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Abstract

This paper studies an interesting problem: is it pos-
sible to predict the crowd opinion about a movie
before the movie is actually released? The crowd
opinion is here expressed by the distribution of rat-
ings given by a sufficient amount of people. Con-
sequently, the pre-release crowd opinion predic-
tion can be regarded as a Label Distribution Learn-
ing (LDL) problem. In order to solve this prob-
lem, a Label Distribution Support Vector Regressor
(LDSVR) is proposed in this paper. The basic idea
of LDSVR is to fit a sigmoid function to each com-
ponent of the label distribution simultaneously by a
multi-output support vector machine. Experimen-
tal results show that LDSVR can accurately pre-
dict peoples’s rating distribution about a movie just
based on the pre-release metadata of the movie.

1

The movie industry is a worldwide business worth tens of
billions of dollars. Thousands of new movies are produced
and shown in movie theatres each year, among which some
are successful, many are not. For movie producers, the in-
creasing cost and competition boosts the investment risk. For
movie audience, the prevalent immodest advertisement and
promotion makes it hard to choose a movie worth watching.
Therefore, both sides demand a reliable prediction of what
people will think about a particular movie before it is actu-
ally released or even during its planing phase. However, to
our best knowledge, there is little work, up to the present, on
pre-release prediction of the crowd opinion about movies.
Aside from the unstructured reviews and discussions about
the movie [Diao et al., 2014], an explicit and well-structured
reflection of the crowd opinion might be the distribution of
ratings given by the audience who have watched the movie,
just as many movie review web sites collect from their users,
such as IMDb and Netflix. Note that the average rating is
not a good indicator of the crowd opinion because the aver-
aging process mingles those who like the movie and those
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who dislike it. From the marketing point of view, a movie
with controversial crowd opinions (i.e., the rating distribu-
tion concentrates at both low and high ratings) is generally
much more successful than another movie with a consistent
medium rating. But they might have similar average ratings.
Fig. 1 gives a typical example of such case. According to
the data from IMDb, the movies Twilight and I, Frankenstein
both have the same average rating 5.2/10. But the top two
popular ratings in the rating distribution of Twilight are the
lowest rating 1 (15.7%) and the highest rating 10 (15.3%), re-
spectively, while those of I, Frankenstein concentrate at the
medium ratings 6 (21.4%) and 5 (20.1%). As a result, the
budget/gross ratio of Twilight is $37m/$191m and that of /,
Frankenstein is $65m/$19m. Obviously, the former movie
is more worthy to invest and watch. Note that the usage of
the rating distribution is not limited to gross prediction, but
includes marketing strategy, advertising design, movie rec-
ommendation, etc.

It is worth emphasizing, as will be further discussed in
Section 2, that predicting the crowd opinion (overall rating
distribution) is quite different from predicting the individ-
ual opinion (person-specific rating). The latter problem has
been extensively studied in the area of recommender systems
[Adomavicius and Tuzhilin, 2005]. While personalized rat-
ing is valuable when recommending a movie to a particular
user, it does not mean much when analysing the crowd opin-
ion toward a movie. Moreover, recommendation according
to the individual rating prediction is worthwhile even after
many users have already watched the movie, as long as the
target user has not. But crowd opinion prediction is generally
only useful before any user ratings are available. As a result,
the prediction should only be based on the metadata available
before the movie is released.

Instead of putting the pre-release crowd opinion predic-
tion in the recommender system scenario, this paper regards
it as a Label Distribution Learning (LDL) [Geng et al., 2013;
2010] problem since the rating distribution can be naturally
viewed as a label distribution for each movie. According to
the characteristics of the movie rating distribution, we pro-
pose a novel Label Distribution Support Vector Regressor
(LDSVR), which can give multivariate and probabilistic out-
put. The key idea of LDSVR is to fit a sigmoid function to
each component of the distribution simultaneously by a sup-
port vector machine.
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Figure 1: Even with the same average rating, different rat-
ing distributions (crowd opinions) of (a) Twilight and (b) I,
Frankenstein result in different marketing performance.

