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Abstract

In this paper we investigate the use of coactive
learning in a multitask setting. In coactive learn-
ing, an expert presents the learner with a problem
and the learner returns a candidate solution. The
expert then improves on the solution if necessary
and presents the improved solution to the learner.
The goal for the learner is to learn to produce so-
lutions which cannot be further improved by the
expert while minimizing the average expert effort.
In this paper, we consider the setting where there
are multiple experts (tasks), and in each iteration
one expert presents a problem to the learner. While
the experts are expected to have different solution
preferences, they are also assumed to share simi-
larities, which should enable generalization across
experts. We analyze several algorithms for this set-
ting and derive bounds on the average expert effort
during learning. Our main contribution is the bal-
anced Perceptron algorithm, which is the first coac-
tive learning algorithm that is both able to general-
ize across experts when possible, while also guar-
anteeing convergence to optimal solutions for indi-
vidual experts. Our experiments in three domains
confirm that this algorithm is effective in the multi-
task setting, compared to natural baselines.

1 Introduction

Coactive learning [Raman er al., 2013a; 2012; 2013b; Shiv-
aswamy and Joachims, 2012] is a Machine Learning frame-
work where the learner is presented with a sequence of prob-
lems and for each problem constructs a candidate solution.
The expert then attempts to improve the solution if it is not
of sufficient quality and shows the improved solution to the
learner. The learner needs to discover a good utility func-
tion to reflect the expert’s preferences over potential solu-
tions, ultimately leading to a decrease in the amount of effort
the expert needs to spend on improving candidate solutions.
For example, consider a route planner which tries to adapt
to the specific user’s preferences over whether to take fast
routes, easy routes or scenic routes. The system presents the
user with a candidate solution and the user can then modify
this trajectory according to their personal preferences. The
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learner then attempts to learn those preferences to improve
future performance.

For a task such as route planning, the same system might be
used by a number of different users who might have similar
but non-identical utility functions. Also, one could consider
different types of tasks: people might have different prefer-
ences for routes for different purposes (e.g. business vs. plea-
sure). Ideally, the system should learn each individual user’s
preferences, or learn to solve each individual task, while tak-
ing advantage of the similarities between the users and tasks
to learn quickly.

The above motivates the study of coactive learning in a
multitask setting. Specifically, in this paper, it is assumed that
the sequence of tasks is generated by individuals from a user
population. The learner is provided with the user identifier
for each task, which can be used to customize task solutions
to individuals. A trivial approach to this multitask learning
problem would be to have an independent coactive learner
for each user. However, when the preferences of different
users have similarities, some amount of generalization can be
expected to improve overall performance compared to inde-
pendent learning. At the same time, if the users have little in
common we would like the multitask learner to not perform
much worse than independent learning.

The main contribution of this paper is to present and an-
alyze a Perceptron algorithm for multitask coactive learning
(the MCL algorithm). This is the first such algorithm that
meets both of the above goals. Our bounds on the average
expert cost during learning show that the algorithm is able
to guarantee convergence to optimal solutions for individ-
ual experts, even when experts are not similar. At the same
time, the algorithm can be expected to benefit from general-
ization across the expert population when experts are suffi-
ciently similar. We also provide bounds for two extreme al-
gorithms: one that treats all experts as if they are a single ex-
pert, and a second that learns independently for each expert.
These bounds provide insight into when generalization can be
beneficial compared to independent learning. The theoretical
bounds are confirmed by our experimental evaluation in three
domains. These experiments show that the balanced Percep-
tron algorithm is robust across experts of varying similarity
and can significantly improve on the baseline algorithms.



2 Related Work

The most closely related prior work considered a multiuser
coactive learning setting [Raman and Joachims, 2013]. How-
ever, the learner was not provided with a user identifier and
simply treated all tasks as if coming from a single user. In
general, such an approach will not be able to converge to a
solution that works well for all users, especially when user
groups have very different preferences. Rather, in our setting,
by providing the learner with user identifiers, it is possible to
converge to optimal solutions for individual users, while also
exploiting commonalities when possible.

