family of
regular partial preorders. Let K be a knowledge base and ∗
be a revision operator for K. Then ∗ is an R-revision oper-
ator iff there is a faithful partial preorder F = (R, t) for K
with R ∈ R, representing ∗ using minimization.

Lemma 3.3 shows that there is a bijection between poset-
based revision operators and the posets generating them,
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while this is not always the case for revision operators gener-
ated by partial preorders. Therefore, in the rest of the paper
we restrict the discussion to posets for simplicity.

Definition 4.3. (Characterization, characterizability) Let R
be a family of regular posets. A finite set of basic postulates
P characterizes R-revision operators if for every knowledge
base K and every poset-based revision operator ∗ for K the
following holds: ∗ satisfies the basic postulates in P iff ∗ is
anR-revision operator.

The family of R-revision operators is characterizable if
there is a finite set of basic postulates characterizing R-
revision operators.

5 min-formulas and Translation
We define a translation of basic postulates as defined in Def-
inition 4.1 into sentences over an extension of the first-order
language of posets. The language of posets contains the bi-
nary relation symbol ≤ and equality.

The translated sentences also contain additional unary
predicate symbols A1, . . . , A`. These correspond to proposi-
tional formulas ϕ1, . . . , ϕ` occurring in the basic postulates.
We introduce some notation for the translations.

Definition 5.1. (Hat) Given a Boolean combination µ of
ϕ1, . . . , ϕ`, we denote by µ̂ the first-order formula obtained
by replacing the ϕ’s with A’s.

For instance, for µ(x) = ϕ1(x), one has µ̂(x) = A1(x),
and for µ(x) = ϕ1(x) ∧ ϕ2(x), one has µ̂(x) = A1(x) ∧
A2(x).

Given a formula ν over the language ≤, A1, . . . , A` with a
single free variable xwe write minν≤ for a formula expressing
that x is a minimal element satisfying ν, i.e.,

minν≤(x) ≡ ν(x) ∧ ∀y(ν(y)→ ¬(y < x)). (3)

When ≤ is clear from the context it is omitted as a subscript.
Minimal elements in the poset are defined by

min(x) ≡ ∀y(¬(y < x)).

We need the special cases when the formula ν is a Boolean
combination of the unary predicates A1, . . . , A`.

Definition 5.2. (min-formula) A min-formula over the unary
predicate symbols A1, . . . , A` is a first-order formula built
from the Ais and formulas of the form minν≤(x), where the
ν’s are arbitrary Boolean combinations of the Ais.

Now we can define the translation of a basic postulate.

Definition 5.3. (Translation) The translation τ(P ) of a basic
postulateP is the min-sentence obtained fromP by replacing

1. every occurrence of K(x) with min(x),

2. every occurrence of ϕi(x) and µi(x) with their “hat”
versions and

3. every occurrence of K ∗ µi with minµ̂i(x).

Note that Part 2 in the definition is redundant as the def-
inition for ϕi is a special case of the definition for µi. The
translation of a basic postulate is a first-order sentence over

the predicate symbols≤, A1, . . . , A`. It is based on the obser-
vation that the definition of revision by minimization (Defini-
tion 3.1) uses the underlying poset in a restricted manner, by
simply taking the minimal elements of the revising formula.

Example 5.4. (Translation of basic postulate (2)) Applying
Definition 5.3 we get the min-sentence[

∃x(min(x) ∧A1(x))]

→ [∀x
(

minA1(x)↔ (min(x) ∧A1(x))
)]
. (4)

The following is a direct consequence of the definitions, as
τ is a simple syntactic transformation.

Proposition 5.5. The mapping τ is a bijection between basic
postulates containing revising formulas ϕ1, . . . , ϕ` and min-
sentences over unary predicates A1, . . . , A`.

In order to interpret min-formulas let us introduce the fol-
lowing.

Definition 5.6. (`-extension) Let R = (X,≤) be a partial
preorder. An `-extension of R is a structure

R′ = (X,≤, A1, . . . , A`),

where A1, . . . , A` are unary relations4.

Given K,ϕ1, . . . , ϕ` and a faithful partial preorder F for
K, the (ϕ1, . . . , ϕ`)-extension of F is determined in the
standard way, by interpreting the unary predicate symbols
A1, . . . , Ak by Ai(a) = ϕi(t(a)). We recall that a distinc-
tion is made between an element a of the poset, and the truth
assignment t(a) assigned to that element. Again, the follow-
ing proposition is a direct consequence of the definitions.

Proposition 5.7. Let K be a knowledge base, F = (R, t) be
a faithful partial preorder forK and let ∗F be the revision op-
erator determined by F using minimization. Let ϕ1, . . . , ϕ`
be propositional formulas andP be a basic postulate. ThenP
is satisfied by ∗

F
for ϕ1, . . . , ϕ` iff the (ϕ1, . . . , ϕ`)-extension

of F satisfies τ(P ).

