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Abstract

We consider a simple language for writing causal
action theories, and postulate several properties for
the state transition models of these theories. We
then consider some possible embeddings of these
causal action theories in some other action for-
malisms, and their implementations in logic pro-
grams with answer set semantics. In particular, we
propose to consider what we call permissible trans-
lations from these causal action theories to logic
programs. We identify two sets of properties, and
prove that for each set, there is only one permissi-
ble translation, under strong equivalence, that can
satisfy all properties in the set. As it turns out, for
one set, the unique permissible translation is essen-
tially the same as Balduccini and Gelfond’s transla-
tion from Gelfond and Lifschitz’s action language
B to logic programs. For the other, it is essen-
tially the same as Lifschitz and Turner’s translation
from the action language C to logic programs. This
work provides a new perspective on understanding,
evaluating and comparing action languages by us-
ing sets of properties instead of examples. It will
be interesting to see if other action languages can
be similarly characterized, and whether new action
formalisms can be defined using different sets of
properties.

1

Formal reasoning about action has been a central topic in
logic-based Al for a long time, and motivated much of the
early work on nonmonotonic logics. The main difficulties
have been the frame and the ramification problems. Current
consensus in the community is that to solve the ramification
problem, a notion of causality is needed. As aresult, there has
been much work on causal action theories (e.g. [Lifschitz,
1987; Lin, 1995; McCain and Turner, 1995; Baral, 1995;
Thielscher, 1997; Lifschitz, 1997; Turner, 1999; Gelfond and
Lifschitz, 1998; Lin, 2003; Herzig and Varzinczak, 2007;
Lee et al., 2013]), and a variety of languages and semantics
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have been proposed. These different approaches basically all
agree when the set of causal rules is stratified, and in this case
yields a complete action theory that can be represented, for
example, by a set of successor state axioms. However, when
there are cycles in the rules, it is not always clear how these
rules are going to be represented according to these different
approaches, and what the correct results are supposed to be.
For instance, do we allow cyclic rules to produce indetermi-
nate effects on actions?

This motivated us to do a computer experiment that would
systematically enumerate all possible causal theories in a
small language, and look at their desirable models. As it
turned out, what counts as a desirable model depends on what
properties we want to have about causal theories. This led us
to consider various properties of transition models of causal
theories. We then consider how these various properties fit
into some existing action languages that allow static causal
rules. To make the comparisons systematic, and also for
computational reasons, we consider what we call permissible
translations of our causal action theories to logic programs
under the answer set semantics [Gelfond and Lifschitz, 1988;
1991]. Specifically, given a set of properties on the transi-
tion models, we consider all possible permissible translations
from our causal theories to logic programs so that the answer
sets of these programs, when mapped back to the transition
models of the causal theories, will satisfy all properties in the
set. In this paper, we identify two such sets of properties.
For both of them, our computer experiment shows that when
there are at most three fluents in the language, the permissible
translations are unique up to a notion of strong equivalence.
The general case is proved by induction with the three fluent
language as the base case.

Furthermore, for one set of properties, the translation is
essentially the same as Balduccini and Gelfond’s translation
from Gelfond and Lifschitz’s action language B to logic pro-
grams. For the other, the translation is essentially the same as
Lifschitz and Turner’s translation from the action language C
to logic programs. These results are significant in that they
provide a new perspective on understanding, evaluating and
comparing action languages by using sets of properties in-
stead of examples. It is possible that other action languages
can be similarly characterized, and new action languages de-
fined using different sets of properties.

The rest of the paper is organized as follows. In Section



2 we formally introduce the syntax of the causal action the-
ories that we use in this work. Next we list some reasonable
properties that we expect the semantics of the causal action
theories to satisfy in Section 3. Then in Section 4 we consider
some straightforward mappings of our theories to some exist-
ing formalisms such as the action languages 13 [Gelfond and
Lifschitz, 1998] and C [Giunchiglia and Lifschitz, 1998], and
the situation calculus. In Section 5 we consider the problem
of mapping causal action theories to logic programs under the
answer set semantics, define the notion of permissible trans-
lations, and give our main results. In Section 6 we discuss
some related work, and finally in Section 7 we conclude the

paper.