Multitask learning has been more widely studied outside
of the coactive framework (e.g. classification). However, in
most of the existing work it is either assumed that an entire
dataset of examples is given (offline setting) [Evgeniou er al.,
2005; Evgeniou and Pontil, 2004] which allows for estimat-
ing the extent to which the tasks are similar, so that highly
similar tasks can be clustered and learned together, or (as in
[Cavallanti er al., 2010]) the assumption is made that a matrix
is given expressing the similarity between tasks. This matrix
is used as a regularizer for an online linear classification al-
gorithm. In this paper, since we do not assume any domain
knowledge to be given regarding the similarity of individual
users, we will focus on algorithms that attempt to general-
ize across users, while proving worst-case bounds that are not
much worse than independent learning, even when users have
no similarities.

In recent work, online approaches for multitask classifi-
cation learning have been studied to learn and leverage task
similarities in a way that is closely related to sparse cod-
ing [Ruvolo and Eaton, 2013; Maurer et al., 2013; Ruvolo
and Eaton, 2014]. Extensions of these approaches have been
demonstrated in the context of temporal difference learning
[Sreenivasan et al., 2014] and policy gradient reinforcement
learning [Bou-Ammar er al., 2014]. However, none of these
algorithms have been applied to coactive learning, where the
optimization criterion is to reduce the user effort in improving
the system’s solutions. In this paper, we study an alternative
approach based on Perceptron-style online learning.

3 Problem Statement and Notation

We consider a problem-solving setting, where X is a set of
problem instances, and Y is a set of candidate solutions. A
problem-solution pair will be described by a feature vector

q; : X x Y — RP where D is the dimension of the feature

vectors. We assume that V., y : ||¢(z, y)|| < R. We consider
a multitask setting where there are M experts, or users, who
will be providing problems to our learner. Each expert has a
linear preference function, such that the preference of expert %

for solution y to problem z is given by @ - q;(x, y), where we
assume that || @} || = 1. Note that this same framework can be
used for a single expert, solving a sequence of tasks having

M task types. We assume that there is a black-box problem-

—

solver solve(z,w) = argmax, ¢(,y) - w available, which
takes a problem z € X, an estimated weight vector « and
returns a candidate solution y € Y, which is optimal for the
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given estimate of the utility function'.

At time-step ¢, the learning algorithm receives a problem
instance x; € X and an expert index a(t). We assume the
expert indices are sampled from an (unknown) fixed multi-
nomial distribution P(%). The algorithm uses its current esti-
mate u’)’fl( t of expert a(t)’s weight vector to construct a solu-

tion, y; = solve(zs, ).
The candidate solution y; is presented to expert a(t), who

either accepts it as good enough (at no cost) or spends an
amount of effort improving the solution, obtaining a solution
yq for which @ - d(x1, y;) = & ) - (21, ye) + £Cy, where
C is the cost, reflecting the amount of effort spent, and « is
a constant indicating the minimal return on investment, the
minimal improvement in solution quality to vindicate the ef-
fort spent. We assume that C; > 0. In this paper, the nota-

tion A is used to indicate ¢(z¢,,) — ¢z, y;), s0 we get:
11’2( " -A; > kCy. Since we have the bound of R on the feature

vectors, we know that ||A;|| < 2R. The task is to minimize

the average effort ~ >, C..

We characterize the similarity of experts by a parameter
d that satisfies: Vi,j : aj - @7 > 1 — 6. Lower values
of § mean that the experts are more similar. We will de-
note the difference between expert preference weight vec-

tors by g” ur
Vi, g ||£:] || < /24, which follows from the law of cosines.

%

: It will be useful to note that

4 Balanced Perceptron-based Learner

In our framework, the learning problem consists of learning
appropriate preference functions represented by weight vec-
tors for all experts. In this section, we focus on learning al-
gorithms that attempt to generalize across all experts. The
performance of such algorithms will naturally depend on the
similarity of experts as characterized by J.

Each of the algorithms we consider are instances of a sin-
gle algorithm, called Multitask Coactive Learner (MCL) (see
algorithm 1) that is parameterized by parameters « and f3,
which control the amount of generalization across experts.
The MCL algorithm maintains and updates a single global
weight vector W and expert-specific weight vectors ;. In-
tuitively w¢ is intended to capture the commonality among
experts in order to support generalization, while ; is in-
tended to capture user-specific preference variations. After a
problem instance for expert ¢ is processed, resulting in feed-
back from expert %, the weight vector w; is updated along with
the global weight vector w¢ (details below). The MCL algo-
rithm starts with all expert-specific vectors and global vectors

W} = Wl = 0. Whenever we need to estimate the weight

vector for expert ¢ at time ¢, in order to produce a solution,
the sum a; + Sg is used.

