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Abstract

Hierarchical Reinforcement Learning (HRL) out-
performs many ‘flat’ Reinforcement Learning (RL)
algorithms in some application domains. However,
HRL may need longer time to obtain the optimal
policy because of its large action space. Potential
Based Reward Shaping (PBRS) has been widely
used to incorporate heuristics into flat RL algo-
rithms so as to reduce their exploration. In this
paper, we investigate the integration of PBRS and
HRL, and propose a new algorithm: PBRS-MAXQ-
0. We prove that under certain conditions, PBRS-
MAXQ-0 is guaranteed to converge. Empirical re-
sults show that PBRS-MAXQ-0 significantly out-
performs MAXQ-0 given good heuristics, and can
converge even when given misleading heuristics.

1 Introduction
Hierarchical Reinforcement Learning (HRL) algorithms in-
corporate hierarchical planning into classic Reinforcement
Learning (RL). HRL algorithms exploit temporal abstraction,
where decisions are not required at each step, but rather in-
voke the execution of temporally extended activities which
follow their own policies until termination, to combat the
curse of dimensionality (the exponential growth of the com-
putational requirement for obtaining the optimal polices with
the size of state space) faced by RL algorithms [2].

MAXQ [6] is one of the most widely used HRL algorithms.
Unlike some other HRL algorithms, e.g. Options [17] and Hi-
erarchies of Abstract Machines [16], which treat the original
problem as a whole, MAXQ decomposes the whole problem
into a hierarchy of sub-problems, and solves the whole prob-
lem by invoking solutions for sub-problems. By doing so,
solutions of multiple sub-problems can be learnt simultane-
ously [2]. Although HRL algorithms facilitate people to give
high-level domain knowledge to instruct RL, the knowledge
that can be encoded in HRL is ‘coarse-grained’, in the sense
that very detailed instructions can hardly be represented in the
form of sub-task hierarchies (see Section 6 for details). Fur-
thermore, because MAXQ allows a sub-problem to invoke
some other sub-problems’ solutions in any order and for any
number of times, considerable exploration is needed to learn

the best order to invoke available activities even in relatively
small-scale problems [6].

Incorporating prior knowledge into RL algorithms has
proven be to effective in improving RL’s convergence speed.
There have been multiple approaches for incorporating prior
knowledge about the dynamic of the environment into
MAXQ [11; 4]. However, in some problems, people may
not have this prior knowledge but, instead, can provide some
heuristics about which actions should (not) be performed in
certain states [18]. These instructions have proven to be very
useful in reducing exploration in flat1 RL algorithms [15;
18]. However, to the best of our knowledge, there exist no
techniques for incorporating heuristics into MAXQ.

In this paper, we propose an algorithm that incorporates
Potential Based Reward Shaping (PBRS) into MAXQ. PBRS
has been widely used in flat RL algorithms as an effec-
tive technique to reduce exploration and to accelerate learn-
ing [15; 18; 1]. PBRS gives extra rewards to actions rec-
ommended by domain experts, so as to encourage the agent
to choose these actions. By doing so, PBRS can guide the
exploration of RL algorithms without altering their original
optimal policies. We propose a novel algorithm: PBRS-
MAXQ-0, and prove that it is guaranteed to converge under
certain conditions, regardless of the extra rewards being used.
Empirically, we show that: (i) given reasonable heuristics,
our approach can converge significantly faster than standard
MAXQ-0 algorithm, and has competitive performances com-
pared to other state-of-the-art MAXQ-based techniques; and
(ii) even when given misleading heuristics, our algorithm is
still able to converge (after a sufficiently long time of learn-
ing).

2 Related Work
Some work has been devoted to incorporating MAXQ with
other RL techniques so as to improve its convergence speed.
Jong and Stone [11] incorporated R-MAX [3] with MAXQ
and proposed R-MAXQ. For each sub-task (either compos-
ite or primitive), a model is built and updated in the R-MAX
style. The use of R-MAX guarantees that R-MAXQ can con-
verge in finite-time. R-MAXQ provides a method to more
systemically explore polices, but does not allow for using
prior knowledge to reduce exploration. Cao and Ray [4]

1A RL algorithm is flat iff it is not a HRL algorithm.
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proposed an algorithm for incorporating Bayesian priors into
MAXQ. They defined priors on primitive actions’ models and
on task pseudo rewards, but did not construct models for com-
posite sub-tasks (the purpose is to reduce the complexity of
the model). Empirical results showed that by using ‘good’
priors (i.e. the posteriors learnt in previous experiments),
their approach can converge faster than MAXQ-0. However,
both of these approach do not allow for incorporating heuris-
tics into MAXQ, and both are much more computationally
expensive than MAXQ-0 (see table 1 in [4]).