2 Simple causal action theories

We assume a finite set F of propositional atoms called flu-
ents. We also assume two distinguished symbols “T for tau-
tology, and “_L” for contradiction. A fluent literal is either f
or - f where f € F. So far in work on causal action theory,
the focus is on the formalization of the effects of primitive ac-
tions, and how the causal rules are used in this formalization.
The actions are assumed to be independent, in the sense that
the effects of one action are independent of the effects of any
other actions. So to make our formalism as simple and to the
point as possible, we assume that there is just one unnamed
action in our language, and when we talk about the effect of
an action, we refer to the effect of this implicitly assumed,
unnamed action.

Syntactically, a causal action theory is a pair (S, D), where
S is a set of static causal rules, and D a set of dynamic causal
rules. Both static and dynamic causal rules are pairs of the
form (I, G), where [ is a fluent literal, and G a set of fluent
literals. As a static causal rule, (I, G) means that in every
situation, whenever all fluent literals in G hold, [ is caused
to be true. As a dynamic causal rule, it means that in every
situation where all fluent literals in GG hold, if the action is
successfully executed, then [ will be true in the new situation.
Thus our dynamic causal rules are essentially direct action
effect axioms. Notice that in the dynamic causal rules, action
argument is omitted here as we have assumed that there is just
one action. In the following, we call [ the head, and G the
premise of the static or dynamic causal rule. We assume that
G is consistent, i.e. it does not contain both f and —f, and
does not contain 1. We define a premise G to be a set of fluent
literals because the order of fluent literals in the premise does
not matter. However, we often write G as a conjunction of
fluent literals in it. For instance, both f; A fo and fo A fi
denote the same premise {f1, fo}. In particular, the empty
set () is denoted by T.

Semantically, a causal action theory specifies a set of tran-
sitions. A transition is a pair (s, s’), where both s and s’ are
states, which are sets of fluents. A state s can be considered
a truth assignment such that a fluent f is true in s iff f € s.
For a formula ¢, we write s |= ¢ if ¢ is true in the truth as-
signment s. Similarly, for a set of fluent literals G, we write
s = G if all fluent literals in G hold in the truth assignment.
In particular, s = 0 for any state s. Intuitively, a transition
(s,s’) means that the action can be successfully executed in

s to yield s’

Definition 1 A state is a set of fluent atoms, and a transition
is a pair of states. A semantic function ¢ is a mapping from
causal action theories to sets of transitions.

Thus a semantic function ¢ gives a semantics to each causal
action theory. We say that two causal action theories 73 and
T, are equivalent under § if they have the same transactions:
0(Th) = 6(T»). In the next section, we are going to discuss
some properties about semantic functions.

3 Properties

We assume a fixed semantic function ¢ below. Thus when we
say that (s, s’) is a transition of T, we mean that (s,s’) €
6(T). We list below some interesting properties about 4.

When reasoning about, say whether a switch is open or
closed, we can use fluent closed to mean that the switch
is closed and represent the fact that the switch is open by
—closed. Or we can do it the other way around, use open to
mean that the switch is open and represent closed by —open.
Our following property says that choosing which one to use
as primitive is immaterial as long as one does this systemati-
cally.

Property 1 (Fluent literals are interchangeable) For any
causal action theory T, any fluent f, and any pair of states s,
and ss, (81, 82) is a transition of T, lff(S{, sg) is a transition
of TS, where for any state s,

sf_{ s\{f} iffes

otherwise

sU{f}

and for any causal action theory T, T is the causal action
theory obtained from T’ by replacing every occurrence of f
by - f.

Our next property is that the states in a transition must sat-
isfy all static causal rules.

Property 2 (Static causal rules are state constraints) If
(s,s') is a transition of a causal action theory (S, D), then
Sor every static causal rule (I, G) in S, we have that

sE(v= A b

L,eG

and
sSECV- N L)
L,eG
Our next property says that if the premise of a static causal
rule contains the negation of its head, then this rule is basi-
cally a constraint according to Property 2.