The rest of this paper is organized as follows. Section 2
introduces some existing work related to pre-release crowd
opinion prediction. After that, the proposed method LDSVR
is described in Section 3. Then, experimental results are re-
ported in Section 4. Finally, conclusions and discussions are
given in Section 5.

2 Related Work

Movie rating prediction (abbreviated as RP) is a widely inves-
tigated topic in the context of recommender systems [Ado-
mavicius and Tuzhilin, 2005], where the problem of movie
recommendation is reduced to predicting movie ratings for a
particular user and then recommend the movie with the high-
est rating to the user. The RP methods in such case are usu-
ally classified into three categories [Marovic et al., 2011], i.e.,
content-based methods [Soares and Viana, 2014; Pildszy and
Tikk, 2009], collaborative methods [Bresler et al., 2014; Diao
et al., 2014], and hybrid methods [Amolochitis et al., 2014;
Jin et al., 2005]. However, the pre-release crowd opinion pre-
diction (abbreviated as PCOP) problem raised in this paper is
fundamentally different from the aforementioned RP problem
mainly in the following three aspects.
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. RP usually aims to predict the rating for a particular user
while PCOP aims to predict the overall rating distribu-
tion generated from many users’ ratings, i.e., the crowd
opinion rather than the individual opinion.

Existing RP methods usually require previous ratings
on the already watched movies from the target user
(content-based methods) or other users with similar pref-
erences (collaborative methods). On the other hand,
PCOP methods do not require any previous rating data
once the model is trained because they do not need to
learn the preference of any particular user.

Most RP methods, especially the prevailing collabora-
tive methods, cannot predict the rating of a movie until it
is officially released. Many of them further rely on a suf-
ficient number of users who have already watched and
rated that movie. However, PCOP methods can make
predictions before the movie is actually released or even
as early as during its planning phase.

Another more related work is Label Distribution Learning
(LDL) [Geng and Ji, 2013] recently proposed to deal with a
new machine learning paradigm where each instance is anno-
tated by a label distribution rather than a single label (single-
label learning) or multiple labels (multi-label learning). The
label distribution covers a certain number of labels, represent-
ing the degree to which each label describes the instance. Let
X = R? denote the input space, Y = {y1,y2, - , Y} de-
note the complete set of labels, and dY, denote the descrip-
tion degree of the label y € ) to the instance * € X.
Given a training set S = {(x1,dy), (x2,d2), -, (Zn,dn)},
where d; = [dY!,d%2,--- ,d¥%]" is the label distribution as-
sociated with the instance x;, the goal of LDL is to learn a
mapping from € R? to d € R based on S. Geng et al.
[2013] construct the mapping via a conditional mass function
p(y|x) formulated as a maximum entropy model. Then they
use Improved Iterative Scaling (IIS) [Pietra et al., 1997] or
BFGS [Nocedal and Wright, 2006] to minimize the Kullback-
Leibler divergence between the predicted distribution and
the ground truth distribution, resulting in two LDL algo-
rithms named IIS-LLD and BFGS-LLD, respectively. They
also propose a neural-network-based approach named CPNN
when the labels can be ordered [Geng et al., 2013]. As a
learning framework more general than single-label and multi-
label learning, LDL has been successfully applied to various
problems, such as facial age estimation [Geng et al., 2013;
2010], head pose estimation [Geng and Xia, 2014], and multi-
label ranking for natural scene images [Geng and Luo, 2014].
If we regard the movie pre-release feature vector as the in-
stance x, the rating as the label y and the rating distribution
as the label distribution d, then the PCOP problem can be
naturally viewed as an LDL problem.