Our work assumes that the heuristics and their extra re-
wards are given a priori by domain experts. Research has
been devoted to obtaining the heuristics and their extra re-
wards in PBRS, e.g. [10; 8; 7]. We also assume that the task
hierarchy is given. Other work has explored learning MAXQ
hierarchies in different settings, e.g. [13].

3 Background
We first introduce the Semi-Markov Decision Process
(SMDP), and then provide a brief description of MAXQ and
PBRS, the techniques we integrate.

3.1 Semi-Markov Decision Process
Before introducing SMDP, we describe the Markov Decision
Process (MDP), as the two are closely related. A MDP is a
tuple (S,A, P,R, γ), where S is the set of states, A is the set
of actions, P (s′|s, a) is the transition probability of moving
from state s to s′ by performing action a, R(s′|s, a) gives the
immediate reward received when action a is executed in state
s, moving to state s′, and γ ∈ [0, 1] is the discount factor.
The goal of planning in a MDP is to find a policy π : S → A,
specifying for each state the action to take that maximises the
discounted sum of future rewards. The value function V π(s)
represents the expected discounted sum of rewards that will
be received by following π starting in state s:

V π(s) = E[rt + γrt+1 + γ2rt+2 · · · |st = s, π],

where rt is the immediate reward received in time-step t. The
value function satisfies the Bellman equation for a fixed pol-
icy π:

V π(s) =
∑
s′

P (s′|s, π(s))[R(s′|s, π(s)) + γV π(s′)].

For an optimal policy π∗, the value function satisfies:

V ∗(s) = max
a

∑
s′

P (s′|s, a)[R(s′|s, a) + γV ∗(s′)].

SMDP is a generalisation of MDP in which the actions can
take variable amounts of time to complete. We restrict our at-
tention to discrete-time SMDP, and let the random variable τ
denote the number of time steps action a takes in state s. The
transition probability function P is extended to become the
joint distribution of the result state s′ and the number of time
steps τ when action a is performed in state s: P (s′, τ |s, a).
Similarly, the reward function is extended to R(s′, τ |s, a).
Therefore, in SMDP, the value function is:

V π(s)=
∑
s′,τ

P (s′, τ |s, π(s))[R(s′, τ |s, π(s))+γτV π(s′)],

and the optimal value function V ∗ satisfies:

V ∗(s)=max
a

∑
s′,τ

P (s′, τ |s, a)[R(s′, τ |s, a)+γτV ∗(s′)].

3.2 The MAXQ-0 Algorithm
MAXQ decomposes the overall value function for a pol-
icy into a collection of value functions for individual sub-
tasks. A core MDP M is decomposed into a set of sub-tasks
{M0,M1, · · · ,Mn}, forming a hierarchy with M0 the root
sub-task, i.e. solving M0 solves M . Actions taken to solve
M0 may be primitive actions or policies that solve other com-
posite sub-tasks, which can in turn invoke primitive actions
or policies. The sub-tasks and primitive actions into which a
sub-task Mi is decomposed are called the children of Mi, and
Mi is called the parent of its children. The children sub-tasks
of a composite sub-task are allowed to be invoked in any or-
der and any number of times. In most works on MAXQ (see,
e.g. [6; 12]), primitive sub-tasks take exactly one time step,
so the time spent in finishing a composite sub-task Mi de-
pends on the number of primitive sub-tasks performed in Mi.
The structure of the MAXQ decomposition is concisely sum-
marised by the task graph [6].

A composite sub-task Mi consists of three components: i)
the sub-task policy, πi, specifying which children sub-task
of Mi should be invoked in a specific state; ii) a termination
predicate, partitioning the state set of the core MDP into Si,
the set of states that Mi can execute, and Ti, the set of states
where Mi terminates; and iii) a pseudo-reward function, as-
signing reward values to the states in Ti. In this work, for
simplicity, me let all pseudo-rewards be 0, but in Section 4.2
we will describe that our algorithm can be extended to the
MAXQ algorithms with non-zero pseudo rewards.

