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Abstract
Recent studies have demonstrated the advantages
of fusing information from multiple views for vari-
ous machine learning applications. However, most
existing approaches assumed the shared component
common to all views and ignored the private com-
ponents of individual views, which thereby restricts
the learning performance. In this paper, we pro-
pose a new multi-view, low-rank, and sparse ma-
trix decomposition scheme to seamlessly integrate
diverse yet complementary information stemming
from multiple views. Unlike previous approaches,
our approach decomposes an input data matrix con-
catenated from multiple views as the sum of low-
rank, sparse, and noisy parts. Then a unified opti-
mization framework is established, where the low-
rankness and group-structured sparsity constraints
are imposed to simultaneously capture the shared
and private components in both instance and view
levels. A proven optimization algorithm is devel-
oped to solve the optimization, yielding the learned
augmented representation which is used as features
for classification tasks. Extensive experiments con-
ducted on six benchmark image datasets show that
our approach enjoys superior performance over the
state-of-the-art approaches.

1 Introduction
Many real-world datasets have representations in the form of
multiple views, which are collected from different sources or
obtained from various feature extractors. For example, in the
biological data domain, each human gene is measured by dif-
ferent techniques, such as gene expression, single-nucleotide
polymorphism (SNP), and methylation [Cai et al., 2013b]; in
the visual data domain, each image/video can be represented
by different visual features, such as colour descriptor, local
shape descriptor, and spatio-temporal descriptor. These views
often provide diverse and complementary information to each
other. Combining these information introduced by individual
views has recently become very popular, and is expected to
enhance the overall performance of a learning task at hand.

∗The corresponding author, wliu.cu@gmail.com.

In the literature, several fusion or combination approaches
have been proposed from different perspectives. A naive
method is to concatenate the vectors of all views into a new
vector, or more generally, to use weights to concatenate them.
Such a method is problematic, because it ignores the par-
ticular statistical property belonging to an individual view.
Kernel-based approaches associate different kernels with dif-
ferent views and combine them either linearly or nonlinearly,
among which kernel averaging is a simple and representative
method [Bucak et al., 2014]. It is worth noting that such ap-
proaches are particularly effective under the assumption that
all views are independent of each other.

In contrast, subspace learning methods aim to learn a la-
tent subspace which captures the relevant information shared
by all views, and are effective when the views are assumed to
be dependent on each other. Canonical Correlation Analysis
(CCA) and its variants [Kuss and Graepel, 2003] learn the la-
tent representations shared by all views such that the correla-
tions among the views are maximized. As a version of nonlin-
ear CCA, the shared Gaussian Process Latent Variable Model
(sGPLVM) [Shon et al., 2005] builds a common latent space
for inferring another view from the observation view. Re-
cently, more methods have been extended to multi-view sce-
narios. For example, the work of [Quadrianto and Lampert,
2011] constructs embedding projections from multi-view data
to produce a shared subspace.

An appealing scheme based on sparse representation has
attracted a lot of research interests, which aims to en-
courage the complementarity by imposing different spar-
sity constraints on a shared subspace derived from multi-
ple views [Shekhar et al., 2014; Wang et al., 2015]. The
used sparsity constraints include `0-norm [Cai et al., 2013b],
tree-structured sparsity norm [Bahrampour et al., 2014], and
trace-norm [Liu et al., 2015]. Another popular scheme
follows the standard pipeline of low-rank matrix recov-
ery [Wright et al., 2009], in which the low-rankness con-
straint is employed to discover the underlying subspace struc-
tures in multi-view data, while the sparsity constraint is used
for outlier removal. Cheng et al. [Cheng et al., 2011] im-
poses `2,1-norm on a concatenated low-rank matrix to asso-
ciate multiple views. The work of [Guo et al., 2013] captures
the dependencies across multiple views via a shared low-rank
coefficient matrix. The work of [Xia et al., 2014] learns a
shared low-rank transition probability matrix of all views for
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spectral clustering. Although the aforementioned approaches
enjoy satisfactory performance in their specific settings, all
of them only focus on the shared component across multiple
views while overlook the private component of an individual
view. Therefore, the main difficulty of integrating multiple
views is how to effectively capture the correlative properties
across all views (i.e., shared component), and at the same time
exploit the discriminative properties of individual views (i.e.,
private components).

