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Abstract
Spectral dimensionality reduction methods have re-
cently emerged as powerful tools for various ap-
plications in pattern recognition, data mining and
computer vision. These methods use information
contained in the eigenvectors of a data affinity (i.e.,
item-item similarity) matrix to reveal the low di-
mensional structure of the high dimensional data.
One of the limitations of various spectral dimen-
sionality reduction methods is their high compu-
tational complexity. They all need to construct a
data affinity matrix and compute the top eigenvec-
tors. This leads to O(n2) computational complex-
ity, where n is the number of samples. Moreover,
when the data are highly non-linear distributed,
some linear methods have to be performed in a re-
producing kernel Hilbert space (leads to the cor-
responding kernel methods) to learn an effective
non-linear mapping. The computational complex-
ity of these kernel methods is O(n3). In this paper,
we propose a novel nonlinear dimensionality re-
duction algorithm, called Compressed Spectral Re-
gression, withO(n) computational complexity. Ex-
tensive experiments on data clustering demonstrate
the effectiveness and efficiency of the proposed ap-
proach.

Introduction
Dimensionality reduction is one of the most useful tools
for data analysis in data mining, pattern recognition and
many other research fields. Among various dimensional-
ity reduction approaches, spectral dimensionality reduction
methods [Belkin and Niyogi, 2001; He and Niyogi, 2003;
Yan et al., 2007; Cai, 2009] have received considerable inter-
ests in recent years. These methods use information contained
in the eigenvectors of a data affinity (i.e., item-item similar-
ity) matrix to reveal the low dimensional structure of the high
dimensional data.

The most popular spectral dimensionality reduction algo-
rithms include Locally Linear Embedding [Roweis and Saul,
2000], ISOMAP [Tenenbaum et al., 2000], and Laplacian
Eigenmap [Belkin and Niyogi, 2001]. These algorithms only
provide the embedding results of training samples. There are

many extensions [He and Niyogi, 2003; Yan et al., 2007]
which try to solve the out-of-sample problem (i.e., find the
embedding of the test samples [Bengio et al., 2003]) by
seeking a projective function in a reproducing kernel Hilbert
space. However, a disadvantage of these extensions is that
their computations usually involve eigen-decomposition of
dense matrices which is expensive in both time and memory
[Cai, 2009].

Recently, Cai [2009] proposed an efficient spectral di-
mensionality reduction framework called spectral regression
(SR). SR casts the problem of learning a projective func-
tion into a regression framework. By avoiding the eigen-
decomposition of dense matrices, SR provides an unified ef-
ficient solution for many supervised and unsupervised spec-
tral dimensionality reduction algorithms [Cai, 2009]. How-
ever, SR in unsupervised setting still needs to construct a data
affinity matrix and compute the top eigenvectors of the cor-
responding Laplacian matrix [Chung, 1997]. For a data set
consisting of n data points, these steps have a time complex-
ity of O(n2). Moreover, when the data are highly nonlinear
distributed, SR has to be performed in a reproducing kernel
Hilbert space to learn an effective non-linear mapping which
leads to kernel SR. As the dense kernel matrix is involved,
the time complexity of kernel SR becomes O(n3). Such a
high computational complexity is an unbearable burden for
large-scale applications.

Inspired by the recent progresses on scalable semi-
supervised learning [Liu et al., 2010] and large scale spec-
tral clustering [Chen and Cai, 2011], we propose an efficient
nonlinear dimensionality reduction algorithm termed Com-
pressed Spectral Regression (CSR) in this paper. Specifically,
CSR generates l (� n) representative points as the land-
marks and represent the original data points as the sparse
linear combinations of these landmarks. With this landmark-
based sparse representation, the spectral embedding of the
data as well as the nonlinear projective function can be ef-
ficiently computed. The proposed algorithm scales linearly
with the data size. Extensive experiments demonstrate the ef-
fectiveness and efficiency of proposed approach.

Background
Suppose we have n data points {xi}ni=1 ⊂ Rm, X =
[x1, · · · , xn]. In the past decades, many spectral dimension-
ality reduction algorithms, either supervised or unsupervised,
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have been proposed to find a low dimensional representation
of xi. Despite the different motivations of these algorithms,
they can be nicely interpreted in a general graph embedding
framework [Yan et al., 2007; Cai et al., 2007].