Given a hierarchical decomposition {M0,· · · ,Mn} of M , a
hierarchical policy is π = {π0, · · · , πn}, with πi the policy
of Mi. Let V π(i, s) denote the cumulative reward of perform-
ing sub-task Mi in state s following π, where i is a shorthand
for Mi. V π(i, s) is formally defined as follows:

V π(i, s)=

{ ∑
s′ P (s′|s, i)R(s′|s, i) i primitive,

Qπ(i, s, πi(s)) i composite. (1)

When Mi is a primitive action, V π(i, s) is the expected one-
step reward of performing action Mi in state s; otherwise,
V π(i, s) is Qπ(i, s, πi(s)), which is the expected return for
Mi of performing sub-task Mπi(s) in state s and then follow-
ing π until Mi terminates, such that:

Qπ(i, s, πi(s)) = V π(πi(s), s) + Cπ(i, s, πi(s))

where the completion function Cπ(i, s, πi(s)), defined as

Cπ(i, s, πi(s)) =
∑
s′,τ

Pπi (s′, τ |s, πi(s))γτV π(i, s′)

gives the expected return for completing sub-task Mi after
sub-task Mπi(s) terminates. Pπi is the transition probability
in Mi given a policy π. The three equations above provide a
recursive way to write the value function given a hierarchical
policy. The greedy policy with respect to Qπ(i, s, a) is the
optimal policy for the SMDP corresponding to Mi: π∗i (s) =
argmaxaQ(i, s, a).
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Based on this recursive definition, Dietterich [6] proposes
the MAXQ-0 algorithm to learn the hierarchical policy from
sample trajectories. MAXQ-0 calls itself recursively to de-
scend through the hierarchy, eventually executing primitive
actions. When it returns from each call, it updates the com-
pletion function for the appropriate sub-task, with discount-
ing determined by the number of primitive actions executed.
Dietterich proves that by using an ordered greedy in the
limit with infinite exploration (OGLIE) action-selection pol-
icy, MAXQ-0 is guaranteed to converge to the (hierarchical)
optimal policy.

3.3 Potential-Based Reward Shaping
Potential-Based Reward Shaping (PBRS) is proposed by Ng
et al. [15] as the difference of some potential function Φ over
the current state s and the next state s′. By integrating PBRS
into MDP, the value function following policy π becomes:

V̂ π(s) = E[
∞∑
t

γt(rt + F (st, st+1)|st = s, π], (2)

where F (st, st+1) = γΦ(st+1)−Φ(st). We can see that most
potential values in Eq. (2) cancel each other out, and the only
remaining potential value is −Φ(s), i.e. V π(s) − Φ(s) =

V̂ π(s). Ng et al. have proven that the optimal policy wrt.
a PBRS-augmented MDP is also optimal wrt. the original
MDP. However, in PBRS, since the potential values are only
based on states, these values cannot provide instructions on
which actions are more promising in some state. To tackle
this problem, Wiewiora et al. [18] extended classical PBRS
to the case of shaping functions based on both states and ac-
tions: Φ(s, a), and propose the Look-ahead Advice (LA).2
They proved that by using LA, arbitrary potential values can
be incorporated into RL without altering its optimal policy.
In HRL, however, potential values that only consider action a
and state s are not sufficient: within different parent sub-task
i, the goodness of performing a at s can be different. Hence,
in HRL, we need potential values that also involve the par-
ent sub-task, so as to give more accurate instructions to the
action-selection process. This work is an extension of LA,
such that potential values are in the form of Φ(i, s, a), where
i is a composite sub-task, s is a state and a is a child of i.

4 MAXQ with PBRS
In this section, we present our main contribution: the PBRS-
MAXQ-0 algorithm. We first give rules for integrating poten-
tial values into V and C values, and describe the relation be-
tween the PBRS-augmented V and C functions and the orig-
inal V and C functions. Then we present PBRS-MAXQ-0
and prove its soundness. Due to the space limit, we only
sketch the proof of one theorem3. Throughout this section,
let HM = {M0, · · · ,Mn} be a hierarchical decomposition of
the core MDP M , and let i range over all sub-tasks in HM .