To address the issues presented above, in this paper we pro-
pose a novel multi-view low-rank and sparse matrix decom-
position method by robustly utilizing the group-structured
prior. Specifically, unlike existing methods, we first concate-
nate input data from multiple views into a new mixed ma-
trix, so the global structure and the hidden correlations across
all the views can be preserved well. We then conduct the
low-rank and sparse matrix decomposition in the noisy case,
and leverage trace norm and group-structured sparsity norm
to promote the low-rankness and sparsity properties of the
target matrix, respectively. As such, the shared and private
components can be simultaneously captured in both instance
and view levels. Since our formulated optimization objec-
tive is non-smooth, we develop an algorithm based on Aug-
mented Lagrange Multiplier (ALM) to solve the optimization
efficiently. We evaluate our method on six widely used image
datasets in classification tasks, and on each dataset we inte-
grate six different types of popular visual features. The ex-
perimental results demonstrate that our method consistently
outperforms the state-of-the-art classification approaches that
use traditional multi-view combinations.

2 Robust Multi-View, Low-Rank, and Sparse
Matrix Decomposition

In this section, we introduce the low-rank and sparse matrix
decomposition method for integrating diverse and comple-
mentary information from multiple views. We first present
the concatenation of multi-view input matrices and then de-
scribe our framework. Finally, we output an augmented rep-
resentation by combining shared component and private com-
ponent, and extend the proposed method to deal with super-
vised image classification tasks. Given a set of n data in-
stances {xi}ni=1, the data matrix in the k-th view is X(k) =

[x
(k)
1 , · · · ,x(k)

n ] ∈ Rdk×n (k = 1, · · · ,m), where dk denotes
the feature dimension of the k-th view.

2.1 Multi-View Input Matrix Concatenation
Different from previous approaches that handle multi-view
input matrices X(k) individually, we first concatenate the in-
put data matricesX(k) of each view to construct a new mixed
matrix X = [X(1); · · · ;X(m)] ∈ Rd×n, with d =

∑m
k=1 dk.

Since different views describe different aspects of the same
object, the views are intrinsically associated. Thus, the con-
catenated input matrix has a natural advantage of strength-
ening the correlation among multiple views, as well as pro-
viding a convenient way to explore the complementarity of
multiple views both in instance level and view level, which
will be detailed in the following subsection.

2.2 Problem Formulation
Given a single-view input data X(k), motivated by classical
low-rank matrix recovery model [Wright et al., 2009], previ-
ous approaches [Guo et al., 2013; Xia et al., 2014] utilize this
model to remove outlier from the observation data by decom-
posing the single-view data matrix X(k) into two different
parts: a shared low-rank matrix L and a separately sparse er-
ror matrix E(k). Under fairly general conditions, L can be
exactly recovered from X(k) as long as E(k) is sufficiently
sparse. Formally, this model can be formulated into:

min
L,E(k)

||L||∗ + γ||E(k)||1

s.t. X(k) = X(k)L+ E(k), (1)
where γ is a tradeoff parameter. As aforementioned, this
model may not be suitable for coping with multi-view prob-
lems. The main reason is that this model oversimply decom-
poses all input matrices into a low-rank matrix shared by all
views and an error matrix belonging to each view. In fact,
the removed error matrix instead contains discriminative in-
formation specific to each individual view, which is useful to
boost the performance of a given learning task.

Therefore, in this paper, we simultaneously capture the
shared component and private component in a unified matrix
decomposition framework. Specifically, we decompose the
concatenated input matrix X into three parts, i.e. low-rank
matrixL, sparse matrix S and noise matrixE, and then utilize
three different regularizations to exploit the underlying rela-
tionship among multiple views so as to leverage the correlated
information across all views as well as the discriminative in-
formation of each view. Hence, we consider the following
matrix decomposition problem:

min
L,S,E

λ1||L||∗ + λ2Ω(S) +
1

2
||E||2F

s.t. X = L+ S + E, L = XZ, S = BX, (2)

whereL, S,E ∈ Rd×n, Z ∈ Rn×n encodes the dependencies
among the data instances, B ∈ Rd×d denotes a row transfor-
mation matrix that maps the input data into a view space, and
non-negative parameters λ1, λ2 are used to balance the ef-
fects of the three parts. The trace norm ‖L‖∗ is the convex
envelope of the rank of L over the unit ball of the spectral
norm, and minimizing the trace norm often induces the de-
sirable low-rank structure in practice. Ω(S) is a regularizer
that encourages group-structured sparsity of S. Due to the
inherent sparse structures of the real-world data, Ω(S) can be
defined as

Ω(S) ,
d∑
j=1

c∑
i=1

||SGi
j ||2. (3)

Here, c is the number of groups, and SGi
j is a row vector

containing a subset of entries in the row Sj , that is, those
specified by the indices in group Gi [Rakotomamonjy et al.,
2008].