!'Using an analysis similar to that presented in [Goetschalckx ef
al., 2014], this can be changed into a locally optimal solver, where
the precise definition of “locally optimal” depends on both the black-
box solver and the possible expert improvements. In the “path plan-
ning” experiments presented in this paper, only such local optimality
is practical. The theoretical results in Section 5 still hold given the
extra assumptions from [Goetschalckx et al., 2014].



Algorithm 1 Multitask Coactive Learner («, 3)

117@ «— 6
loop
(z,a(t)) < new problem instance and userID
y < solve(x, alyy) + Big)
y, «— improvea(t) (.’E, y)
A 5 ¢(xa y/) - ¢(I7y)
if A - (Oz’LUa(t) + fWg) < 0 then
u_fa(t) — wa(t) + A
W + We + A
end if
end loop

It remains to specify how the weights are updated by the
algorithm. When a problem instance is processed with ﬁt =+
0 (i.e., the expert was able to improve the learner’s returned
solution), both the active expert a(t)’s weight vector and the
global weight vector are updated by a weighted Perceptron
update QD'ZJ(?) = a(t) + At and th = wG + At Thus, in
addition to updating the total weight vector of user a(t), the
update impacts the total weight vectors of other users through
the adjustment to wg. 2

In general, the specific values used for a and ( allow for a
range of algorithms. We consider the following cases.

e global (o« = 0,8 = 1). In this case, all experts are
treated as if they were the same. This results in the
perceptron-based approach presented as Algorithm 2 in
[Raman and Joachims, 2013]. Clearly, unless all expert
preferences are identical or the multinomial distribution
P(-) is degenerate, meaning the same expert is always
selected, this approach can never converge to the actual
weight vectors.

e individual (o = 1,8 = 0). This means no gener-
alization is performed, and we essentially have M inde-
pendent perceptron-based coactive learners as presented
in [Shivaswamy and Joachims, 2012]. This is guaran-
teed to learn the optimal weights eventually, but ignores
any potential similarity between experts.

e balanced (o« = (8 = 1). This leads to a combined
approach, both generalizing over different users yet at
the same time specializing per user. This is equal to a
coactive variant of the algorithm based on Section 3.2 of
[Cavallanti et al., 2010].

5 Average Cost Bounds

In this section, bounds on the average cost (expert effort)

% Z;T:l C' will be presented for the algorithms described in
Section 4.

’In the case where solve is not guaranteed to give the local
optimum (see Footnote 1), the update should only be performed if
(o, () + B, Ay) < 0); in the case where solve gives the
global optimum, this condition is always satisfied.

5.1 global

We first consider bounding the average cost of global,
which does not attempt to distinguish among different ex-
perts. In this case, it is impossible to converge to a solution
with average effort equal to 0, unless all experts are exactly
the same. The badness of the learned weight vector depends
on the number of experts (M) and the difference between ex-
perts () as quantified by the following result.

Theorem 1. Using the global algorithm, the average ef-
fort for the first T' examples is bound by % ZZ;I C, <

2R (\F +\/7;M 1).

K

Proof. First, an upper bound on |[w5™||?> < 4R?T can be
shown similar to the work in [Shivaswamy and Joachims,
2012]. Let uf, = ), u. We can prove a lower bound on

—k -’ —k N —
W -l = Wg - Ug + Ay - g

— A+ Y Ao
j#a(t)
= WG -G+ A gy t+ Z Ay - (tgy = La(t).g)
j#a(t)
=g G+ MA@y — D A G
J#a(t)
> @G - g + MO — Y [|AT[].]|&u ) 4l
j#a(t)
> WL iy + MrCr — (M —1)2RV26
T
> Mgy Cp— (M —1)2RV2T
i=1
Composing with the upper bound and ap-
plying the Cauchy-Schwarz inequality gives us
Mk, Cy — T2RV26(M — 1) < 2RVTM, which
proves the claim. O

This bound shows that when 6 > 0 and M > 1, the av-
erage effort will not necessarily converge to 0. This makes
sense, since differences between individual experts can never
be learned.

5.2 individual

For the single expert setting, the results in [Goetschalckx et
al., 2014] give an average cost bound of Zf 10 < - \f

for a Perceptron-based algorithm. Here we consider how this
average cost depends on the number of experts M for M > 1,
when we treat each expert as an independent learning prob-
lem (i.e. the individual algorithm). The following re-
sult shows that while individual will be guaranteed to
converge to a perfect solution, ignoring existing similarities
among experts can slow down learning.