2They have also proposed a technique called look-back advice,
but this is not theoretically sound. So here we only focus on LA.

3The full proofs can be found at www.doc.ic.ac.uk/∼yg211/sup
mat ijcai.pdf.

4.1 Integrating Potential Values into MAXQ
Recall that, in classic PBRS, potential values are integrated
into value functions in a form of the ensuing state’s poten-
tial value minus the current state’s potential value (see Eq.
(2)). In HRL, we integrate the potential values into value
functions in a similar way. To be more specific, given a
fixed hierarchical policy π = {π0, · · · , πn}, let Q̃π(i, s, a) =

Ṽ π(a, s) + C̃π(i, s, a) where

Ṽ π(i, s)=

{ ∑
s′ [P (s′|s, i)R(s′|s, i)] i primitive,

Q̃π(i, s, πi(s)) i composite. (3)

When Mi does not terminate at state s:

C̃π(i, s, a) =
∑
s′,τ

Pπi (s′, τ |s, a) · 1Si(s
′) · γτ [V π(πi(s

′), s′)

+ C̃π(i, s′, πi(s
′)) + Φ(i, s′, πi(s

′))]− Φ(i, s, a), (4)

where V π is the function defined in Eq. (1); otherwise (i.e.
when Mi terminates at state s), C̃π(i, s, a) = 0, where a can
be any child of i. Note that 1Si

(s′) in Eq. (4) is an indicator
function, and Si is the set of states where sub-task Mi does
not terminate (see Section 3.2). From Eq. (4), we can see
that, in HRL, potential values are directly integrated into C
values, because composite sub-tasks’ V values in HRL can
be recursively constructed from C values (see Eq. (3)).

We refer to Q̃π , Ṽ π and C̃π as the PBRS-augmented func-
tions for MAXQ. Now we show that the original Cπ values
can be easily obtained from PBRS-augmented C̃π values.
Proposition 1. Given a MAXQ decomposition HM and
its fixed hierarchical policy π = {π0,· · ·, πn}, for any
composite sub-task Mi and any state s, C̃π(i, s, πi(s)) =
Cπ(i, s, πi(s))− Φ(i, s, πi(s)).

We can see that the relation between C̃π and Cπ is simi-
lar to the relation between V̂ π and V π given in Section 3.3.
Since Ṽ π values can be constructed from C̃π values, given
Proposition 1, we can obtain the relation between V π and Ṽ π
as follows:
Proposition 2. Given a MAXQ decomposition HM and its
fixed hierarchical policy π= {π0,· · ·, πn}, for any sub-task
Ma0 , 0 ≤ a0 ≤ n, and any state s:
• if Ma0 is a primitive action, Ṽ π(a0, s) = V π(a0, s);
• if Ma0 is a composite sub-task, suppose in a sample

trajectory following π, πa0(s) = a1,· · ·, πam−1(s) =

am,m > 0, and am is a primitive action, then Ṽ π(a0, s) =
V π(a0, s)−

∑m
j=1 Φ(aj−1, s, aj).

Proposition 2 suggests that V π values can be obtained by
adding Ṽ π and the sum of all potential values in a sample
trajectory. Next, we will propose an algorithm which not only
naturally integrates potential values into MAXQ-0, but is also
guaranteed to converge to the optimal policy.

4.2 The PBRS-MAXQ-0 Algorithm
The PBRS-MAXQ-0 algorithm is given in Alg. 1. Here, α ∈
R, α ∈ [0, 1] is the learning rate parameter. Note that all
V values appearing in Alg. 1 are the original V values (Eq.
(1)). Also, function Evaluate returns two values, and in line
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28, we only use its first returned value. Note that C̃ values
are updated (line 15) according to Eq. (4), and we reconstruct
the original C values from C̃ values (line 30) according to
Proposition 1; as a result, we can see that the first returned
value of function Evaluate is the original V value (line 31),
according to Proposition 2.