These methods first construct an undirected graph G =
(V,E) represented by its adjacency matrix W = (wij)

n
i,j=1,

where wij ≥ 0 denotes the similarity (affinity) between xi
and xj . The G and W can be defined to characterize certain
statistical or geometric properties of the data set [Yan et al.,
2007].

Let y = [y1, y2, · · · , yn]T be the one dimensional embed-
ding. The optimal y∗ is given by solving the following opti-
mization problem:

y∗ = argmin
yTLy
yTDy

= arg max
yTWy
yTDy

, (1)

where the degree matrix D is a diagonal matrix whose en-
tries are column (or row, since W is symmetric) sums of W ,
Dii =

∑
j wij and L = D − W , which is called graph

Laplacian [Chung, 1997]. All the three most popular spec-
tral dimensionality reduction algorithms, LLE [Roweis and
Saul, 2000], ISOAMP [Tenenbaum et al., 2000] and Lapla-
cian Eigenmap [Belkin and Niyogi, 2001], can be interpreted
in this framework with different choices of W [Yan et al.,
2007].

The graph embedding approach in Eq. (1) only provides
the mappings for the training data. For classification purpose,
a mapping for all the samples, including the new test sam-
ples, is required. If we choose a linear projective function,
i.e., yi = f(xi) = aT xi, then we have y = XT a. Eq. (1) can
be rewritten as:

a∗ = arg max
yTWy
yTDy

= arg max
aTXWXT a
aTXDXT a

. (2)

This approach is called Linear extension of Graph Embedding
(LGE) [Yan et al., 2007]. With different choices of W , the
LGE framework will lead to many popular linear dimension-
ality reduction algorithms, e.g., Linear Discriminant Analy-
sis, Locality Preserving Projection [He and Niyogi, 2003] and
Neighborhood Preserving Embedding [He et al., 2005].

Solving the optimization problem in Eq. (2) involves eigen-
decomposition of dense matrices XWXT and XDXT ,
which is time consuming for large scale high dimensional
data. To tackle this issue, Cai [2009] proposed a spectral re-
gression (SR) approach. SR learns the projective function in
two steps. In the first step, SR solves the optimization prob-
lem (1) to get y∗ = [y∗1 , y

∗
2 , · · · , y∗n]T . Since W is usually

sparse and D is a diagonal matrix, the optimization problem
(1) can be efficiently solved. In the second step, SR solves a
regression problem to compute the projective function a∗:

a∗ = argmin
a

(
n∑

i=1

(
aT xi − y∗i

)2
+ α‖a‖2

)
(3)

which can also be efficiently solved via some iterative algo-
rithms (e.g., LSQR [Paige and Saunders, 1982]). It is impor-
tant to note that the first step becomes trivial in supervised set-
tings and SR (called Spectral Regression Discriminant Anal-
ysis in supervised setting) provides an efficient solution for

large scale discriminant analysis [Cai et al., 2008]. Please see
[Cai, 2009] for more details.

However in unsupervised settings, similar to all the other
spectral dimensionality reduction methods, SR needs to con-
struct a data affinity matrix which leads to O(n2) computa-
tional complexity. Moreover, when the data are highly non-
linear distributed, SR has to be performed in a reproducing
kernel Hilbert space (leads to kernel SR) to learn the effective
non-linear mapping.

In kernel SR, the linear regression step is replaced by the
kernel regression [Cai, 2009]:

min
f∈F

n∑
i=1

(
f(xi)− y∗i

)2
+ δ‖f‖2K (4)

where F is the RKHS associated with Mercer kernel K and
‖ ‖K is the corresponding norm. By representer theorem
[Wahba, 1990], the solution of the optimization problem (4)
can be written as

f∗(x) =
n∑

i=1

αiK(x, xi)

where K(x, xi) is the kernel function of the corresponding
Mercer kernelK. Finally, the optimalααα = [α1, α2, · · · , αn]T

can be computed asααα∗ = (K+δI)−1y, whereK is the n×n
kernel matrix.