6 ∀MSOmin -definability
In the next two sections we develop the concepts and tools
for the logical characterization of postulate characterizabil-
ity using finite model theory [Ebbinghaus and Flum, 2006;
Libkin, 2004].

As propositional logic formulas occurring in the basic pos-
tulates are implicitly universally quantified and such formulas
are translated into subsets of the partial preorders, it is natural
to consider universal monadic second-order logic.

A universal monadic second-order (∀MSO) sentence is of
the form

Φ = ∀A1, . . . , A`Ψ, (5)

where A1, . . . , A` range over unary predicates (or subsets) of
the universe, and Ψ is a first-order sentence using the unary

4With an abuse of notation, we use the same notation for a predi-
cate symbol and its interpretation over a structure, assuming that the
structure is clear from the context.
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predicate symbols A1, . . . , A` in addition to the original lan-
guage (in our case ≤ and equality). An existential second-
order (∃MSO) sentence is of the form Φ = ∃A1, . . . , A`Ψ.

As noted in the previous section, translations of basic pos-
tulates, such as (4), have special structure. They only refer to
the underlying order relation ≤ in a restricted manner, only
inside a minµ̂≤-formula. Thus we are using only a fragment
of universal monadic second-order logic, defined as follows.
The definition of ∃MSOmin sentences is analogous.

Definition 6.1. (∀MSOmin sentence) A ∀MSOmin sentence
is a universal second order sentence where Ψ is a min-
sentence.

For example, universally quantifying in (4) over the
second-order variable A1 we get the ∀MSOmin sentence

∀A1(
[
∃x(min(x) ∧A1(x))]

→ [∀x
(

minA1(x)↔ (min(x) ∧A1(x))
)]

). (6)

Thus from the formal rewriting of the AGM postulate (1)
as (2), we arrive at (6) through the intermediate step (4). Each
step is a simple, invertible syntactic transformation.

Definition 6.2. (∀MSOmin -definability) A family R of reg-
ular posets is ∀MSOmin -definable if there is a ∀MSOmin

sentence Φ such that for every regular poset R it holds that
R ∈ R iff R satisfies Φ.

The logical characterization of basic postulate characteriz-
ability can now be stated.

Theorem 6.3. LetR be a family of regular posets. The family
of R-revision operators is characterizable iff the family R is
∀MSOmin -definable.

This theorem reduces questions about characterizability to
questions about ∀MSOmin -definability. The next section de-
velops tools from finite model theory for proving undefinabil-
ity.

7 Games
The q-round first-order Ehrenfeucht - Fraı̈ssé game over two
relational structures is played by two players, Spoiler and Du-
plicator. In each round Spoiler picks one of the structures and
an element of that structure. Duplicator responds by picking
an element in the other structure. After q rounds Duplicator
wins if the mapping, assigning elements picked in the same
round to each other, yields isomorphic substructures. Other-
wise Spoiler wins. A basic result is that a class of structures
is first-order definable iff there is a q such that if the q-round
game is played on two structures, one belonging to the class
and the other not, then Spoiler has a winning strategy.

In the following definitions we use ∃MSOmin instead of
∀MSOmin for convenience; ∃MSOmin -definability of a
class is the same as ∀MSOmin -definability of its comple-
ment. First we discuss ∃MSO, and then its min-version. The
first-order Ehrenfeucht - Fraı̈ssé game has a variant corre-
sponding to ∃MSO definability. A modified version, which
is easier to use for proving undefinability, is defined in [Ajtai
and Fagin, 1990]. LetR be a class of structures.

Definition 7.1. ((R, `, q)-∃MSO Ajtai-Fagin game) Given a
class R of structures and parameters ` and q, the (R, `, q)-
∃MSO Ajtai-Fagin game is played as follows:

1. Duplicator picks a structure R1 ∈ R,
2. Spoiler picks ` subsetsA1, . . . , A` of the universe ofR1,
3. Duplicator picks a structure R2 6∈ R and subsets
B1, . . . , B` of the universe of R2,

4. Spoiler and Duplicator play a q-round first-order Ehren-
feucht - Fraı̈ssé game on the structures extended with the
subsets (i.e., unary relations) selected.

The connection between ∃-definability and the Ajtai-Fagin
game is as follows.
Theorem 7.2. [Ajtai and Fagin, 1990] A classR is ∃MSO-
definable iff there are `, q such that Spoiler has a winning
strategy in the (R, `, q)-∃MSO Ajtai-Fagin game.

We introduce now a further modification of the Ajtai-Fagin
game, defined for partial orders only. We refer to this game
as the Katsuno-Mendelzon (KM) game. First let us introduce
the notion of a variant.

