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Abstract

A common way of attacking multi-label classifica-
tion problems is by splitting it into a set of binary
classification problems, then solving each problem
independently using traditional single-label meth-
ods. Nevertheless, by learning classifiers sepa-
rately the information about the relationship be-
tween labels tends to be neglected. Built on re-
cent advances in structure learning in Ising Markov
Random Fields (I-MRF), we propose a multi-label
classification algorithm that explicitly estimate and
incorporate label dependence into the classifiers
learning process by means of a sparse convex multi-
task learning formulation. Extensive experiments
considering several existing multi-label algorithms
indicate that the proposed method, while conceptu-
ally simple, outperforms the contenders in several
datasets and performance metrics. Besides that,
the conditional dependence graph encoded in the
I-MRF provides a useful information that can be
used in a posterior investigation regarding the rea-
sons behind the relationship between labels.

1 Introduction

In Multi-Label (ML) classification a single data sample may
belong to many classes at the same time, as opposed to an ex-
clusive single label usually adopted in traditional multi-class
classification problems. For example, an image which con-
tains trees, sky, and mountain may belong to landscape and
mountains categories simultaneously; a single gene may be
related to a set of diseases; a music/movie may belong to a set
of genres/categories; and so on. One can see that multi-label
learning includes both binary and multi-class classification
problems as specific cases. Thus, such general aspect makes
it more challenging then traditional classification problems.
Common strategies to attack ML classification problems
are [Madjarov et al., 2012]: (i) algorithm adaptation, and (i)
problem transformation. In the former, well-known learning
algorithms such as SVM, neural networks, and decision trees
are extended to deal with ML problems. In the latter strat-
egy, the ML problem is decomposed into () binary classifi-
cation problems and each one is solved independently using
traditional classification methods. This is known as Binary
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Relevance [Tsoumakas and Katakis, 2007] in ML literature.
However, when solving each binary classification problem in-
dependently potential dependence among the labels are ne-
glected. And this dependence tends to be very helpful partic-
ularly when a limited amount of training data is available.

There have been a number of attempts to incorporate label
dependency information in ML algorithms, and they will be
properly discussed in Section 4. We anticipate that in most of
them, graphical models are used to model label dependence.
However, these graphical models usually rely on inference
procedures which are either intractable for general graphs or
very slow in high-dimensional problems.

Building upon recent advances in structure learn in Ising-
Markov Random Fields (I-MRF) [Ravikumar et al., 2010],
we propose a multi-label classification method capable of es-
timating and incorporating the hidden label dependence struc-
ture into the classifier learning process. The method involves
two steps: () label dependence modelling using I-MRF; and
(22) joint learning of all binary classifiers in a regularized
sparse convex multi-task learning (MTL) [Caruana, 1997]
formulation, where classifiers corresponding to dependent la-
bels in I-MRF are encouraged to share information.

Class labels are modeled as binary random variables and
the interaction structure as an I-MREF, so that the I-MRF cap-
tures the conditional dependence graph among the labels. The
problem of learning the labels (tasks) dependence reduces to
the problem of structure learning in the Ising model, on which
considerable progress has been made in recent years [Raviku-
mar et al., 2010; Jalali et al., 2011; Bresler, 2015]. The
conditional dependence undirected graph is plugged into a
convex sparse MTL formulation, for which efficient opti-
mization methods can be applied [Beck and Teboulle, 2009;
Boyd et al., 2011]. The key contributions of this paper are:

e we propose a framework for multi-label classification
problems that explicitly capture labels dependence em-
ploying a probabilistic graphical model (I-MRF) for
which efficient inference procedures are available;

we employed a stability selection procedure to iden-
tify persistent label dependencies (connections) in undi-
rected graph associated with I-MRF;

we impose sparsity in the coefficient vectors of the bi-
nary classifiers, so that the most important discrimina-
tive features are automatically selected;



e we have conducted extensive experiments on eight
multi-label classification datasets and compared the ef-
fectiveness of the proposed formulation in terms of six
performance measures.

The remaining of the paper is organized as follows. In Sec-
tion 2, we cover background material, including the Ising
model selection problem and the multi-task learning prob-
lems. Section 3 discusses the proposed method to multi-label
classification with Ising model selection. Section 4 comments
on related work in the literature. Section 5 outlines the exper-
imental setup, describing the multi-label datasets, baseline al-
gorithms, and performance metrics. We discuss experimental
results in Section 6, and conclude in Section 7.

2 Background

In this section we provide some background on the relevant
topics. We start describing the Ising model selection proce-
dure for structure learning on binary data, followed by an in-
troduction to the multi-task learning formulation.

2.1 Ising model selection

Ising model is a mathematical model originally proposed to
study the behavior of atoms in ferro-magnetism. Each atom
has a magnetic moment pointing either up or down, called
spin. The atoms are arranged in a d-dimensional lattice, al-
lowing only direct neighbors atoms to interact to each other.

From a probabilistic graphical model perspective, we can
see atoms as binary random variables z; € {—1,+1}. The
interaction structure among the atoms can be seen as an undi-
rected graphical model. Let G = (V, E) be a graph with
vertex set V' = {1,2,...,p} and edge set E C V x V, and
a parameter 6, € R. The Ising model on G is a Markov
random field with distribution given by
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where © is a matrix with all parameters for each variable r,
0., as columns. Thus, the graphical model selection problem
becomes: Given n i.i.d samples x = (1, T2, ..., Tp) with dis-
tribution given by (1), estimate the edge set I. Such structural
learning problem is difficult to solve due to computational in-
tractability of the partition function ®(-) [Welsh, 1993].