3 Label Distribution Support Vector
Regression

In this section, we propose a Label Distribution Support Vec-

tor Regressor (LDSVR) for pre-release crowd opinion pre-

diction. Compared with standard SVR [Drucker et al., 19961,
LDSVR must address two additional issues: (1) How to out-



put a distribution composed by multiple components? (2)
How to constrain each component of the distribution within
the range of a probability, i.e., [0, 1]? The first issue might
be tackled by building a single-output SVR for each compo-
nent respectively. But as pointed out in [Pérez-Cruz et al.,
2002], this will cause the problem that some examples be-
yond the insensitive zone might be penalized more than once.
It is also prohibitive to view the distribution as a structure and
solve the problem via structured prediction [Tsochantaridis
et al., 2004] because there is no direct way to define the aux-
iliary discriminant function that measures the compatibility
between a movie and its rating distribution. A more rational
solution to this issue might root in the Multivariate Support
Vector Regression (M-SVR) [Ferndndez et al., 2004], which
can output multiple variables simultaneously. For the second
issue, we are inspired by the common practice in classifica-
tion tasks to fit a sigmoid function after the SVM when a
probabilistic output for each class is expected [Platt, 1999].
For regression tasks, the sigmoid function could directly act
as the target model of the regression instead of a post-process.
Thus, the basic idea of LDSVR is, in short, to fit a sigmoid
function to each component of the label distribution simulta-
neously by a support vector machine.

Suppose the label distribution d of the instance x is mod-
eled by an element-wise sigmoid vector

1
d=f(z)= 1 +exp(—Wo(z) — b) (1)
1
=93 = ey

where ¢(x) is a nonlinear transformation of « to a higher-
dimensional feature space R*, W € R*** and b € R°¢
are the model parameters, z = W(x) + b, and g(z) is a
short representation for the vector obtained by applying the
sigmoid function g(-) to each element of z. Then, we can
generalize the single-output SVR by minimizing the sum of
the target functions on all dimensions

1 c ) n
LW.b) =5 |lw [P+CY Lw), @)
j=1 i=1

where w’ is the transpose of the j-th row of W and L(u;)
is the loss function for the i-th example. In standard SVR
[Drucker et al., 1996], the unidimensional loss is defined as a
hinge loss function

; 0 uj<6
J _ . 7 )

Ly(u]) = {ug_g W 3)
ul = |d - f ()], “)

where d’ and f7(x;) are the j-th elements in the correspond-
ing vectors. This will create an insensitive zone determined
by ¢ around the estimate, i.e., the loss less than £ will be ig-
nored. If we directly sum the loss functions on all dimensions,

ie, L(u) = >, Ly (ul), then, as pointed out in [Pérez-
Cruz et al., 2002], some examples beyond the insensitive
zone might be penalized more than once. Fig. 2 illustrates
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Figure 2: The insensitive zones around the estimate f(x) =
g(2) in the bivariate (d* and d?) output space. The black
square represents the hyper-cubic insensitive zone for the two
single-output SVRs. The blue circle represents the hyper-
spherical insensitive zone for M-SVR. The shaded area rep-
resents the insensitive zone for LDSVR.

0 <l =g(z/ +4e) — g(z)) < ¢

0<ul =g(2h) —g(z/ —4e) <¢

this problem via a bivariate regression case, where the black
square represents the hyper-cubic insensitive zone for the two
single-output SVRs. As can be seen, all the examples falling
into the area p; will be penalized once while those falling
into the area p, will be penalized twice. Also, the L;-norm
u] in Eq. (3) is calculated dimension by dimension, which
makes the solution complexity grow linearly with the increase
of dimensionality [Ferndndez er al., 2004]. As suggested in
[Fernandez et al., 2004], we can instead use the Lo-norm to
define L(u;) so that all dimensions can join the same con-
straint and yield the same support vector, i.e.,

0 u; < €,
L(u:) {(ul —e)? w; >k, ©®)
U; = H €; ||: \/eiTei, (6)
e, = d;— f(wz) @)

This will generate a hyper-spherical insensitive zone with the
radius €, which is represented by the blue circle in Fig. 2. Un-
fortunately, substituting Eq. (1), (5)-(7) into Eq. (2) does not
lead to a convex quadratic form and the optimization process
will not just depend on inner product. Therefore, it is hard to
find the optimum as well as to apply the kernel trick.