It is clear that the computational complexity of kernel SR is
O(n3). The high computational costs of the graph construc-
tion as well as the kernel approach restrict the applicability of
SR for large scale nonlinear problems.

Compressed Spectral Regression
In this section, we introduce our Compressed Spectral Re-
gression (CSR) method for large scale nonlinear dimension-
ality reduction. The basic idea of our approach is compress-
ing the data using the sparse coding technique [Olshausen and
Field, 1996]. With the sparse representation, we can construct
a special graph with which the spectral embedding can be ef-
ficiently computed. Moreover, the sparse representation cap-
ture the nonlinear structure of the data and the learned pro-
jective function will be nonlinear with respect to the original
features.

Data Compression via Landmark-based Sparse
Coding
Sparse coding [Olshausen and Field, 1996; Lee et al., 2006]
is a matrix factorization technique which tries to ”compress”
the data by finding a set of basis vectors and the repre-
sentation with respect to the basis for each data point. Let
X = [x1, · · · , xn] ∈ Rm×n be the data matrix, sparse cod-
ing can be mathematically defined as finding two matrices
U ∈ Rm×l and Z ∈ Rl×n by solving the optimization prob-
lem as follows:

min
U,Z
‖X − UZ‖2 + αf(Z) (5)

where f is a function measuring the sparsity of each column
of Z (e.g., l1 norm) and α is a parameter controlling the spar-
sity penalty. Each column of U can be regarded as a basis
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vector which captures the higher-level features in the data and
each column of Z is the l-dimensional representation of the
original inputs with respect to the new basis. Since each basis
vector (column vector of U ) can be regarded as a concept, a
sparse matrix Z indicates that each data point is a combina-
tion of several selected concepts.

Comparing to some dense matrix factorization techniques
(e.g., singular value decomposition and nonnegative matrix
factorization), sparse coding has several advantages for data
representation. The most significant one is that it yields sparse
representations such that each data point is represented as a
linear combination of a small number of basis vectors. Thus,
the data points can be interpreted in a more elegant way.

However, solving the optimization problem (5) is very time
consuming. Most of the existing approaches [Lee et al., 2006]
compute U and Z iteratively. Apparently, these methods are
not suitable for compressing the data efficiently. Following
[Liu et al., 2010; Chen and Cai, 2011], we use a much more
simplified coding strategy by treating the basis vectors as the
landmark points of the data set. A good set of landmarks
should be able to cover the data set well. Thus, we use k-
means clustering1 to generate the landmarks (taking the clus-
ter centers as the landmarks), which gives us the basis matrix
U .

To compute the sparse representation matrix Z, we again
use a simple yet efficient way. Recall that sparse coding es-
sentially finds two matricesU ∈ Rm×l andZ ∈ Rl×n, whose
product can approximate X ∈ Rm×n,

X ≈ UZ.

For any data point xi, its approximation x̂i can be written as

x̂i =
l∑

j=1

zjiuj (6)

where uj is j-th column vector of the basis matrix U and zji
is ji-th element of Z. A natural assumption here is that zji
should be larger if uj is closer to xi. We can emphasize this
assumption by setting the zji to zero as uj is not among the
r (≤ l) nearest neighbors (for all the column vectors of U ) of
xi. This restriction naturally leads to a sparse representation
matrix Z [Chen and Cai, 2011].

Let N〈i〉 denote the index set which consists r indexes of r
nearest landmarks of xi, i.e., uj is among the r nearest land-
marks of xi if j ∈ N〈i〉, we compute zji as

zji =

{
K(xi,uj)∑

j′∈N〈i〉
K(xi,uj′ )

, j ∈ N〈i〉
0, j /∈ N〈i〉

(7)

where K(·) is a kernel function. One can simply choose
the most commonly used Gaussian kernel, K(xi,uj) =

exp(−‖xi − uj‖2/2σ2).

1There is no need to wait the k-means converge and we can stop
the k-means after t iterations, where t is a parameter (5 is usually
enough). This will be discussed in the experiments.