Based on matrix norm inequality, Eq. (2) can be relaxed to:

min
Z,B,E

λ1||Z||∗ + λ2Ω(B) +
1

2
||E||2F

s.t. X = XZ +BX + E. (4)
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In Eq. (4), analogous to low-rank matrix recovery, the matrix
Z is equal to the low-rank representation (i.e., shared com-
ponent) corresponding to the dictionary X . Intuitively, the
underlying global structure of the original input matrices is
consistent across all views.

Besides the shared component, we need to discover the pri-
vate component S specific to each view. In Eq. (4), B is a
row transformation matrix projecting the input data into view
space, upon which the relevance among views can be dis-
covered. Considering the matrix S being group-structured
sparse, we instead enforce group-structured sparsity con-
straint on B by exploiting regularization relaxation, which
encourages sharing within a group and discriminativeness
among different groups. Meanwhile, sparsity is also forced
between different rows so that the discriminative elements in
each view are selected. To obtain the private component, the
discriminative information in view space should be connected
to the data space, mathematically, S = BX .

2.3 Augmented Representation
When the shared component Z and the private component S
are learned from Eq. (4), we can derive an augmented multi-
view representation by directly concatenating them.

Nevertheless, to make the augmented representation more
robust and compact, we first learn the low-dimensional shared
component Z̃ ∈ Rp×n for all views by enforcing Principal
Component Analysis (PCA) on the learned low-rank repre-
sentation Z. Then, we can obtain more compact private com-
ponent S̃ ∈ Rq×n by filtering out all zero rows in S. The
above two procedures still well preserve the inherent proper-
ties of Z and S. Therefore, the augmented multi-view repre-
sentation is denoted as

R = [Z̃; S̃], (5)

whereR ∈ R(p+q)×n with p+q � d. Subsequently, the aug-
mented representation is feasible to a variety of multi-view
learning tasks, such as image classification, clustering, object
detection and recognition, etc.

Here, we apply our method to supervised image classifi-
cation. Suppose the data instances are labeled into c classes,
yi ∈ Rc is the class label vector of the data instance xi. The
class indicator matrix is represented as Y = [y1, · · · ,yn] ∈
Rc×n, where Yj,i = 1 if data instance xi belongs to the
j-th class, Yj,i = 0 otherwise. In the training phase, the
classifier W ∈ R(p+q)×c can be learned by the augmented
representation Rtr from the training instances. In the test
phase, given test data X̂ and the row transformation matrixB,
we can obtain the shared component Ẑ according to Eq. (4).
The private component is written as Ŝ = BX̂ . Therefore,
the augmented representation for test data is Rts = [Ẑ; Ŝ],
the class of an unseen data instance can be determined by
arg maxj(W

>Rts + b)j , where b is bias vector.

3 Optimization
3.1 Algorithm
The optimization problem (4) is challenging due to the si-
multaneous low-rank and group-structured sparsity regular-
izations in the objective function. To address this problem,

Algorithm 1 The learning procedure of the proposed method
Input: A multi-view data matrix X .
Output: The learned matrices Z,B.

1: Initialize: Z0 = J0 = 0, B0 = K0 = 0, Y1,0 = 0, Y2,0 =
0, µ = µ1 = µ2 = 10−6, µmax = 106, ρ = 1.1, and
ε = 10−8

2: while not converge do
3: fix the others and update Z according to Eq. (8);
4: fix the others and update B according to Eq. (9);
5: fix the others and update J according to Eq. (10);
6: fix the others and update K according to Eq. (11);
7: update the multipliers:

Y1 = Y1 + µ1(Z − J),
Y2 = Y2 + µ2(B −K);

8: update the parameter:
µ = min (µmax, ρµ);