To solve this problem, we propose an alternative loss func-
tion which can reform the minimization of Eq. (2) to a con-
vex quadratic programming process depending only on in-
ner product. Note that Eq. (6) calculates the Euclidean dis-
tance from the estimate f(x;) = g(z;) to the ground truth d;.
We can instead measure the loss by calculating how far away
from z; another point z; € R should move to get the same
output with the ground truth, i.e., g(2;) = d;. Solving this
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Figure 3: The relationship between u; and u}. The boundaries
of the insensitive zone defined on u have equal distance to
the sigmoid curve horizontally, but not vertically.

equation yields z, = —log(1/d; — 1). Thus, the distance u;
from 2] to z; can be calculated by

(€]

1
= —log(E -1)-
K

I e; ll= )ei,

®)

(We(x;) +b). 9)

!
z;—z

The relationship between u; and «/, is illustrated in Fig.3 and
quantified in the following lemma.

Lemma 1. v} > 4u, for any x;, d;, W, and b.

The proof of Lemma 1 is given in the Appendix.

Replacing u; with w}/4 in the loss function Eq. (5) will
generate an insensitive zone around the sigmoid function as
represented by the shaded area in Fig. 3. Note that the ver-
tical distance (along the d axis) from the two boundaries of
the insensitive zone to the sigmoid curve might be different.
This will result in an insensitive zone in the bivariate out-
put space as represented by the shaded area in Fig. 2. It
can be derived from Lemma 1 that, in Fig. 2, 0 < v/, < ¢

+
and 0 < v’ < ¢ for j = 1,2. Thus, although not strictly
isotropic, the shaded area is a reasonable approximation to
the ideal hyper-spherical insensitive zone (the blue circle) so
long as ¢ is small.

Replacing u; with u}/4 in Eq. (2) yields a new target func-
tion TV(W,b). It is trivial to prove the following theorem
with Lemma 1.

Theorem 1. TV(W, b) is an upper bound for T'(W , b).

Therefore, minimizing IV (W, b) is equivalent to minimizing
an upper bound of I'(W b).

It is still hard to minimize IV (W, b) as standard SVR does
via solving its dual problem. Instead, we directly solve the
primal problem with an iterative quasi-Newton method called
Iterative Re-Weighted Least Square IRWLS) [Pérez-Cruz et
al., 2000]. Firstly, IV (W, b) is approximated by its first order
Taylor expansion at the solution of the current k-th iteration,
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denoted by W () and b(*):
’(k)

I (W, b) Z | w’ ||? +cz
(10)
k
dL(u) (e )) (64 _ e((k))
du’ ﬁ 4u(i(k) v ¢

where e;(k) and ug(k) are calculated from W) and b(*),
Then, a quadratic approximation is further constructed from
Eq. (10):

/(k
(W, b) Z | w |2 +C’Z
| <u;““>>2 .
du’ u;(k) 4u;(k;) (11)
4
1¢ g2 L - 2
_52 | w’ || D) Zaiui +7,
j=1 i=1
where
/(k)
. C dL(u’) 0 " < 4e,
i — == Clu, "' —4
QuQ(k) du’ Qik) % ug(k) > 4e,
1 (12)

and T is a constant term that does not depend on W and b.
Eq. (11) is a weighted least square problem whose optimum
can be effectively found by letting the gradient equal zero and

then solving a system of linear equations for j = 1,... ¢

®'D,®+1 ®'a][w/| _[-®"D, log( -1)
at® 1Ta| |/ | | —a® log(— -1) |’
where & = [p(x1),...,0(xn)]T, @ = [ag,....a,]"%,

ajt 1Yig (3 N S
D J = Q; 6 ((5 7 1 the K]()]lecke] delta fullCthIl) dj
(1] 5. 1 lS a vector of all ones. en, the dlreCtl()n

of the optlmal solution of Eq. (11) is used as the descending
direction for the optimization of I''(W,b), and the solution
for the next iteration (W (*+1) and b(*+1)) is obtained via a
line search algorithm [Nocedal and Wright, 2006] along this
direction.