Spectral Analysis on Landmark-based Graph
Now we have the compressed sparse representation Z ∈
Rl×n for the input X ∈ Rm×n. Instead of constructing a
k nearest neighbor graph to model the geometric structure of
the data as most of the spectral dimensionality reduction al-
gorithms [He and Niyogi, 2003; Cai, 2009] do, we simply
compute the affinity matrix as

W = ẐT Ẑ, (8)

where Ẑ = D−1/2Z and D is a l × l diagonal matrix whose
entries are the row sums of Z (dii =

∑
j zij).

The advantages of using this graph instead of a k-nearest
neighbor graph are as follows:

1. Constructing a k-nearest neighbor graph requires O(n2)
while computing W in Eq. (8) only needs O(nl2). Con-
sidering l� n, this is a significant efficiency boosting.

2. The top eigenvectors of W in Eq. (8) can be efficiently
computed as we will discuss next.

Noticing that each column of Z sums up to 1, it is easy to
check that

n∑
j=1

wij =
n∑

j=1

l∑
p=1

ẑpiẑpj =
n∑

j=1

l∑
p=1

zpizpj
dpp

=

l∑
p=1

zpi

∑n
j=1 zpj

dpp
=

l∑
p=1

zpi = 1.

Thus the degree matrix of W in Eq. (8) is I , i.e., the affinity
matrix W is normalized [Chung, 1997].

Directly computing the top eigenvectors of W ∈ Rn×n

requires O(n2) time. By noticing the special structure of W
in Eq. (8), we can use an efficient way as follows. Let the
Singular Value Decomposition (SVD) of Ẑ is as follows:

Ẑ = AΣBT ,

where Σ = diag(σ1, · · · , σl) and σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0
are the singular values, A ∈ Rl×l and B ∈ Rn×l are the left
and right singular vector matrices. It is easy to check that the
column vectors of B are the eigenvectors2 of matrix W =

ẐT Ẑ and the column vectors of A are the eigenvectors of
matrix ẐẐT . Since the size of matrix ẐẐT is l × l, we can
compute A within O(l3) time. B can then be computed as

BT = Σ−1AT Ẑ (9)

The overall time is O(l3 + l2n), which is a significant reduc-
tion from O(n3) considering l� n.

Regression with Landmark-based Sparse
Representation
The eigenvectors of W in Eq. (8) (the column vectors of B)
can be regarded as an approximation of y∗ in the optimiza-
tion problem (1) with a k-nearest neighbor graph. We then

2It is not hard to verify the the first column of B (i.e., the eigen-
vector ofW corresponding to the largest eigenvalue) is a vector with
all ones (without normalization). Thus, we removed this column in
real implementation.

3361



follow the idea of spectral regression [Cai, 2009] to learn the
projective functions.

For each column vector b in B, we compute the corre-
sponding projective functions p∗ ∈ Rl by solving the regres-
sion problem as follows:

p∗ = argmin
p

(
n∑

i=1

(
pT zi − bi

)2
+ α‖p‖2

)
(10)

where bi is the i-th element in b and α is the ridge regulariza-
tion parameter.

It is easy to verify that the optimal p∗ has the close form
solution as follows:

p∗ = (ZZT + αI)−1Zb (11)

If we want to reduce the original data into a c-dimensional
subspace, the optimal projective function P ∈ Rl×c can be
computed as:

P = (ZZT + αI)−1ZB(c) (12)

where B(c) is the first c columns of B.
The proposed method first compresses the data using

landmark-based sparse coding; then performs the spectral
analysis on the landmark-based graph; finally, the regression
is used to learn the projective functions. Thus, we name this
approach Compressed Spectral Regression (CSR).

The final learned CSR model consists two parts: the land-
mark matrix U ∈ Rm×l and the projective function matrix
P ∈ Rl×c. Given a data point x ∈ Rm, CSR model first
learns its l-dimensional landmark-base sparse representation
z using Eq. (7), then output the c-dimensional reduced repre-
sentation as x̂ = PT z. The computational procedure of CSR
is summarized in Algorithm 1.

It is important to note that CSR is a nonlinear dimension-
ality reduction method. The mapping from x to z is nonlinear
and the mapping from z to x̂ is linear. Thus, the overall map-
ping from x to x̂ is nonlinear.