9: check the convergence condition:
‖X −XZ − BX‖∞ ≤ ε, ‖Z − J‖∞ ≤ ε, and ‖B −
K‖∞ ≤ ε;

10: end while

two auxiliary variables are introduced to decouple Z and
B [Afonso et al., 2011]. Hence, we reformulate the problem
as follows:

min
Z,B,J,K

λ1||J ||∗ + λ2Ω(K) +
1

2

∥∥X −XZ −BX∥∥2
F

s.t. Z = J, B = K. (6)

The solution to problem (6) is given by ALM, which is imple-
mented by minimizing the following augmented Lagrangian
function

min
Z,B,J,K;Y1,Y2

1

2

∥∥X −XZ −BX∥∥2
F

+ λ1||J ||∗ + 〈Y1, (Z − J)〉+
µ1

2

∥∥Z − J∥∥2
F

+ λ2Ω(K) + 〈Y2, (B −K)〉+
µ2

2

∥∥B −K∥∥2
F
,

(7)

where Y1, Y2 are the Lagrangian multipliers, 〈X,Y 〉 =
tr(X>Y ) is the inner product between two matrices, and µ1,
µ2 are two non-negative penalty parameters. Due to the sep-
arable structure of the objective function in Eq. (7), the opti-
mization to problem (7) can be carried out on each variable
separately with others fixed. The optimization procedure is
described in Algorithm 1.

Now, we investigate an update rule for each variable among
Z,B, J,K while fixing the other variables.
Update Z with the others fixed:

Z∗ = (µ1I+X>X)−1
(
X>(X −BX) + µ1J − Y1

)
. (8)

Update B with the others fixed:

B∗ =
(
(X −XZ)X> + µ2K − Y2

)
(µ2I +XX>)−1.

(9)
Update J with the others fixed:

J∗ = arg min
J

λ1
µ1
||J ||∗ +

1

2

∥∥J − Z − 1

µ1
Y1
∥∥2
F
. (10)
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Update K with the others fixed:

K∗ = arg min
K

λ2
µ2

Ω(K) +
1

2

∥∥K −B − 1

µ2
Y2
∥∥2
F
. (11)

Note that both Eqs. (8) and (9) give closed-form solutions to
Z and B, so they achieve global minima in each iteration.
Meanwhile, Eq. (10) can be solved via the singular value
thresholding (SVT) operator [Cai et al., 2010] which guar-
antees the rank of J to reduce until convergence. However,
due to the group-structured sparsity regularization, Eq. (11)
poses a non-smooth and non-trivial optimization problem. To
simplify the optimization of Eq. (11), we seek the following
alternative formulation by squaring the regularizer Ω(K):

arg min
K

λ2
µ2

 d∑
j=1

c∑
i=1

∥∥KGi
j

∥∥
2

2

+
1

2

∥∥K −B − 1

µ2
Y2
∥∥2
F
.

(12)
An auxiliary variable τj,i is introduced to make Eq. (12) more
tractable, that is, d∑

j=1

c∑
i=1

∥∥KGi
j

∥∥
2

2

≤
d∑
j=1

c∑
i=1

∥∥KGi
j

∥∥2
2

τj,i
, (13)

where
∑
j

∑
i τj,i = 1, τj,i ≥ 0,∀j, i. The condition under

which the above inequality holds is

τj,i =

∥∥KGi
j

∥∥
2∑d

j=1

∑c
i=1

∥∥KGi
j

∥∥
2

. (14)

Obviously, when Eq. (14) is satisfied, the right-hand side of
Eq. (13) takes a minimum, which can be regarded as a further
relaxation of Eq. (12). Thus, Eq. (12) can be reformulated as

arg min
K

λ2
µ2

d∑
j=1

c∑
i=1

∥∥KGi
j

∥∥2
2

τj,i
+

1

2

∥∥K −B − 1

µ2
Y2
∥∥2
F

s.t.
∑
j

∑
i

τj,i = 1, τj,i ≥ 0, ∀j, i. (15)

Based on the above analysis, Eq. (15) can be solved by alter-
natively optimizing K and τj,i iteratively until convergence.
Denote Mw as the w-th column of matrix M . In each itera-
tion, we first fix the values for K and update τj,i according
to Eq. (14). Then, we hold the values for τj,i as constant
and optimize for K. To minimize K, we take the first order
derivative of Eq. (15) with respect to Kw and set it to zero,
obtaining

Kw =
(
2
λ2
µ2

Π + I
)−1(

Bw +
Y2,w
µ2

)
, (16)

where Π ∈ Rd×d is a diagonal matrix with
∑c
i=1

1
τj,i

being
the j-th element in its diagonal.