First, it is useful to note that, if T; gives the number of
iterations where expert ¢ was the active user, (so 7 = > ;T3
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then we have that

M
Y VT <VMT ()
i=1

and this bound is obtained with equality when all experts are
selected equally often.

Theorem 2. Using algorithm individual, the aver-
age effort spent during the first T iterations is bound by

T Vw4
%Zt:lct < % M.

Proof. From a slight variation of the results in [Shivaswamy
and Joachims, 2012], we observe that a Perceptron-based al-
gorithm for a single user will have the bound % Zthl C, <
2R
RV . , , .
In the multi-user setting, each expert ¢ will be responsible

for T; examples. This means that expert j will have a total
2R
<

— K

5 The total cost for all

cost bound by >, ,1y—; Ct
experts will be bound by

d 2R
Zlct < TZ\/Tj
t= j

From inequality (1) we obtain the result: % Zle C: <
2R
o M. 0
This result shows that there is a multiplicative penalty
of /M compared to the single expert case, which is due
to the fact that each independent learner is learning from
fewer examples. By considering the bounds for global
and individual we can see that during the early stages
of learning, when 7' = O(2£), global will have a smaller
worst case regret than individual, but for larger T’
individual will have a smaller worst case regret. This
agrees with the intuition that generalization helps the most
when there are larger numbers of users that are more simi-
lar, but eventually generalization will hurt performance in the
limit.

5.3 General Case

We now show that the general MCL algorithm (with o > 0)
strikes a balance between global and individual. In
particular, we would like an algorithm that can take advan-
tage of generalization (unlike individual), but also con-
verge to perfect solutions for each expert in the limit (unlike
global).

For MCL with any 8 > 0 and o > 0, we have the following
bound:
Theorem 3. Using the MCL algorithm with o > 0 and
B > 0, the average effort of the first T iterations is bound

1T 2R V?+82 VM
by: 730y Cv < S5
Proof. We work with (M + 1) D-dimensional vectors, where
all the user vectors are combined into the vector @
[0; @} ws; ... ;Wh,), and all the learned weights are com-
bined into the vector w!' = [WL; T ;... ;wl,]. If we de-
fine AT = [ﬁ&T; 0;...:aAT; . 0] where the occurence

2
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of aAT occurs at the a(T)’th position (a(T) is the index
of the expert responsible for the example at time 7"). Note
that (U, AT) = (i@} 7y, AT) > arCp and (WT, AT) is
the prediction that the MCL algorithm would make at time
T, so we know that (Ww?, AT) < 0 if there was an up-
date performed at time 7'. Using this notation, we can use
the standard analysis for a perceptron algorithm for coactive
learning. We get that |[WI*1|[2 < (a? + 2)4R?T and
ak Y1, Cp < (U, W) < 2R /a2 + B2V/Tv/M, which

O

proves the bound.

This proof shows that MCL using any value 8 > 0 and any
a > 0 is guaranteed to converge to an optimal solution for all
users, as is the case for individual (in fact, Theorem 2 is
a special case of Theorem 3, with & = 1, 5 = 0). However,
it is expected that allowing the algorithm to generalize over
the different users will result in a large boost during the early
stages, as is the case for global. In the next section, we
will empirically verify this behavior for the specific setting of
a = ff =1, the balanced algorithm, resulting in a bound

T
of 15T, €, < 2BVEM,

6 Experiments

The algorithms are evaluated on two synthetic and one real-
world domain. All reported results are averages over 10 runs.

The synthetic domains have feature vectors of dimension
10. A base vector was generated with all coefficients gen-
erated from a uniform [0, 1] distribution. All experiments
used 50 experts. For each expert a user vector is generated
by perturbing the base vector by a vector drawn from a nor-
mal distribution with mean 0 and diagonal covariance ma-
trix 011 and then normalizing. Experiments were performed
with 0 = 0.01, 0.05 and 0.25, resulting in values of § of about
0.001, 0.02 and 0.38. At each iteration, an expert is selected
according to a uniform multinomial.

6.1 Domains

Ranking.

Here, for each problem, the learner is presented with 30 vec-
tors ; and needs to sort them in order of estimated utility,
where utility is given by ¥; - ;. The expert tries to improve
on the ranking according to their utility function by iteratively
switching the positions of two subsequent items in the list
if the true utility of the former is more than x higher than
the utility of the latter vector. In the experiment, the value
k = 0.1 was used. Each such switch added 1 to the total
effort spent. The feature vector for a candidate solution is

constructed as 327, Z?iiﬂ (05 — ;).
Path Planning.