According to the Representer Theorem [Schlkopf and
Smola, 2001], w’ may be represented as a linear combi-
nation of the training examples in the feature space, i.e.,
w’ = ®TB7. Substituting this expression into Eq. (13) yields

-

a'K b -1)

where K;; = k(z;, x;) = ¢T(x;)p(x;) is the kernel matrix.
Accordingly, the later line search for I'V(W, b) can be per-
formed in terms of 37. Finally, after the optimal solution 3’
is obtained, W/ = ®T 37 and b’ are substituted into Eq. (1)
and the label distribution can be calculated indirectly in the
original input space X, rather than the high-dimensional fea-
ture space R*, via the kernel matrix K.

—log ( i

Tlogt s ] . (4



Table 1: Pre-release Metadata Included in the Data Set

Attribute Type 6  #Values
Genre C 0 24
Color C 0 2
Director C 5 402
1st Actor C 5 386
2nd Actor C 5 210
3rd Actor C 5 103
Country C 5 33
Language C 5 23
Writer C 10 16
Editor C 10 115
Cinematographer C 10 173
Art Direction C 10 39
Costume Designer C 10 110
Music By C 10 157
Sound C 10 26
Production Company C 20 31
Year N - -
Running Time N - -
Budget N - -

4 Experiments
4.1 Methodology

The data set used in the experiments includes 7, 755 movies
and 54,242, 292 ratings from 478,656 different users. The
ratings come from Netflix, which are on a scale from 1 to 5 in-
tegral stars. Each movie has, on average, 6,994 ratings. The
rating distribution is calculated for each movie as an indicator
for the crowd opinion on that movie. The pre-release meta-
data are crawled from IMDb according to the unique movie
IDs. Table 1 lists all the metadata included in the data set.
Note that all the attributes in Table 1 can be retrieved before
the movie is officially released or even during its planning
phase. No post-release attributes are included in the data set,
although some of them might be closely related to the crowd
opinion, such as the box office gross. There are both numeric
(N) and categorical (C) attributes in this data set. Some cat-
egorical attributes, typically human names, might have too
many different values. In such case, we set a threshold 6 and
re-assign a new value ‘other’ to those who appear less times
in the data set than the threshold. This will filter out most
categories with limited influence on the crowd opinion, e.g.,
unfamous actors. The categorical attributes are then trans-
formed into numeric ones by replacing the k-valued categor-
ical attribute by k binary attributes, one for each value indi-
cating whether the attribute has that value or not. Finally, all
the attributes are normalized to the same scale through the
min-max normalization.

As mentioned in Section 3, LDSVR deals with two chal-
lenges simultaneously: (1) multivariate output and (2) proba-
bility output. In order to show the advantages of solving these
two problems simultaneously, LDSVR is compared with two
baseline variants. The first is to fit a sigmoid function to each
dimension separately, i.e., replace u] in Eq. (3) by the abso-
lute value of the j-th element of €} calculated by Eq. (9), and
then use Ly, (|e/’|) as the loss function. This variant is named
as S-SVR standing for Sigmoid SVR, which solves the chal-
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lenge (2) but not (1). The second variant is to firstly run a
standard M-SVR [Fernéandez et al., 2004], and then perform
a post-process where the outputs are subtracted by a common
bias determined by the minimum regression output over the
training set and then divided by the sum of all elements. This
variant is named as M-SVR,, standing for M-SVR plus post-
process, which solves the challenge (1) but not (2). Note that
the output of all regression methods should be finally normal-
ized by dividing with the sum of all elements to make sure
that > j d? = 1. This is reasonable in most cases where only
the relative relationship matters in the distribution. LDSVR is
also compared with existing typical LDL algorithms includ-
ing BFGS-LLD [Geng and Ji, 20131, IIS-LLD [Geng et al.,
20101, AA-kNN [Geng and Ji, 2013], and CPNN [Geng et
al., 2013].