Property 3 (Immediate negative loops can be eliminated)
For any causal action theory (S, D), any r = (I, {-l} UG) €
S, and any states s and s' that satisfy all rules in S (i.e.
Property 2 holds for S), we have that (s, s") is a transition of
(S, D) iff (s, s') is a transition of (S \ {r}, D).

Our next property says that if there are no possible interac-
tions between the static and dynamic causal rules, then only
the dynamic causal rules can be applied. In other words, there
are no ramifications.
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Property 4 (No ramification when static causal rules do
not interact with dynamic causal rules) Let T = (S, D) be
a causal action theory. If for every (I,G) € D, there is no
(I, G") € S such that the fluent in 1 occurs in G', then (s, s')
is a transition of T iff for s— = {f | (=f,G) € D,s E G}
and st ={f | (f,G) € D,s = G} we have that

e stnNs™ =4,
o s’ =(s\s)UsT, and
e both s and s’ satisfy the static causal rules in S (Prop-
erty 2).
In particular, if sT N s~ # 0, then T has no transitions.

The next property is a weaker version of Property 4. Be-
fore giving it we first define the dependency graph of a causal
action theory. Given a causal action theory T' = (.5, D), its
dependency graph is the directed graph such that

e its vertices are arbitrary fluent literals, and

e it has an edge from /7 to [5 iff .S contains a static causal
rule (I1,G) such that I, € G.

Property 4' (No ramification when static causal rules do
not have cycle and do not interact with dynamic causal
rules) Let T' = (5, D) be a causal action theory whose de-
pendency graph is acyclic. If for every (I, G) € D, there is no
(I';G") € S such that the fluent in | occurs in G', then (s, s")
is a transition of T iff for s— = {f | (=f,G) € D,s = G}
and st ={f | (f,G) € D,s = G} we have that

e sTNs™ =40,
o s’ =(s\s)UsT, and
e both s and s’ satisfy the static causal rules in S (Prop-
erty 2).
In particular, if sT N s~ # 0, then T has no transitions.

Property 4’ is weaker than Property 4 as the former applies
only to “stratified” causal action theories.

The next property concerns the redundancy in premises. If
both ¢ and —¢q will cause p, then p must be true regardless.
Similarly, if both ¢ A r and =g A r causes p, then we can
conclude that ¢ is immaterial and that r causes p.

Property 5 (Premises of static causal rules can be com-
bined) Ler T = (S, D) be a causal action theory. If both
(f,G1) and (f,G2) are in S, and for some set G of fluent
literals, formula

A\ b

lLeG
is logically equivalent to formula
/\ l; VvV /\ lj,
1,e€Gq lj €Go

then the set of transitions under T is the same as the set of
transitions under T' = (S’, D), where S’ is

SI = (S \ {(f7G1)v (f7 GZ)}) U {(fv G)}
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These properties may look arbitrary. As it turned out, cer-
tain combination of them can completely characterize a logic
program implementation. Before we turn to this, we illustrate
these properties by some examples.

The theory T' = ({(f1,~f1 A f2)}, {(f2, T)}) has one dy-
namic rule which says that the action always makes f5 true,
and one static rule which causes f1 given —f; A fo. If the
given semantic function § satisfies Property 3 and Property 4,
then for any states s and s that satisfy fi V —fa: (s,8)
is a transition of 7" iff (by Property 3) it is a transition of
(0,{(f2, T)}) iff (by Property 4) s’ = s U {f2}.

The theory ({(/1, f2), (~f1,~f2)}, {(/1, T)}) has one dy-
namic rule which says that the action always makes f; true,
and two static rules: one says that f, will cause f; to be true,
and the other that — fy will cause f; to be false. Property 4
applies to this theory, and by Properties 2 and 4, (s, s’) is a
transition of the theory iff both of them satisfy fo O f; and
—fa D —f1,and 8’ = s U {f1}. This means that for (s, s’) to
be a transition, f; must be true in s already, and that s’ = s.
One can interpret this as saying that if s does not satisfy fi,
then the action cannot be executed. This is an instance of im-
plicit qualification on action derived from static causal rules
[Lin, 1995].