Algorithm 1 The PBRS-MAXQ-0 algorithm.
1: function PBRS-MAXQ-0(Sub-task i, State s)
2: Seq :=<> /*initialise seq as an empty list*/
3: if i is a primitive action then
4: execute i, receive reward r and observe next state s′
5: Vt+1(i, s) := (1− αt(i)) · Vt(i, s) + αt(i) · r
6: push s onto the beginning of seq
7: else
8: while sub-task i does not terminate at state s do
9: choose an action a according to a BOGLIE policy

10: ChildSeq := PBRS-MAXQ-0(a, s)
11: observe next state s′
12: Vt(a

∗, s′), a∗ := Evaluate(i, s′)
13: N := 1
14: for each s in ChildSeq do
15: C̃t+1(i, s, a) := (1 − αt(i))C̃t(i, s, a) +

αt(i){γN [Vt(a
∗, s′) + C̃t(i, s

′, a∗) +
Φ(i, s′, a∗)]− Φ(i, s, a)}

16: N := N + 1
17: end for
18: append ChildSeq onto the front of Seq
19: s := s′

20: end while
21: end if
22: return Seq

23: function Evaluate(Sub-task i, State s)
24: if i is a primitive action then
25: return Vt(i, s)
26: else
27: for all child sub-task a of i do
28: Vt(a, s) := Evaluate(a, s)[0]
29: end for
30: a∗ := argmaxa[Vt(a, s) + C̃t(i, s, a) + Φ(i, s, a)]

31: return < Vt(a
∗, s) + C̃t(i, s, a

∗) + Φ(i, s, a∗), a∗ >
32: end if

33: /*Main Programme*/
34: initialise all V and C̃ values arbitrarily
35: initialise Φ values
36: PBRS-MAXQ-0(root sub-task 0, starting state s0)

Now we prove that PBRS-MAXQ-0 converges to the op-
timal policy. Recall that, in MAXQ-0, by using an OGLIE
policy (see Section 3.2), π∗ is guaranteed to be obtained. We
propose the biased OGLIE (BOGLIE) policy as follows:

Definition 1. Given a MDPM and its MAXQ decomposition
HM , potential values are integrated into MAXQ according to
PBRS-MAXQ-0. A BOGLIE policy is an action selection
policy such that:

• each child sub-task is executed infinitely often in every
state that is visited infinitely often;

• in the limit (i.e. after infinite long time of learning), for
any composite sub-task a0 and state s, the policy selects
the biased-greedy child a1 of a0 at state s:

argmax
a1∈Aa0 (s)

[Q̃t(a
0, s, a1) +

m∑
j=1

Φ(aj−1, s, aj)]

with probability 1, where Aa0(s) is the set of available
child of a0 at state s, aj (j ∈ {1, · · · ,m}) is the biased-
greedy child of aj−1, and am is a primitive action, where
m ∈ N∗ is the number of biased-greedy descendants of a0
in state s; and
• for each composite sub-task i and state s, there is a fixed

order for sub-tasks in Ai(s) s.t. the policy breaks ties in
favour of the sub-task that appears earliest in the order.

Note that Q̃t(i, s, a) = Ṽt(a, s) + C̃t(i, s, a), where t is
the number of updates. Also, note that the action returned
by function Evaluate (line 31) is a biased-greedy child. Let
a biased ε-greedy policy be a policy such that in each state
s and for any composite sub-task i, the biased-greedy child
of i is selected with a probability of 1 − ε, and a random
child of i is selected with a probability of ε. This policy is
an approximated BOGLIE policy. Now we prove that PBRS-
MAXQ-0 is guaranteed to converge with a BOGLIE policy.

Theorem 1. Given a MDP M and its MAXQ decomposition
HM = {M0, · · · ,Mn}, suppose all immediate rewards and
all potential values are bounded. If αt(i) > 0 is a sequence
of constants for sub-task i s.t.

lim
T→∞

T∑
t=1

αt(i) =∞ and lim
T→∞

T∑
t=1

α2
t (i) <∞,

then with probability 1, algorithm PBRS-MAXQ-0 converges
to π∗, the unique hierarchical optimal policy forM consistent
with HM .