The following theorem guarantees the convergence of solv-
ing problem (11) in each iteration.

Theorem 1. The objective of Eq. (11) with λ2 ≥ dµ2

2c mono-
tonically decreases in each iteration.

Proof. The solution of Eq. (11) involves alternative optimiza-
tion of Kw and τj,i.

Kw =
(
2
λ2
µ2

Π + I
)−1(

Bw +
Y2,w
µ2

)
≤
(
2
λ2
µ2

Π
)−1(

Bw +
Y2,w
µ2

)
. (17)(

2λ2

µ2
Π
)−1

= µ2

2λ2
Π−1, where Π−1 is a diagonal matrix with

the j-th entry on the diagonal being (
∑c
i=1

1
τj,i

)
−1 ≤ 1

c . Let

λ2 ≥ dµ2

2c , then∥∥∥∥(2λ2µ2
Π
)−1∥∥∥∥

F

=
∥∥ µ2

2λ2
Π−1

∥∥
F
≤ 1. (18)

Suppose that {Y2,w} is a cauchy sequence and µ2 does not

grow too fast. Then
∥∥Y2,w

µ2

∥∥
F

is bounded with
∥∥Y ∗

2,w

µ2

∥∥
F

,
where Y ∗2,w is the value of Y2,w after the algorithm halts.
Therefore, we have

‖Kw‖F ≤
∥∥Bw +

Y2,w
µ2

∥∥
F
. (19)

Since Y2,w

µ2
is bounded and Bw monotonically decreases,

‖Kw‖F also monotonically decreases in each iteration.
Without loss of generality, we can suppose∑d
j=1

∑c
i=1

∥∥KGi
j

∥∥
2
≥ 1. According to Eq. (14),

|τj,i| ≤
∥∥KGi

j

∥∥
2
. (20)

Since ‖Kw‖F decreases in each iteration,
∥∥KGi

j

∥∥
2

also de-
creases. Given 0 ≤ |τj,i| ≤ 1, we know that the value of
τj,i monotonically decreases. Since each iteration converges,
the convergence of optimizing the objective in Eq. (11) is en-
sured.

3.2 Complexity Analysis
The complexity of the proposed algorithm (see Algorithm 1)
includes four parts, where each part accounts for the opti-
mization with respect to a single variable among Z,B, J,K,
respectively. Firstly, the update of Z consists of some ma-
trix multiplication and inversion, leading to a complexity of
O(n3). The update of B also has a similar complexity. The
SVD is implemented when solving J , which usually induces
a computational cost of O(n3). Suppose the number of inner
iterations for updating K is t, then the corresponding time
complexity is O(2n3t). The computational cost for updat-
ing Y1, Y2 and µ can be eliminated since they are relatively
smaller than that of the others.

Apparently, the computational cost of Algorithm 1 is dom-
inated by the calculation of J . For a maximal number of outer
iteration T (step 2 to step 10), the complexity of Algorithm 1
can thus be approximated by O(Tn3).

4 Experiments
In this section, we evaluate the performance of our method
on six benchmark datasets: Caltech101 [Fei-Fei et al., 2007],
NUS-WIDE [Chua et al., 2009], Handwritten numeral [Frank
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Figure 1: The confusion matrix calculated by our proposed method: (a) Caltech7, (b) Caltech20, and (c) Handwritten numerals.
For Caltech20, we only plot the confusion matrix of the top 7 classes for the convenience of displaying.

and Asuncion, 2010], Animal with attributes [Lampert et al.,
2009], Scene-15 [Lazebnik et al., 2006].

Caltech101 dataset is an object recognition dataset con-
taining 8677 images, belonging to 101 categories. Following
[Cai et al., 2013a], we choose widely used 7 and 20 classes
to construct two datasets, i.e. Caltech7 and Caltech20, in
which there are 1474 images and 2386 images, respectively.
In order to obtain the different views, we extract GIST [Oliva
and Torralba, 2001] with dimension 512, CENTRIST [Wu
and Rehg, 2008] with dimension 1302, LBP [Ojala et al.,
2002] with dimension 256, histogram of oriented gradient
(HOG) with dimension 576, SIFT-SPM [Lazebnik et al.,
2006] with dimension 1000, color histogram (CH) with di-
mension 64.