4 Embedding causal action theories in B, C,
and others

Our causal action theories can be mapped to theories in action
languages B, C, and others in a straightforward way. Notice
that our language does not have terms for actions. Instead,
there is an implicit action. Let’s call this action A.

Given a causal action theory T = (5, D), it can be
mapped to the following action description 73 in language
B as follows: if (I,G) is in S, then the static causal rule
“lLif G” is in Tp, and if (I, @) is in D, then the action rule
“A causes [ if G” is in Tj3. This mapping induces a semantic
function 6 for our causal action theories: (s,s") € §(7) iff
(s, A, s’) is a transition of T according to B. For this se-
mantic function, it can be seen that Properties 2, 3 and 4 are
satisfied (see Theorem 1 below).

A causal action theory 7' = (5, D) can also be trans-
lated to the following action description 7¢ in action lan-
guage C as follows: if (I,G) is in S, then the static causal
rule “caused [ if /\lieGli” is in T¢, and if (I,G) is in D,
then the action rule “caused if T after A A \; _ ;" is
in 7¢. Again this mapping induces a semantic function:
(s,s') is a transition of T if (s, A, s) is a transition of T¢
according to C semantics. For this semantic function, we
can see that Properties 1 2, 3 and 5 are satisfied, but not
Property 4. For instance, consider the causal action theory
T = ({(foo f1). (fi. fo)}.0). £ s = 0, and &' = {1, ],
then both s and s’ satisfies all static causal rules, and accord-
ing to C semantics, s’ is a possible new state after the action
A occurs in state s.

A causal action theory T' = (S, D) can also be mapped to
Lin’s causal theory T7, in the situation calculus as follows: if
(f,Gp)isin S, let G = /\liec0 l;, then the following causal
rule is in 77.:

Vs.Holds(G, s) D Caused(f,true, s),



if (=f, G) is in S, then the following causal rule is in T,
Vs.Holds(G, s) D Caused(f, false, s),

if (f,G) is in D, then the following direct effect axiom is in
L:
Vs. (Poss(A,s) D
(Holds(G, s) D Caused(f,true,do(4, s)))).

and if (—f, G) is in D, then the following direct effect axiom
isin T7y:
Vs. (Poss(A, s) D
(Holds(G, s) D Caused(f, false,do(A, s)))).

As in language C, under this mapping to Lin’s causal theo-
ries, Property 4 is not satisfied.

One could do similar mappings for other formalisms.
However, an obvious question is why the mappings have to
be the way that we described above. For instance, could we
map theories here to language C differently so that Properties
1 — 4 will be satisfied? If we do not have any restrictions on
the mappings, then this is certainly possible as one can al-
ways compute the transitions first and then find a theory in
C that have the same transitions. In this paper we consider
this problem by choosing answer set logic programs as the
target language. This is for two reasons. One is the avail-
ability of good ASP solvers for computing answer sets of a
logic program. The other reason is that there are already well-
studied mappings from languages like 53 and C to answer set
logic programs. In the next section, we look at all possible
compositional mappings of our causal action theories to logic
programs that use a “standard” way of encoding inertia.

S5 From causal action theories to answer set
programming

There has been much work using logic programs for im-
plementing and/or formalizing causal action theories (e.g.
[Baral, 1995; Lin and Wang, 1999; McCain, 1997; Lee, 2012;
Ferraris et al., 2012]). In this paper we consider mapping our
causal action theories to logic programs under answer set se-
mantics.

Given a set F of fluents, and a causal action theory 7" in
F, we consider mapping 7" to a normal logic program (with
constraints and classical negation) £(7") in the language

L=FU-~FUF U-F,

where - F = {~f | fe FL, ¥ ={f" | f € F}, and
similarly for =F’. We assume here that for each f € F, f’is
a new atom. The transitions of T" and the answer sets of &(7T")
will then be related by identifying s with the fluents in F, and
s’ with those in F': (s, s’) is a transition of 7" iff there is an
answer set A of £(T") such that

s={f|feF feA} (D
s'={f|feF, feA} )