Computational Complexity Analysis
Given n data points with dimensionality m, the computa-
tional complexity of CSR is as follows:

1. O(tlnm): k-means with t iterations to select l land-
marks.

2. O(lnm): learn the landmark-based sparse representation
Z.

3. O(l3 + l2n): compute the eigenvectors of W in Eq. (8).

4. O(l2n + l3 + lnc): compute the projection matrix P in
Eq. (12).

Considering l ≤ n, the overall complexity of CSR is O(mn)
which is linear with respect to number of training samples.

All the existing spectral dimensionality reduction al-
gorithms (e.g., LPP [He and Niyogi, 2003], SR [Cai,
2009], Laplacian Eigenmap [Belkin and Niyogi, 2001], LLE
[Roweis and Saul, 2000], ISOMAP [Tenenbaum et al., 2000])
require to construct the affinity graph which is O(mn2).
Thus, our CSR has a significant computational advantage.

Algorithm 1 Compressed Spectral Regerssion
Input:

n data points x1, x2, . . . , xn ∈ Rm; Reduced dimension-
ality c; Parameters l, t, r, α.

1: Produce l landmark points using k-means with t itera-
tions, leading to the basis matrix U ;

2: Learn the landmark-based sparse representation matrix
Z ∈ Rl×n according to Eq. (7);

3: Compute the first c+ 1 eigenvectors of ẐẐT , denoted by
A;

4: ComputeB according to Eq. (9) and remove the first col-
umn of B;

5: Compute the projection matrix P according to Eq. (12).
Output:

The model: basis matrix U and the projection matrix P ;
The dimension reduced data, X̂ = PTZ ∈ Rc×n.

Experiments
In this section, we conduct the clustering experiment on the
MNIST (handwritten digits image) data set to demonstrate
the effectiveness of the proposed Compressed Spectral Re-
gression (CSR) approach. Each image is represented as a 784
dimensional vector. It has 60000 training images and 10000
test images.

Compared Methods
The compared methods are listed as follows:

• Principle Component Analysis (PCA) [Duda et al.,
2000] and Kernel Principle Component Analysis
(KPCA) [Scholkopf et al., 1998].

• Locality Preserving Projection (LPP) and Kernel Lo-
cality Preserving Projection (KLPP) [He and Niyogi,
2003].

• Spectral Regression (SR) and Kernel Spectral Regres-
sion (KSR) [Cai, 2009].

• Laplacian Eigenmap [Belkin and Niyogi, 2001].

• Compressed Spectral Regression (CSR) in this paper.

Given a sample set with k clusters, we use all the above meth-
ods to reduce the dimensionality to k. Then the k-means is
applied on the reduced subspace. All the methods learn the
projective function on the training data and embed the test
data using the learned function. The Eigenmap can only pro-
vide the embedding of the training data, thus, we do not report
its performance on test data.

We use the same 5-nearest neighbor graph in LPP (KLPP),
SR (KSR) and Eigenmap. For CSR, we empirically set the
parameters l = 1000 (# landmarks), t = 5 (# iterations in
k-means), r = 5 (# nearest landmarks) and α = 0.01 (regres-
sion regularization). We use the same Gaussian kernel for all
the kernel methods and our CSR in Eq. (7). The kernel width
parameter σ is empirically3 set to be 10.

3we estimate σ by randomly choose 3000 samples and let σ equal
to the average of the pair-wise distances.
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Table 1: Clustering results on the training set (%)
k Baseline PCA KPCA LPP KLPP SR KSR CSR Eigenmap
2 62.7±20.9 64.4±16.7 65.1±16.8 76.1±14.3 92.6±6.3 87.1±8.2 94.1±5.2 92.6±6.0 94.0±5.1
3 56.9±16.0 55.6±14.7 58.2±15.5 66.0±17.6 −∗ 74.7±17.7 82.8±17.2 82.8±14.9 85.3±14.1
4 52.5±10.1 53.2±10.2 −∗ 55.7±10.1 −∗ 69.4±9.9 −∗ 80.1±10.5 82.1±10.6
5 56.5±8.3 56.0±9.5 −∗ 60.2±7.9 −∗ 71.2±10.2 −∗ 85.3±8.3 86.8±9.5
6 51.5±7.8 53.1±8.4 −∗ 53.2±7.1 −∗ 64.9±7.4 −∗ 79.1±7.5 81.6±6.9
7 50.4±5.2 52.0±5.5 −∗ 53.1±4.3 −∗ 61.7±4.9 −∗ 76.3±6.1 79.5±5.0
8 51.6±4.8 51.6±4.8 −∗ 53.7±3.3 −∗ 60.6±5.2 −∗ 76.4±5.0 79.2±4.5
9 48.8±3.7 49.7±3.8 −∗ 50.8±1.6 −∗ 59.4±3.4 −∗ 75.5±3.0 78.0±2.8
10 51.5 49.0 −∗ 49.6 −∗ 58.0 −∗ 75.6 78.2