NUS-WIDE dataset contains 30000 images and 31 classes.
We use six published features to do multi-view classifica-
tion, which contains 225 dimension block-wise color mo-
ments (CM), 64 dimension CH, 144 dimension color correl-
ogram (CoRR), 128 dimension wavelet texture (WT), 73 di-
mension edge distribution (EDH), and 500 dimension SIFT
BoW feature.

Handwritten numerals (HW) dataset consists of 2000
data instances for 0 to 9 ten digit classes. We use six pub-
lished features to represent multiple views. Specifically,
these features include 76 Fourier coefficients of the character
shapes (FOU), 216 profile correlations (FAC), 64 Karhunen-
love coefficients (KAR), 240 pixel averages in 2×3 windows
(PIX), 47 Zernike moment (ZER), and 6 morphological fea-
tures (MOR).

Animal with attributes (AWA) dataset contains 50
classes, 30475 instances. We use all the published features for
all the images, that is, 2688 dimension color histogram (CQ),
2000 dimension local self-similarity (LSS), 252 dimension
pyramidHOG (PHOG), 2000 dimension SIFT, 2000 dimen-
sion colorSIFT, and 2000 dimension SURF.

Scene-15 dataset consists of 15 classes, 3000 images,
mainly stemming from the COREL collection, personal pho-
tographs and Google image search. We extract the same six
visual features from each image as Caltech101 dataset.

4.1 Experimental Setup
To demonstrate the advantage of our proposed method, we
compare the proposed method against several representative
approaches: (1) Single View (SV): Using the single-view fea-
ture to verify the classification performance, where Type 1
to Type 6 represent six different features belonging to the
corresponding datasets, respectively. (2) Direct Concate-
nation (DC-SVM): Concatenating features of all views in
a straightforward way, and then performing classification by
SVM directly on the concatenated feature. (3) SimpleMKL:
Constructing a kernel for each view, and then learning a
linear combination of the different kernels in SVM [Rako-
tomamonjy et al., 2008]. (4) SMML: Integrating multi-
ple views by imposing joint structured sparsity regulariza-
tions [Wang et al., 2013]. (5) I2SCA: CCA-based multi-
view supervised feature learning [Jing et al., 2014]. (6) MT-
SRC: Tree-structured sparse model for multi-view classifica-
tion [Bahrampour et al., 2014]. (7) lrMMC: Low-rank multi-
view matrix completion method [Liu et al., 2015].

Besides, to further demonstrate the superior performance
of the proposed method, we derive three variants of the pro-
posed method. First, in Eq. (4), we enforce `1-norm to con-
strain the sparse matrix S. We denote it as “Our method (`1-
norm)”. Second, we use `2,1-norm to constrain the sparse
matrix S. We denote this degenerate version of the proposed
method as “Our method (`2,1-norm)”. Finally, the full version
of the proposed method by Eq. (4) is operated and named as
“Our method”.

To quantitatively measure the performance of the com-
pared methods, we use accuracy to measure the classification
performances. Since we mainly investigate the multi-view su-
pervised classification problem, hence the labels of training
samples are known. For each dataset, we randomly choose
30% of the data for training, and the rest for testing. All re-
ported experimental results are averaged over 10 runs with
random initializations.

In all the experiments, we implement standard 5-fold cross-
validation and report the average results. Specifically, the pa-
rameters λ1 and λ2 in Eq. (4) are finely tuned by searching
the grid of {10−3, 10−2, · · · , 102, 103}, and then the best val-
ues are chosen based on validation performance. For SVM
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Table 1: Classification accuracy comparison.