Proof. (Sketch.) Without loss of generality, we prove this
theorem by showing that the learning dynamics of PBRS-
MAXQ-0 with all C̃ values initialised as 0 is the same as that
of MAXQ-0 with all C values initialised as their correspond-
ing Φ values, i.e. C̃t(i, s, a) − C̃0(i, s, a) = Ct(i, s, a) −
C0(i, s, a) where C̃0(i, s, a) = 0, C0(i, s, a) = Φ(i, s, a).
We prove this inductively. The base case is to show that when
t = 0, this equation holds, which is trivially true. To prove
the inductive case, we need to prove that given any composite
sub-task i and state s, i’s greedy child (i.e. the child that was
greedily selected by an OGLIE policy) at s wrt. C values is
the same as i’s biased-greedy child at s wrt. C̃ values. This is
also proved by induction, starting from composite sub-tasks
with only primitive children and moving towards the other
composite sub-tasks. The key point in proving this is to show
that function Evaluate in MAXQ-0 and PBRS-MAXQ-0 se-
lects the same child given the same parent i and state s.

Since MAXQ-0 is guaranteed to converge given the condi-
tions presented in this theorem, PBRS-MAXQ-0 is also guar-
anteed to converge, and C̃∗(i, s, a) = C∗(i, s, a)−Φ(i, s, a).
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Figure 1: Task graphs. Composite and primitive sub-tasks are
in boldface and italic, respectively.

Since Evaluate in PBRS-MAXQ-0 and MAXQ-0 select the
same child, the optimal policies of PBRS-MAXQ-0 and
MAXQ-0 are the same.

Note that all theoretical analysis until now is based on the
setting that all pseudo rewards are 0. However, we can see
that potential values and pseudo rewards are independent of
each other: intuitively, potential values represent the good-
ness of performing a child sub-task in a parent sub-task,
whereas pseudo rewards indicate whether a terminal state
is desirable or not; furthermore, as for the scope, pseudo
rewards can only be used in one level and only in learn-
ing, whereas potential values are used throughout the whole
MAXQ hierarchy and not only used in learning, but also in
execution (in the BOGLIE policy). Hence, all results given
above also apply to MAXQ with non-zero pseudo rewards.

5 Experiments
We implement MAXQ-0 and PBRS-MAXQ-0 in two widely
used applications for MAXQ: the Fickle Taxi problem and the
Resource Collection problem, to compare their performances.
By performing experiments in these applications, we attempt
to answer the following questions: (i) given reasonable poten-
tial values, whether PBRS-MAXQ-0 can converge faster than
MAXQ-0; (ii) given misleading potential values, whether
the PBRS-MAXQ-0 can finally converge; and (iii) whether
PBRS-MAXQ-0’s performance is comparable or even better
than other state-of-the-art approaches.

We first describe the detailed experimental settings of these
two domains in Section 5.1 and 5.2, and present and discuss
the learning performances in Section 5.3. In both domains,
we use biased ε-greedy (see Section 4.2) for PBRS-MAXQ-
0, and use standard ε-greedy for MAXQ-0. All experimental
settings we use are the same as those in [4] (except for the
learning parameters α, ε and γ, whose values are not provided
in [4]). In all experiments and for all algorithms, we have
γ = 1. All results presented in this section are averaged over
100 independent experiments, and the lighter colour areas in
Figure 2 and 3 represent 95% confidence intervals.

5.1 Fickle Taxi Problem
The Fickle Taxi problem is an episodic RL problem con-
sisting of a 5 × 5 grid world with four landmarks, labelled
(R)ed, (G)reen, (B)lue and (Y)ellow. In the beginning of
each episode, the taxi is in a random square, a passenger is
in a random landmark and wants to be transported to another

(randomly chosen) landmark . The taxi has to navigate to
the passenger’s starting position, pick up the passenger, go to
the destination and put down the passenger there, and then an
episode ends. When the passenger is picked and one square
away from its starting position, it has 30% chance to change
its destination.

There are six primitive actions available for the taxi: i) four
navigation actions that move the taxi one square in the indi-
cated direction with probability 0.7 and in each perpendicular
direction with probability 0.15: north, south, east and west;
ii) the pickup action, which transfers the passenger into the
taxi and iii) the putdown action, which puts down the passen-
ger at the square in which the taxi is. Hitting wall is a no-op
and results in no additional rewards. The task graph we use is
presented in Fig. 1(a). The state variables consist of the posi-
tion of the taxi, the status of the taxi (empty or occupied) and
the source and destination of the passenger. The agent gets a
reward of +20 for completing a task, −1 for each action and
an additional reward of −10 when the taxi performs pickup
and putdown illegally.