Avg. 53.6 53.8 57.6 67.4 80.4 82.7
∗The kernel methods can not be applied due to the memory limitation

Table 2: Subspace learning time (s)
k PCA KPCA LPP KLPP SR KSR CSR Eigenmap
2 0.4 18.7 32.9 165.2 41.0 78.3 4.0 40.3
3 0.6 43.0 79.2 −∗ 97.0 210.8 5.6 96.1
4 0.7 −∗ 146.7 −∗ 173.2 −∗ 6.9 172.1
5 0.8 −∗ 245.3 −∗ 281.7 −∗ 8.5 280.3
6 0.9 −∗ 365.0 −∗ 411.7 −∗ 9.8 409.9
7 1.1 −∗ 514.5 −∗ 572.5 −∗ 11.3 570.5
8 1.2 −∗ 668.8 −∗ 737.5 −∗ 12.7 735.1
9 1.3 −∗ 847.3 −∗ 924.0 −∗ 14.2 921.3
10 1.6 −∗ 1054.8 −∗ 1144.3 −∗ 15.7 1141.4

Avg 1.0 439.4 487.0 9.9 485.2

Table 3: Clustering results on the test set (%)
k Baseline PCA KPCA LPP KLPP SR KSR CSR
2 66.9±13.5 67.1±13.5 67.6±13.4 76.0±12.6 92.7±5.8 86.0±8.1 94.2±4.7 93.4±5.5
3 60.7±16.0 57.0±14.9 59.8±16.0 67.5±16.8 −∗ 74.4±17.4 82.6±17.1 83.5±14.7
4 55.5±10.2 55.5±9.9 −∗ 56.8±11.3 −∗ 68.9±9.8 −∗ 80.9±10.4
5 57.0±7.3 59.2±9.0 −∗ 61.2±7.3 −∗ 70.1±9.1 −∗ 86.2±8.1
6 55.1±7.7 54.5±7.7 −∗ 55.1±6.8 −∗ 65.1±7.1 −∗ 80.3±7.3
7 52.2±4.8 50.6±5.0 −∗ 53.6±4.5 −∗ 62.1±4.7 −∗ 77.4±6.0
8 53.1±4.0 52.4±4.5 −∗ 54.4±3.2 −∗ 60.9±5.2 −∗ 77.7±4.8
9 51.1±3.7 50.9±3.1 −∗ 52.4±1.8 −∗ 59.8±3.4 −∗ 75.5±4.3

10 50.3 51.9 −∗ 52.8 −∗ 58.4 −∗ 75.3
Avg 55.8 55.5 58.9 67.3 81.2
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Figure 1: The performance of CSR vs. # of landmarks

Evaluation Metric
The clustering result is evaluated by comparing the obtained
label of each sample with the label provided by the data set.
We use the normalized mutual information (NMI) metric to
measure the clustering performance. The NMI ranges from
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Figure 2: The performance of CSR vs. # of iterations in
kmeans
0 to 1 and a higher value indicates a better clustering result.
Please see [Cai et al., 2005] for a detailed description on NMI.

We also record the running time of each method. All
the codes in the experiments are implemented in MATLAB
R2011b and run on a Windows 7 machine with 3.40 GHz i7-
2600K CPU, 16GB main memory.

3363



2 3 4 5 6 7
45

50

55

60

65

70

75

80

# Nearest Landmarks

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n 

(%
)

 

 

Baseline

PCA

LPP

SR

Eigenmap

CSR

(a) Training set

2 3 4 5 6 7
45

50

55

60

65

70

75

80

# Nearest Landmarks

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n 

(%
)

 

 

Baseline

PCA

LPP

SR

CSR

(b) Test set

Figure 3: The performance of CSR vs. # of nearest landmarks.