Again, if we do not have any restrictions on what programs
we can take as £(7"), then we can have mappings that satisfy

any consistent set of properties under the above correspon-
dence between transitions and answer sets. However, from
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knowledge representation point of view, we would want the
mapping to be compositional, in the sense that it can be com-
posed from some mappings on the static and dynamic causal
rules. As we mentioned, there has been much work on using
logic programs for reasoning about action, and one of the key
ideas has been to use the following rules to encode inertia:

'« f, not —f’, (3)
= f" < = f, not f'. “4)

Also we want the mapping to at least satisfy Property 2 so
that both initial and successor states satisfy the static causal
rules as constraints, and that a causal rule ([, G) should be
translated to some logic program rules about /. Besides, we
want the mapping to be uniformed in the sense that the fluent
names are not material. More precisely, if o is a permutation
of fluent names, then applying the mapping to 1" after the flu-
ent names are changed according to o is the same as applying
the mapping to 7T’ first, and then changing the fluent names in
the logic program according to o.
To summarize, we study the following class of mappings.

Definition 2 A mapping £ from causal action theories to
logic programs is said to be permissible if it is

1. (Compositional) For each T = (S, D),

«n=Jermu s,

res reD

(&)

where

e &£5(r) is the translation on static causal rules, and
Jorarule (I,G), £5(1,G) is a logic program con-
sisting of the following constraints:

—1,G,
el

(6)
(7

and some rules of form
! /! !/
I" < FY, not F,

where [ is the complement of l: f = —f, and —f =
FW =1 L ifW = {1, 1), and F| and
F; are sets of atoms in F[, U ~F(, where F¢ are
all fluents that appear in G, and not {I1,...,1}.} is
notly, ..., notly;

&4(r) is the translation on dynamic causal rules,
and for a rule (1, G), €4(1, G) is a set of rules of the
form

'+ F,
where F is a set of fluent literals in F U —F;

B, the base, is the following set of rules that are
independent of the given theory T': for each f € F,

[+ not—f, (8)
=f + not f. 9)
'« f, not ~f, (10)
—f' < =f, not f', (11)



2. (Uniform) Both ¢° and &% are homomorphic under
any permutation o on the set F of fluents: £%(r°) =
(€5(r))°, and £4(r7) = (£%(r))?, where 1° is obtained
from r by a fluent substitution according to o, and for
any logic program P, P? is the program obtained from
P by a fluent substitution according to o.

Notice that for the translation £%(r) of a dynamic causal
rule, no “negation-as-failure” operator is used. This is be-
cause we have the choice rules (8) and (9) in the base that gen-
erate all possible complete initial states. Under these choice
rules, and given that there is no any other rule about f or = f
in a permissible mapping, fluent literals “ f”” and “not — f” are
interchangeable, and so are “—f” and “not f”. Of course, we
could allow the negation-as-failure operator in the translation
of dynamic causal rules.

As an example of requiring a mapping £ to be uniformed,
if £ maps a dynamic causal rule (f1, f2) to logic program

f{ <_]027

then it must map the dynamic causal rule (f3, f4) to

f3 < fa

Notice that a mapping ¢ from causal action theories to
logic programs yields a semantic function § under (1) and
(2): (s,s") € 6(T) iff there is an answer set A of £(7T") such
that (1) and (2) hold. So in the following, when we say that a
mapping satisfies a property, we mean that the semantic func-
tion yielded by the mapping satisfies this property.

Our main results are about the uniqueness of admissible
mappings that satisfies certain sets of properties. Understand-
ably, this uniqueness needs to be modulo on strong equiv-
alence [Lifschitz er al., 2001] as two mappings that always
yield strongly equivalent logic programs are indistinguishable
under the answer set semantics.

Our first result shows the correspondence between action
language B and permissible mappings that satisfy Proper-
ties 2, 3 and 4.

In the last section, we described a translation from our
causal action theories to causal theories in action language 5.
Given a causal action theory T, let T denotes the causal the-
ory in B according to this translation. We say that (s, s") is a
transition of 7" under action language B semantics if (s, A, )
is a transition of Ty according to the semantics of action lan-
guage B.

In general, given a mapping £ from causal action theories
to logic programs, we say that (s, s’) is a transition of a causal
action theory T under ¢ if (s, s’) is a transition of T" under the
semantic function yielded by &.