Let A1, . . . , A` be unary predicate symbols. There are
L = 22

`

logically inequivalent Boolean combinations
µ of A1, . . . , A`. Let us pick unary predicate symbols
M1, . . . ,ML representing them.
Definition 7.3. (`-min-variant) Let R = (X,≤) be a partial
order. An `-min-variant of R is a structure

R′′ = (X,A1, . . . , A`,M1, . . . ,ML),

where R′ = (X,≤, A1, . . . , A`) is an `-extension of R,
and M1, . . . ,ML are the interpretations of the formulas
minν≤(x), for Boolean combinations ν of the Ais.

Note that R′′ is a structure with unary predicates only, the
relation ≤ is not included, it is “forgotten”5 (but ≤ is used in
order to determine the Mis). So R′′ is not an extension of R:
therefore it is referred to as a variant.
Definition 7.4. ((R, `, q)-∃MSOmin game, or Katsuno-
Mendelzon game) Given a class R of posets and parameters
` and q, the (R, `, q)-∃MSOmin game is played by Spoiler
and Duplicator as follows:

1. Duplicator picks a poset R1 = (X1,≤1) inR,
2. Spoiler picks ` subsets A1, . . . , A` of X1,
3. Duplicator picks a poset R2 = (X2,≤2) 6∈ R and sub-

sets B1, . . . , B` of X2,
4. Form the `-min-variant R′′1 of R1 determined by the `-

extension R′1 = (X1,≤1, A1, . . . , A`), and the `-min-
variant R′′2 of R2 determined by the `-extension R′2 =
(X2,≤2, B1, . . . , B`),

5. Spoiler and Duplicator play a q-round first-order Ehren-
feucht - Fraı̈ssé game on R′′1 and R′′2 .

Theorem 7.5. A class R of posets is ∃MSOmin -definable
iff there are ` and q such that Spoiler wins the (R, `, q) -
∃MSOmin game.

5This is the “forgetful property” of the game, mentioned in the
introduction.
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For non-characterizability we use the following corollary.
The formulation takes into account that the theorem holds for
general posets, but we are only interested in regular posets.
Corollary 7.6. Let R be a class of regular posets. Assume
that for every ` and q, Duplicator has a winning strategy in
the (R, `, q) - ∃MSOmin game such that the posets R2 are
also regular. ThenR is not ∃MSOmin -definable.

8 Classes of Posets
A chain (resp., antichain) is a set of pairwise comparable
(resp., incomparable) elements. The height (resp., width) of
a poset is size of a largest chain (resp., antichain). A poset is
total (aka linear) if it has width 1. A poset is connected (resp.,
disconnected) if its comparability graph is connected (resp.,
disconnected).

As for technical reasons we deal with regular posets in this
paper, we use somewhat modified notions, by disregarding
the minimal elements of the poset. The reason is that for our
purposes the contribution of the minimal elements is not es-
sential, as they relate to the other elements in a trivial way,
but they may interfere with the structure of the remaining el-
ements. For example, minimal elements are always incompa-
rable, thus if minimal elements are included then a poset for
a knowledge base of more than one truth assignment cannot
be total.

The r-height (resp. r-width) of a regular poset is the height
(resp., width) of the poset obtained by removing the minimal
elements. A regular poset is r-total ( resp., r-connected, r-
disconnected) if the poset obtained by removing the minimal
elements is total (resp., connected, disconnected).

We denote by H≤k the class of regular posets with
r-height at most k. The classes H≥k,H<k,H>k,H=k

are defined similarly. For width we use the notations
W≤k,W≥k,W<k,W>k. The class of r-total (resp., r-
connected, r-disconnected) regular posets is denoted by T
(resp., C, D).

9 Characterizable Classes
The characterizability results of this section are proved by
showing that a given class of posets is ∀MSOmin -definable,
or that its complement is ∃MSOmin -definable. It may hap-
pen that the standard definition of a class is not suitable for
such a definition, but it can be replaced by an equivalent defi-
nition which is suitable. As a first example of characterizabil-
ity we give a basic postulate characterizing revision operators
obtained from r-total regular posets.
Theorem 9.1. The class of T -revision operators is charac-
terized by the basic postulate

(∀x(¬(K(x) ∧ φ(x))) ∧ ∃xφ(x))→ ∃!x((K ∗ φ)(x)). (7)

The standard definition of totality is that any two elements
are comparable. With the modification to consider only non-
minimal elements, this becomes the statement that any two
non-minimal elements are comparable. This is not suitable
for our purposes, as min-formulas cannot talk directly about
comparability. An equivalent formulation in the language of
min-formulas is that every nonempty set of non-minimal ele-
ments has a unique minimal element, expressed by (7).