The performance of the algorithms is evaluated by those
commonly used measures in LDL, i.e., the average distance
or similarity between the predicted and ground truth label
distributions. As suggested in [Geng and Ji, 2013], six mea-
sures are used in the experiments, which include four distance
measures (the smaller the better), i.e., Euclidean, Sgrensen,
Squared x2, and Kullback-Leibler (K-L), and two similarity
measures (the larger the better), i.e., Intersection and Fidelity.

The algorithm parameters used in the experiments are em-
pirically determined. The parameter selection process is
nested into the 10-fold cross validation. In detail, the whole
data set is first randomly split into 10 chunks. Each time, one
chunk is used as the test set, another is used as the valida-
tion set, and the rest 8 chunks are used as the training set.
Then, the model is trained with different parameter settings
on the training set and tested on the validation set. This pro-
cedure is repeated 10 folds, and the parameter setting with the
best average performance is selected. After that, the original
validation set is merged into the training set and the test set
remains unchanged. The model is trained with the selected
parameter setting on the updated training set and tested on
the test set. This procedure is repeated 10 folds and the mean
value and standard deviation of each evaluation measure is
reported. The final parameter settings for the compared al-
gorithms are as follows. All kernel based methods (LDSVR,
S-SVR and M-SVR,) use the RBF kernel with the scaling
factor o equal to the average distance among the training ex-
amples. The penalty parameter C' in Eq. (2) is set to 1. The
insensitivity parameter € is set to 0.1. All iterative algorithms
terminate their iteration when the difference between adja-
cent steps is smaller than 1071, The number of neighbors k
in AA-kNN is set to 10, and the number of hidden neurons in
CPNN is set to 80.

4.2 Results

The experimental results of the seven algorithms on the movie
data set are tabulated in Table 2. For the four distance mea-
sures (Euclidean, Sgrensen, Squared XQ, and K-L), ‘|’ indi-
cates ‘the smaller the better’. For the two similarity measures
(Intersection and Fidelity), ‘1 indicates ‘the larger the bet-
ter’. The best performance on each measure is highlighted
by boldface. On each measure, the algorithms are ranked in
decreasing order of their performance. The ranks are given in
the brackets right after the measure values.



Table 2: Experimental Results (mean+std(rank)) of the Seven Compared Algorithms

Euclidean | Sgrensen | Squared x? | K-L| Intersection 1 Fidelity T
LDSVR A587+.0026(1)  .1564+.0027(1)  .0887+.0031(1) .0921+.0035(1)  .8436+.0027(1)  .9764+.0010(1)
S-SVR 1734+.0024(2)  .17234.0023(2)  .10404.0030(2) .1059+.0036(2)  .82774.0023(2)  .9722+4.0009(2)
M-SVR, .1843+.0031(3) .1814£.0034(3.5) .1084+.0033(3) .1073+.0030(3) .81864.0034(3.5) .9710+.0010(3)
BFGS-LLD  .1853+.0033(4) .1814+£.0033(3.5) .1176+.0042(4) .1265+.0050(4) .8186+.0033(3.5) .9683+.0012(4)
IIS-LLD .1866+.0041(5) .1828+.0044(5) 1195+.0054(5)  .12884-.0070(6) .8172+.0044(5) .96764.0014(5)
AA-kKNN J1917+£.0045(6)  .1899+.0047(6)  .12464.0062(6)  .1274+.0069(5)  .81014.0047(6)  .9664+.0018(6)
CPNN .2209+.0148(7) 2153+.0150(7) .16254.0206(7)  .18264.0274(7) 7847+.0150(7) 9551£.0061(7)