Here, for each problem, the environment consists of a 7-
dimensional hypercube, where each edge is described by a
10-dimensional feature vector, and the solver needs to find
the optimal path of length 7 from one corner to the diago-
nally opposite corner. The cost of a path consisting of edges
with feature vectors ¥ ... 07 is given by w; - > j vj. There
are 7! such possible paths.
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Figure 4: Path Planning, o = 0.01

The solver uses a simple 2 step lookahead search. The
expert can improve this trajectory by looking at three sub-
sequent moves and reordering them, if any such reordering
gives an improvement of at least x = 0.1, until no such im-
provement is possible.

Spam Detection.

The third domain is a real-world domain, namely the spam
detection dataset as presented in the 2006 ECML/PKDD Dis-
covery Challenge [Bickel, 2008], task b. This task has 15
users, and for each user a set of 400 e-mail messages, repre-
sented by bag-of-word (150000-dimensional) feature vectors.
Each e-mail has a classification of either being a spam e-mail
or a clean e-mail.

In this paper we treat this dataset as a ranking task. At
each step a user is randomly selected, and 10 e-mails are ran-
domly selected from their set. The learner needs to present
them to the user, ordered by whether they are thought to be
spam or not. The user will then move non-spam e-mails to
the top of the list until the list is properly sorted, the num-
ber of such moves is the measured cost. The feature vectors
are constructed similar to the feature vectors of the ranking
domain.

6.2 Results

The goal of the experiments is to observe the behavior of
global, individual and balanced when applied to
problems of varying expert similarity. We applied the algo-

T

Figure 5: Path Planning, o = 0.05
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T

Figure 6: Path Planning, o = 0.25

rithms to the artificial domains, with values of o set to 0.01,
0.05 or 0.25.

Results are shown in Figures 1-6. Some things are very
noticeable. Both global and balanced have a dramatic
drop in average cost after just a few examples. When the ex-
perts are highly similar (¢ = 0.01 and o = 0.05) global
outperforms individual by large margins, though the ad-
vantage diminishes for large 7" as expected.

The opposite is true for the case where experts are quite
different (0 = 0.25), where generalizing from other experts
hurts performance. The average cost of global drops fast
for the first few examples, but then remains at the same level.

In both of these cases, balanced behaves similarly to the
better of the two algorithms, showing that balanced is a robust
way to allow for generalization while not sacrificing conver-
gence when generalization is not possible. When facing a
problem where it is not known beforehand what magnitude §
might have, balanced provides a safe option, guaranteeing
that individual preferences will be learned yet also exploiting
similarities between users.

Figure 7 shows results on the ECML/PKDD 2006 Dis-
covery Challenge Spam detection dataset. We see that for
this data set global outperforms individual, especially
early in learning, indicating that there is a significant bene-
fit from generalization across users in this domain. We also
see here that balanced behaves similarly to global, but
does outperform it by a small margin, especially later in the
learning curve. This again shows that balanced is a robust



approach for taking advantage of generalization
ties.

opportuni-

Average cost

05 | | | | |
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T

Figure 7: Spam Detection

7 Conclusions

In this paper, we presented and evaluated algorithms for mul-
titask co-active learning. One of the main contributions is
the MCL algorithm, which is the first coactive learning al-
gorithm that can both take advantage of generalization op-
portunities across experts, and guarantee convergence to zero
average cost. A theoretical bound was derived to show that it
will eventually converge to predictions which are tailored to
the specific experts or tasks.

Our empirical results show that MCL is able to strike a
balance between generality and specificity. Both balanced
and global (which ignores expert identifiers and treats them
all as 1 expert) have a large drop in average cost over the first
few examples, where individual (an algorithm which
does not generalize over users) cannot share experience be-
tween users, and needs to have a larger amount of data per
user to improve. On the other hand, global stops improv-
ing after just a handful of examples. It does not converge to an
optimal solution, since it cannot learn any specific differences
between different experts or tasks. The individual and
balanced algorithms do not have this problem and eventu-
ally converge to optimal weight vectors for each expert.

When encountering a novel problem where it is not known
to what extent different tasks or experts can be expected to
share utility functions, choosing either the individual or
global algorithms might be dangerous. Since balanced
combines the strengths of both, and has performance close
to the best of either in any given situation, it presents a safe
choice.
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