As we mentioned, our results make use of a notion of
strong equivalence. Two logic programs P; and P, are
strongly equivalent [Lifschitz ez al., 2001] (under the answer
set semantics) if P, U P and P, U P have the same answer
sets for every logic program P. In the following, Given three
logic programs P, P, and @), we say P; and P, are strongly
equivalent under ), if P, U@ and P>, U @ are strongly equiv-
alent.

3289

Theorem 1 Let &5 be the following mapping from causal ac-
tion theories to logic programs: for each T = (S, D),

&(T) = J v | g us,

res reD

12)

where
o B is the base,

e for each static causal rule (1,G), £5(1, G) is the set of
rules consisting of constraints (6) and (7), and the fol-
lowing rule

U« G (13)

e for each dynamic causal rule (1,G), (1, G) is the sin-
gleton set consisting of the following rule

'+ G. (14)

We have

1. The mapping & is permissible and satisfies Proper-
ties 2, 3, 4. Furthermore, for any causal action theory
T, (s, ') is a transition of T under {5 iff it is a transition
of T under the B semantics.

If € is a permissible mapping that satisfies Properties 2,
3, 4, then & is strongly equivalent to &g in the fol-
lowing sense: for any causal action theory, if (I,G)
is a static causal rule, then £°(1,G) and £5(1, G) are
strongly equivalent under the base B as defined in (5);
and if (1, G) is a dynamic causal rule, then £(1, G) and
Eg(l, G) are strongly equivalent under the base B as
well.

The first part of the theorem says that g satisfies Proper-
ties 2, 3 and 4, and yields the same semantics as the action
language B. The second part of theorem says that permissi-
ble mappings that satisfy Properties 2, 3 and 4 are unique up
to strong equivalence.

We have a similar result for the action language C as well.
In the following, given a causal action theory 7', we say that
(s,s’) is a transition of 7" under C semantics if (s, A, s') is
a transition of T¢ according to C, where T¢ is the action de-
scription in C translated from 7" given in the last section.

Theorem 2 Let &¢ be the following mapping from causal ac-
tion theories to logic programs: for each T = (S, D),

) =Jemul g uB,

resS reD

15)

where
o B is the base,

o for each static causal rule (1,G), £3(1, G) is the set of
rules consisting of constraints (6) and (7), and the fol-
lowing rule

I < notG'. (16)

e for each dynamic causal rule (1, G), £3(1, G) is the sin-

gleton set consisting of the following rule
'+ G. (17)

We have



1. The mapping &c is permissible and satisfies Properties 1,
2, 3,4 and 5. Furthermore, for any causal action theory
T, (s, ) is a transition of T under ¢ iff it is a transition
of T under the C semantics.

. If € is a permissible mapping that satisfies Properties 1,
2, 3, 4" and 5, then £ is strongly equivalent to ¢ in the
following sense: for any causal action theory if (I, G)
is a static causal rule, then £°(1,G) and £5(1, G) are
strongly equivalent under the base B as defined in (5);
and if (1, G) is a dynamic causal rule, then £%(1, G) and
fg(l, G) are strongly equivalent under the base B as
well.

The two theorems above are proved inductively'. The base
case is the language with three fluents. For the base case, the
results are verified by a computer program that for each rep-
resentative dynamic or static causal rule, enumerates all of its
possible permissible mappings, and for each possible map-
ping checks if the respective properties are satisfied. The in-
ductive step is proved manually. While the proof of the induc-
tive step is tedious and non-trivial, the base case is conceptu-
ally more important. In fact, the theorems and the properties
were “discovered” using our computer program. This is sim-
ilar to computer-aided theorem discovery that we used earlier
for some other problems [Lin, 2004; Lin and Chen, 2007,
Tang and Lin, 2011].

These two theorems provide interesting insights into the re-
lationships between the two action languages B and C. First
of all, they both satisfy Property 2, thus all states in their tran-
sition models must satisfy all static causal rules. They also
satisfy Property 3, thus treat static causal rules with negative
loops as constraints.