As can be seen from Table 2, LDSVR performs best on
all of the six measures. The two variants of LDSVR, S-SVR
and M-SVR,,, both perform significantly worse than LDSVR.
This proves the advantage of LDSVR gained by means of
solving the multivariate output problem and the probabil-
ity output problem simultaneously, rather than one by one.
The performance of LDSVR is also significantly better than
that of the compared LDL algorithms (BFGS-LLD, IIS-LLD,
AA-ENN, and CPNN). The reason might be two-fold. First,
while most existing LDL algorithms seek to directly mini-
mize the K-L divergence between the predicted and ground
truth distributions, LDSVR takes advantage of the large mar-
gin regression by a support vector machine. Second, applica-
tion of the kernel trick makes it possible for LDSVR to solve
the problem in a higher-dimensional thus more discriminative
feature space without loss of computational feasibility.

5 Conclusion and Discussion

This paper investigates possibilities to predict the crowd opin-
ion about a movie before it is released. The crowd opinion
is represented by the distribution of ratings given by a suf-
ficient number of people who have watched the movie. The
pre-release prediction of the crowd opinion could be a crucial
indicator of whether the movie will be successful or not, and
thus has vast potential applications in movie production and
marketing.

This paper regards the pre-release crowd opinion pre-
diction as a Label Distribution Learning (LDL) problem,
and proposes a Label Distribution Support Vector Regres-
sor (LDSVR) for it. The nature of user rating distribution
requires the output of LDSVR to be both multivariate and
probabilistic. Thus, the basic idea of LDSVR is to fit a sig-
moid function to each component of the rating distribution si-
multaneously by a multi-output support vector machine. Ex-
periments on a data set including 7,755 movies reveal that
LDSVR can perform significantly better than not only its two
variants, but also four typical LDL algorithms.

One of the key ideas of LDSVR is to measure the loss by
the distance needed to move in the input space to get the same
output as the ground truth. This works fine for most cases,
but sometimes could be risky when the ground truth outputs
of some training examples are very close to 0 or 1. In such
case, the loss of those examples will tend to be so large that
they will dominate the training process. Although this is not a
big problem for the movie rating distributions so long as there
are a sufficient number of ratings for each movie, it might be
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Figure 4: The relationship between uZ and u;j in the concave
part of the sigmoid.

troublesome for some other data. Therefore, a mechanism of
compensating the loss of those examples with outputs close
to 0 or 1 might be an important future work to make LDSVR
applicable to more general cases.

Appendix: Proof of Lemma 1

Proof. Firstly, consider the situation in the (27, d’)-space
(7 = 1,...,¢), where 27 and d’ represent the j-th dimen-
sion of z and d, respectively. The projections of u; and u)

. ] ] . .
in such space are denoted by u; and w,;”, respectively. Since

ui = \/3;(ul)? and uj =

u? > 4ul for j = 1,...,c, then we have u/ > 4u;.

In the (27, d’)-space, the sigmoid function d’ = g(z7) is
symmetric about the point (0,0.5). So we only need to con-
sider the case 27 > 0, where g(z7) is concave as shown in
Fig. 4. When the point is above the curve like P’, we can
always find its counterpart P below the curve with same ver-
tical and horizontal distance to the curve. Thus, we only need
to consider the case when the point is below the curve.

Since g(z7) is concave, the line segment AB (blue dash
line) is always below the curve. Suppose its slope is 0, and
the slope of the g(z7) curve’s tangent line (red dash line) at
the point A is @', then § < '. The derivative of g(27) is

1o\ eXp(—Zj)
9= T exp(—)

Letting the second derivative of g(z?) equal zero yields 27 =
0. Thus, the maximum of ¢’ is ¢’(0) = 1/4. Therefore,

0=ulju? <0 <1/4. (16)
Sou > 4u!, and thus u} > 4u;. O

\/ 2o (u?)2, if we can prove

15)
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