Methods Datasets
Caltech7 Caltech20 NUS-WIDE HW AwA Scene-15

Type1 0.8342 0.5378 0.1521 0.9204 0.0573 0.6648
Type2 0.8035 0.7126 0.1495 0.8277 0.0623 0.9053
Type3 0.6872 0.3346 0.1469 0.9328 0.0501 0.7020
Type4 0.8829 0.3146 0.1507 0.4673 0.0548 0.5986
Type5 0.8124 0.3275 0.1412 0.9457 0.0653 0.5633
Type6 0.7951 0.6093 0.1490 0.8293 0.0726 0.1193

DC-SVM 0.8549 0.5873 0.1331 0.9600 0.0747 0.8378
simpleMKL 0.8912 0.6787 0.1428 0.9623 0.0788 0.8111

SMML 0.8792 0.6802 0.1451 0.9610 0.0812 0.8220
I2SCA 0.8741 0.6011 0.1583 0.9650 0.0798 0.8837

MTSRC 0.8938 0.6177 0.1537 0.9640 0.0787 0.8522
lrMMC 0.9012 0.6937 0.1598 0.9680 0.0792 0.8234

Our method (`1-norm) 0.9098 0.7041 0.1607 0.9690 0.0812 0.8356
Our method (`2,1-norm) 0.9115 0.7103 0.1621 0.9703 0.0810 0.8325

Our method 0.9674 0.8264 0.1645 0.9764 0.0823 0.9800

classifier, we use Gaussian kernel as the kernel matrix for
each method, which is defined as K(xi, xj) = exp(−σ||xi −
xj ||2). The standard deviation σ is tuned in the same range
used as our method. The tradeoff parameter C of SVM is
selected from the range {0.01, 0.1, 1, 10, 100, 1000}. We use
LIBSVM1 software package to implement SVM in all our ex-
periments.

4.2 Classification Results
The classification results of the compared methods on all con-
sidered datasets are reported in Table 1. The confusion ma-
trices of Caltech7, Caltech20 and Handwritten numerals are
shown in Figure 1. First of all, in order to verify multi-view
combination power of our method, we compare classification
performances between using all the views and using only one
view. It is obvious that single-view feature may perform bet-
ter on some of the datasets while perform poorly on the other
datasets. For example, the classification accuracy of HOG on
Caltech7 is 88.29%, while on the Caltech20, the accuracy is
only 31.46%. Meanwhile, for each dataset, some features are
more effective than the others. Hence, it is nearly impossible
for a single feature to perform best on all datasets. To better
utilize the diversity and complementarity of multiple views,
the naive approach is to directly concatenate multiple features
together. However, as shown in Table 1, the performance of
this method is not better than the single feature. For instance,
on the NUS-WIDE dataset, the classification accuracy of DC-
SVM is only 13.31%, compared to 15.21% achieved by the
CM feature alone. The reason is that direct feature concatena-
tion may not promote the complementarity of multiple views.
Instead, some feature may even introduce noise to other fea-
tures, deteriorating the whole performance.

As shown in Table 1, more sophisticated multi-view com-
bination methods are compared. Although these approaches
all achieve significant performance gains on the six datasets,
about 10%∼12% improvement compared with the naive
method. However, most of these methods only focus on the
shared component across multiple views. Comparatively, our

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

proposed method achieves the best results on all six datasets,
and outperforms the previous best results nearly by 7% on
average. It is mainly because that our method simultaneously
consider the shared component and the private component,
which is beneficial to boosting the classification performance.

5 Conclusions
In this paper, we proposed a novel multi-view, low-rank, and
sparse matrix decomposition scheme which can robustly in-
tegrate diverse yet complementary information from multi-
ple views. Different from traditional approaches, we decom-
posed a concatenated input matrix into three parts including
the low-rank, sparse, and noisy parts, and imposed particular
constraints on them. In the presented unified optimization
framework, on one hand the low-rankness regularizer was
leveraged to capture the shared component across all views
in the instance level; on the other hand the group-structured
sparsity regularizer was employed to extract the private com-
ponent from each view in the view level. The final multi-view
fusion was conducted by combining the learned shared and
private components. The experimental results on six popular
image classification datasets demonstrated that our proposed
method consistently achieves superior performance over the
state-of-the-arts.

In future work, we plan to extend our multi-view matrix
decomposition method to work under semi-supervised set-
tings like [Liu et al., 2010; 2012a]. To make our method scal-
able to massive heterogeneous datasets, we intend to draw on
the storage and computational merits of learning based data-
dependent hashing techniques [Liu et al., 2011; 2012b; 2014;
Shen et al., 2015], and develop new hashing schemes to cater
for large-scale multi-view matrix decomposition.
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