However, while B seems to treat causal theories with or
without positive dependency loops uniformly, C assigns spe-
cial meanings to static causal rules with positive loops. This
can be seen from the fact that while B satisfies Property 4,
C only satisfies a weaker version of that, Property 4’, which
applies only to stratified theories. As an example, consider
T = ({(f1, f2), (f2, f1)},0). The two causal rules cause a
cycle between f; and fo. Under B’s semantics, for ((, s)
to be a transition, it must be the case that s (. In other
words, when both f; and f, are false initially, then they must
both stay false in the successor state. However, under C’s se-
mantics, (0, {f1, f2}) is also a transition of 7. In fact, static
causal rules with immediate positive cycles such as (f, f) (or
caused f if f in C’s language) have a special role: they are
used to express the assumption that the fluent f is a default
fluent.

Another difference between B and C can be seen from
Property 5. The language C satisfies this property, thus al-
lows premises from multiple static causal rules to be merged
together and simplified by logical equivalence. However, this
is in general not allowed in B. Consider the following causal
action theories

T = ({(f1, faAf3), (f1, fan=f3), (fss i f2) 1 {(f2, T)Y)-

"Due to space restriction, we cannot include the proofs here. In-
terested readers can find the proofs at http://www.cs.ust.hk/faculty/
flin/papers/ijcai2015-full.pdf.
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The premises of the first two static causal rules can be merged
and simplified according to C: T is equivalent to 7" below:

"= ({(f1. f2), (fs, i N )1 A(f2, THD).

But under B’s semantics, these two theories are not equiva-
lent. It can be seen that (0, {f1, f2, f3}) is a transition of T’
but not 7" under B.

We inductively prove the two theorems, with causal action
theories mentioning no more than three fluents as base case.
Details of the inductive proof is given in appendix.

6 Some discussions and related work

As we mentioned, there has been much work on specifying
the effects of actions using a notion of causality. We have
used a language as simple as possible, with just one action
implicitly assumed in the language. Instead of defining a se-
mantics model theoretically or by a set of axioms, we pos-
tulate some intuitively desirable properties on the underlying
transition models.

Similar properties have been studied by others. Property 2
is universally accepted in all work so far, and is built-in in
our definition of permissible mappings. It was also stated as
postulate PC in [Herzig and Varzinczak, 20071, postulate C3
in [Thielscher, 20111, and proved as Proposition 4 in [Sergot
and Craven, 2005], for example.

Properties 4 and 4’ try to capture the obvious cases when
there are no possible side effects. A similar postulate in the
form of regional consistency is proposed in [Zhang et al.,
2002]. And in [Herzig and Varzinczak, 20071, postulate PS
is a combination of our Properties 4, with another property
requiring that for any transition of a causal theory, the direct
effect of the action should be in the successor state.

Property 5 defines an equivalence relation on sets of static
causal rules. This is similar to Proposition 4 of [Giunchiglia
et al., 2004] for nonmonotonic causal theories, and also
Proposition 19 in [Sergot and Craven, 2005].

7 Concluding remarks

We have proposed a “minimalistic” language for causal ac-
tion theories, and postulated some properties for them. We
have considered possible embeddings of these causal action
theories in some other action formalisms, and their imple-
mentations in logic programs with answer set semantics. In
particular, we have proposed to consider what we call per-
missible mappings from causal action theories to logic pro-
grams. We prove that the only permissible translation under
strong equivalence that satisfies Properties 2, 3 and 4 is Bal-
duccini and Gelfond’s translation from the action descriptions
in Gelfond and Lifschitz’s B language to logic programs;
and the only permissible translation under strong equivalence
that satisfies Properties 1, 2, 3, 4 and 5 is Lifschitz and
Turner’s translation from the action language C to logic pro-
grams. These results suggest that the action languages B and
C are characterized by the two sets of properties, respectively.
More importantly, our approach can be applied to other action
languages, and provides a new way to evaluate and compare
action languages in a clear and uniform way.



For future work, it will be interesting to see whether sim-
ilar properties and alternative notions of “permissible” trans-
lations can be identified for other action formalisms. It is
also interesting to investigate some other properties and see
how combinations of these properties can yield different ac-
tion formalisms.
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