We test the performances of three MAXQ implementa-
tions: MAXQ-0, PBRS-MAXQ-0 with reasonable heuristics
(denoted by PBRS-good) and with misleading heuristics (de-
noted by PBRS-bad). The potential values Φ(i, s, a) used in
PBRS-good are as follows:
• When sub-task a is pickup, Φ(i, s, a) = +10 if the passen-

ger has not been picked up and the taxi is in the passenger’s
position; otherwise, Φ(i, s, a) = −10.

• When sub-task a is putdown, Φ(i, s, a) = +10 if the pas-
senger has been picked up and the taxi is in the passenger’s
destination position; otherwise, Φ(i, s, a) = −10.

• When sub-task a is Navigate(x), where x can be any land-
mark, Φ(i, s, a) = +10 if:

– i is Get, the passenger has not been picked up and x
is the passenger’s position; or

– i is Put, the passenger has been picked up and x is the
passenger’s destination.

In all other situations, Φ(i, s, a) = −10.
• When a is north, south, east or west, the parent sub-task

must be Navigate(x), where x can be any landmark. We
let Φ(i, s, a) = +5 if performing a reduces the Manhattan
distance to x, otherwise, Φ(i, s, a) = −5.
The potential values used in PBRS-bad are the opposite of

those used in PBRS-good in each state. Note that the heuris-
tics used in PBRS-good contain imperfect instructions: for
example, recommending the agents to choose the navigation
action that reduces the Manhattan distance may not be the
best action in some states, because the agent may be stopped
by a wall. By using the imperfect instructions in PBRS-good
and misleading instructions in PBRS-bad, we can more com-
prehensively investigate the convergence property and robust-
ness of PBRS-MAXQ-0.

For simplicity, we let all sub-tasks use the same α value
(i.e. for any sub-task i, α(i) in Alg. 1 is the same). The initial
values and the decreasing rates (in brackets) of α and ε are
listed in Table 1. After each episode, we let αt+1 = αt × rα
and εt+1 = εt×rε where rα and rε are the decreasing rates for
α and ε, respectively. Note that these parameters are selected
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Table 1: The learning parameters used in Taxi problem.
MAXQ-0 PBRS-good PBRS-bad

α 1.0 (0.999) 1.0 (0.999) 1.0 (0.999)
ε 0.5 (0.9) 0.5 (0.9) 1.0 (0.99)

to maximise the convergence speed of each algorithm.

5.2 Resource Collection Problem
The Resource Collection problem we consider is a 25 × 25
grid world, in which the agent can harvest wood and chop
gold from forests and goldmines, respectively, and deposit
them at a town hall. The goal is to reach a predefined quota
of wood and gold. There are two goldmines and two forests
in the grid world. In each goldmine (forest), two portions of
gold (wood) are contained. Note that the agent can only carry
one portion of gold or wood at each moment. The quota for
both gold and wood are three portions.

There are seven primitive actions available: i) four naviga-
tion actions that move the agent one square in the indicated
direction with probability 0.7 and in the other directions with
probability 0.1: north, south, east and west; ii) the chop and
harvest action, which collects one portion of gold or wood if
the agent is adjacent to a goldmine or a forest; and iii) the
deposit action, which deposits the item the agent is carrying
(if any) in the town hall. The task graph is presented in Fig.
1(b). The state variable we use consists of the position of
the agent, what the agent is carrying, how much gold/wood
remains in a goldmine/forest, how much gold/wood is still
needed to meet the quota and whether the agent is adjacent
to a goldmine/forest. The agents get a reward of +50 for
meeting the gold/wood quota, a reward of −1 for each action
and an additional reward of −1 for performing chop, harvest
or deposit illegally (note that deposit is legal only when the
agent is carrying some resources and in the town hall).

We implement the same three algorithms as in the Taxi
problem. The potential values Φ(i, s, a) used in PBRS-good
are as follows:
• When sub-task a is Navigate(x), (where x can be the posi-

tion of any goldmine, forest or the town hall), Φ(i, s, a) =
+5 if:
– i is GetGold and x is a non-empty goldmine, or
– i is GetWood and x is a non-empty forest.

Otherwise, Φ(i, s, a) = −5.
• When a is north, south, east or west, the parent sub-task

must be Navigate(x), where x can be any goldmine, for-
est or the town hall. We let Φ(i, s, a) = +2 if per-
forming a reduces the Manhattan distance to x; otherwise,
Φ(i, s, a) = −2.