Table 4: The performance of CSR (NMI %) vs. the regular-
ization parameter α

α 0 0.01 0.1 1 10 100
Training Set 75.6 75.6 75.6 75.6 75.9 75.7

Test Set 75.2 75.3 75.3 75.2 74.8 75.2

Clustering Results
Table 1, 2 and 3 show the clustering performance on train-
ing set, the subspace learning time and the performance on
test set, respectively. The evaluations were conducted with
the cluster numbers ranging from two to ten. For each given
cluster number k (except k = 10), 20 test runs were con-
ducted on different randomly chosen clusters and the average
performance as well as the standard deviation are reported in
the tables. These results reveals a number of interesting points
as follows:

• Comparing to the baseline (k-means in the original fea-
ture space), PCA and KPCA do not show any sig-
nificant improvement while all the other methods do.
This demonstrates the effectiveness of the spectral di-
mensionality reduction methods. The nonlinear spectral
methods (KLPP, KSR, CSR and Eigenmap) are signifi-
cantly better than the linear spectral methods (LPP and
SR), especially when the cluster number is large. This
probably due to that the data are non-linear distributed.
However, due to the memory limitation, all the kernel
methods can not be applied when k is larger then 3.
The proposed CSR approach achieves the similar per-
formance as the Eigenmap does.

• Considering the learning time, our CSR method is linear
with respect to the number of samples thus it is very effi-
cient. It only needs 15.7 seconds learning with 10 classes
(60000 samples). While all the other spectral methods
need to build the affinity graph and need more than 1000
seconds on the same data set.

• Moreover, our CSR model learns the projective function
which is defined everywhere (on both training samples
and test samples). While the Eigenmap can only provide
the embedding results of the training data.
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(b) Test set

Figure 4: The performance of different methods vs. # of re-
duced dimensions.

Parameters Selection

Our CSR model has four parameters, # of landmarks (l), #
of iterations (t) in k-means to generate the landmarks, # of
nearest landmarks (r) for sparse representation and the ridge
regularization parameter (α). In this subsection, we will ex-
amine how the performance of CSR influenced by these pa-
rameters. All the remaining experiments are conducted on the
entire MNIST data set (10 classes, 60000 training samples
and 10000 test samples). The default settings for CSR are
l = 1000, t = 5, r = 5 and α = 0.01. When we study the
impact of one parameter, the other parameters are fixed as the
default.

Figure (1) shows how the performance of CSR changes
as the number of landmarks varies. As the number of land-
marks increases, both the performance and the learning time
of CSR increase. As we use 3000 landmarks, CSR achieves
almost the same performance as Eigenmap does while CSR
only needs 44.4 seconds which is much less than the learning
time of Eigenmap (1141.4 seconds).

Figure (2) shows how the performance of CSR changes as
the number of iterations (t) in k-means varies. t = 0 indi-
cates we use random sampling to select the landmarks. As
the number of iterations increases, it is reasonable to see that
both the performance and the learning time of CSR increase.
Even with random landmark selection, CSR achieves better
performance than LPP and SR.

Figure (3) shows how the performance of CSR changes as
the number of nearest landmarks (r) for sparse representa-
tion varies. As the number of nearest landmarks increases,
the performance of CSR consistently decreases. The best per-
formance is achieved when r = 2. Our CSR model is very
stable with respect to the regularization parameter α as shown
in Table (4).

All the dimensionality reduction algorithms have a criti-
cal parameter: the number of reduced dimensions. Figure (4)
shows how the performances of different methods vary as the
number of reduced dimensions changes. All the algorithms
achieve reasonable stable performance as the number of re-
duced dimensions is between 8 and 20.
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Conclusion
In this paper, we have presented a novel efficient nonlin-
ear spectral dimensionality reduction algorithm, called Com-
pressed Spectral Regression (CSR). CSR has O(n) computa-
tional complexity where n is the number of samples, which
is a significant improvement over all the other spectral meth-
ods (require at least O(n2)). Extensive experiments show the
effectiveness and efficiency of our proposed approach.
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