When is it possible to find such a rewriting? We give exam-
ples of both kinds of answers. The positive results are sum-
marized in the following two theorems.
Theorem 9.2. 1. For every k, the class of H≤k-revision

operators is characterizable.
2. For every k, the class ofH≥k-revision operators is char-

acterizable.
3. For every k, the class ofW≤k-revision operators is char-

acterizable.
We outline the proof of Part 2 by showing that H<k is
∃MSOmin -definable. A regular poset has height less than k
iff there are sets A1, . . . , Ak−1 such that the Ais form a par-
tition of the set of non-minimal elements, and each Ai is an
antichain. This definition starts with existential second-order
monadic quantifiers, thus the second-order quantifier struc-
ture is of the right form. The standard description of a set Ai
being an antichain is that there are no comparable pairs inAi.
However, min-definability cannot directly express compara-
bility. An attempt to circumvent this would be to say that a
and b are comparable iff the set of minimal elements of the
set {a, b} is a singleton. This would require a second-order
quantifier to follow a first-order one, which is also not pos-
sible. The solution is given by the observation that Ai is an
antichain iff it is equal to the set of its minimal elements, i.e.,
Ai = minAi.

One case where a replacement of the standard definition
by a ∀MSOmin -sentence cannot be found is having width
at least k: the classesW≥k are turn out to be not ∀MSOmin

-definable, even though they are first-order definable. Con-
nectedness and disconnectedness are also not ∀MSOmin -
definable. These results are presented in the next section.

On the other hand, connected posets of bounded height turn
out to be ∀MSOmin -definable. This is an example of an
∀MSOmin -definable class which is not first-order.
Theorem 9.3. For every k, the class of C ∩ H≤k-revision
operators is characterizable.

10 Non-characterizable Classes
The negative results are based on Theorem 6.3 and Corol-
lary 7.6, by constructing winning strategies for the Dupli-
cator. We first consider the class of W≥2-revision opera-
tors, i.e., the class of revision operators obtained from regular
posets which are not r-total. As non r-total regular posets
form a simple and natural first-order definable class, the non-
characterizability of the corresponding class of revision oper-
ators might be considered somewhat surprising.
Theorem 10.1. The class of W≥2-revision operators is not
characterizable.

We outline the proof. Given ` and q, we have to de-
scribe a winning strategy of the Duplicator in the (R, `, q)
- ∃MSOmin game for the class of regular posets not inW≥2,
i.e., for the class T of r-total regular posets.

The poset R1 = (X1,≤1) picked in step 1. will be a chain
on N elements, for some power of 2 to be determined later.
Assume that Spoiler picks ` subsets A1, . . . , A`. For any ele-
ment a ∈ X1 we associate a bit-vector with components indi-
cating which subsets Ai a belongs to, and for every Boolean
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combination ν of the Ais, whether a is minimal among ele-
ments belonging to ν. These bit-vectors form a coloring of

X1 with L = 2`+22
`

colors. As there is at most one element
which is minimal in a Boolean combination, there are at least
N − 22

`

elements which are never minimal. If N − 22
`

> L
then there are at least two never-minimal elements of the same
color. Duplicator then forms R2 by picking such an element
a, splitting it into two incomparable elements a and b, and
deleting another element c from the same color class. The
sets Bi are the same as the Ais, with the exception of b re-
placing c. The `-min-variants R∗1 and R∗2 are isomorphic and
thus Duplicator can win the first-order game in Step 5.

The non-characterizability ofW≥k-revision operators fol-
lows similarly. We have seen in Theorem 9.3 that the class
of revision operators generated by connected regular posets
of bounded height is characterizable. On the other hand, the
full class of revision operators generated by connected reg-
ular posets turns out to be non-characterizable. This shows
another limitation of ∀MSOmin -definability, as connected
posets are ∀MSO-definable. Finally, the class of revision op-
erators generated by disconnected regular posets is not even
∀MSO-definable.

Theorem 10.2. The classes of C-revision operators and D-
revision operators are not characterizable.

11 Summary
The results on classes of revision operators are summarized
in the figure below. Characterizable classes (denoted by
∀MSOmin in the figure) turn out be a proper subset of uni-
versal monadic second-order definable classes, incomparable
with first-order definable classes. The discussion of some de-
tails of the diagram (such as C ∩ H≤k not being first-order
definable) is omitted due to lack of space.

Characterizable Non-characterizable
1. Height ≤ k, height ≥ k 4. Width ≥ k
2. Width ≤ k 5. Connected
3. Connected and height ≤ k 6. Disconnected

In future work we plan to extend the results of this paper
to partial preorders and also to contraction operators. Further
questions include characterizability for other types of epis-
temic information, and for iterated revision.
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