The potential values used in PBRS-bad are the opposite of
those used in PBRS-good. The learning parameters used in
each algorithm are listed in Table 2, and they are selected to
maximise the convergence speed of each algorithm.

5.3 Learning Performances and Discussions
The learning performances of all three implementations in the
Fickle Taxi and Resource Collection problems are given in
Fig. 2 and 3, respectively. We observe that, in both domains,
PBRS-good significantly outperforms standard MAXQ-0 and

Table 2: Learning parameters used in Resource Collection.
MAXQ-0 PBRS-good PBRS-bad

α 0.3 (0.996) 0.1 (1) 0.3 (0.999)
ε 1.0 (0.99) 0.01 (1) 1.0 (0.999)

Figure 2: Performances in the Fickle Taxi problem.

PBRS-bad, in terms of both initial performance and conver-
gence speed. PBRS-bad is also able to converge, although
it converges significantly slower than the other two algo-
rithms. Also, we find that to make PBRS-bad converge faster,
α and ε values should be initialised as big values and de-
crease at slower rates (as indicated in Table 1 and 2), so as
to ensure that more policies can be explored. By compar-
ing PBRS-good with other state-of-the-art HRL algorithms in
these two domains (see Fig. 1 in [4]), we find that the perfor-
mance of PBRS-good is similar to that of Bayesian HRL with
good priors4, and better than all the other approaches’ perfor-
mances, including Bayesian Q-Learning and R-MAXQ [11].
These results indicate that: (i) given reasonable heuristics,
PBRS-MAXQ-0 is able to converge significantly faster than
MAXQ-0; (ii) given misleading heuristics, PBRS-MAXQ-0
is still able to converge, by using carefully tuned learning
parameters; and (iii) PBRS-MAXQ-0’s performance is com-
petitive with other state-of-the-art MAXQ-based algorithms
given ‘good’ heuristics. However, the model-based MAXQ
approaches are computationally much more expensive than
MAXQ-0 (see Table 1 in [4]), whereas PBRS-MAXQ-0 only
introduces negligible computational overhead. Therefore,
when heuristics are available, we believe that PBRS-MAXQ-
0 is a more efficient technique to be used.

6 Conclusion
In this paper, we investigate the integration of two popular
RL techniques: PBRS and MAXQ. We propose the PBRS-
MAXQ-0 algorithm, and theoretically prove that by using
PBRS-MAXQ-0, arbitrary potential values can be integrated

4The ‘good priors’ used in [4] are actually model posterior com-
puted in previous experiments. Hence, it is difficult to directly com-
pare the ‘quality’ of prior knowledge used in our work and in [4].
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Figure 3: Performances in the Resource Collection problem.

into MAXQ without altering its original optimal policies. We
empirically test the effectiveness of PBRS-MAXQ-0 in two
widely used HRL testbeds. Empirical results suggest that
PBRS-MAXQ-0 is an effective, efficient and robust method
for incorporating heuristics into HRL.

Our work improves the granularity of domain knowledge
that can be integrated into HRL: although MAXQ provides
domain experts with a method to instruct RL by defining sub-
task hierarchies, very detailed instructions can hardly be rep-
resented by MAXQ. For example, in the Taxi problem (see
Section 5.1), the instruction ‘choose the action that reduces
the Manhattan distance to the goal’ can hardly be represented
by MAXQ hierarchies, although this instruction can signifi-
cantly improve the learning speed. Our work allows people to
integrate finer-grained domain knowledge into MAXQ, while
maintaining the convergence property of MAXQ.

We view model-based prior knowledge and heuristics as
complementary information for improving learning speed
of RL. Thus, an immediate future work is to incorporate
our technique with model-based MAXQ approaches like
R-MAXQ [11] and Bayesian HRL [4]. Also, since both
PBRS [5] and MAXQ [9; 14] have been successfully used
in multi-agent learning, applying PBRS-MAXQ-0 to multi-
agent problems is also worth further investigation. Fur-
thermore, since there have been some works automatically
proposing potential values for classic PBRS [10; 8; 7], simi-
lar techniques should also be explored for PBRS-MAXQ-0.
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