Recently, [Ravikumar et al., 2010] proposed a simple and
efficient method for the graphical model selection problem.
Basically, it involves performing an ¢;-regularized logistic
regression on each variable while considering the remaining
variables as covariates. The sparsity pattern of the regression
vector is then used to infer the underlying graphical structure.
For all variables r = 1, ..., p, the corresponding parameter 6,.
is obtained by

0, = arg r%in {logloss(X\,, X, 0,) + A6, ]l1} . (2)
where logloss(+) is the logistic loss function and A > O is a
trade-off parameter. Note that it can be run in parallel for each
label and can scale to problems with large number of labels.
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To show the structure recovery capability of the method,
a slightly different notion of edge recovery is studied, called
signed edge recovery, where given a graphical model with
parameter ©, the signed edge set E is

if(r,s) e E
otherwise.

B sign(6,.s),

&

The signed edge set £ can be represented in terms of neigh-
borhood sets. For a given vertex r, its neighborhood set is
given by N'(r) := {s € V|(r,s) € E'} along with the correct
signs sign(f,s),Vs € N(r). In other words, the neighbor-
hood set of a vertex r will be those vertices s corresponding
to variables whose parameter 6, is non-zero in the regular-
ized logistic regression. [Ravikumar e al., 2010] showed that
recovering the signed edge set E' of an undirected graph G is
equivalent to recovering the neighborhood set for each vertex.

It is noteworthy that the method in [Ravikumar et al., 2010]
can only handle pairwise interactions (clique factors of size
¢ = 2). [Jalali et al., 2011] presented a structure learning
method for a more general class of discrete graphical mod-
els (clique factors of size ¢ > 2). Block-¢; regularization is
used to select clique factors. [Ding ef al., 2011] also consid-
ered high-order interactions (¢ > 2) among random variables,
but conditioned to another random vector (e.g. observed fea-
tures), similar to the ideas of conditional random fields.

Since the local dependencies are stronger, these can be pre-
dominant when estimating the graph. Then the neighborhood
dependence (short-range) possibly will hide other long-range
dependencies. Most of the methods just mentioned can not
get provable recovery under long-range dependencies [Mon-
tanari and Pereira, 2009]. Very recently, [Bresler, 2015] pre-
sented an algorithm for Ising model with pairwise dependen-
cies and bounded node degree which can also capture long-
range dependencies. However, while theoretically proven
to be polynomial time, the constants associated with sample
complexity and runtime can be quite large.
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)

2.2 Multi-task learning

Multitask Learning (MTL) [Caruana, 1997] is a machine
learning paradigm which seeks to improve the generalization
capability of a learning task by using information from other
related tasks. Suppose we are given a set of ) supervised
learning tasks, such that all data for the g-th task come from
the space X x Y, where xfl € R% and yfl eR,i=1,...,n,
So, for each task q a set of n, data samples are available. The
goal is to learn () parameter vectors wiy, ..., wg € R? such
that f(x},wy) ~ yi. g =1,..,Q,and i = 1,...,ny. Learn-
ing all tasks together we have the following cost function:

Q 1 ( q )
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where £(-) is the loss function corresponding to the task we
are dealing with, which includes squared, logistic, and hinge
loss as examples; W € R?*@ is the parameter matrix, where
columns are vector parameters wq, ¢ = 1,...,Q, for the
tasks; R(W) is a regularization function of W designed to
allow information sharing between tasks. Hence, exploiting



the underlying dependence structure may be advantageous. It
is now clear that a fundamental step is to estimate the rela-
tionship structure among tasks, thus promoting a proper in-
formation sharing among related tasks while avoiding using
information from unrelated tasks [Zhang and Yeung, 2010;
Gongalves et al., 2014].

3 Multi-task learning with Ising model
selection

This section contains a technical exposition of the proposed
I-MTSL (Ising Multi-task Structure Learning) algorithm,
which consists of two main steps: (¢) estimation of the graph
representing the dependence among labels, and (%) estima-
tion of the parameters for all single-label classifier, where the
problem is posed as a convex multi-task learning problem.

3.1 Label dependence estimation

Let the conditional random variables representing the labels
given the input data, Z; = y;|X,i = 1,...,Q, be binary
random variables. We then assume that the joint probabil-
ity distribution of Z = (Z3,Zs, ..., Zg) follows an Ising
Markov random field. So, given a collection of n i.i.d.
samples {z(1), ..., (™}, where each Q-dimensional vector
2 € {—1,+1}% drawn from the distribution Pg (Eq. (1)),
the problem is to learn the undirected graph G = (V, E) as-
sociated with the binary Ising Markov random field. We then
use the method described Section 2.1 to infer the edge set E.
Recall that, in fact, the method estimates the signed set of
edges F, i.e., each edge takes either “—1” or “41” value.
The undirected graph G encodes the conditional dependen-
cies among the labels. The edge absence between two nodes
indicates that the corresponding labels are conditionally inde-
pendent. Such information is crucial in the multi-task learn-
ing, which tells with whom each task shares information.

Stability selection

To find stable connections in the undirected graph associated
with the I-MREF, a stability selection procedure is applied. We
used the sub-sampling based technique proposed by [Mein-
shausen and Biihlmann, 2010]. With it, we eliminate possible
spurious label dependencies due to noise and/or random data
fluctuation. If such spurious connections are incorporated di-
rectly into the multi-task learning formulation, it can mislead
the algorithm to share information among non-related tasks,
which may adversely affect the performance of the classifiers.

The stability selection algorithm proceeds as follows: (1)
sub-samples of size |n/2] are generated without replacement
from the training data; (2) for each sub-sample the structure
learning algorithm is applied; and (3) we then select the per-
sistent connections, which are those that appeared in a large
fraction of the resulting selection sets. For this, a cutoff
threshold 0 < 7, < 1 is needed. In our experiments we
set myp, = 0.8, then a connection is said to be consistent if it
appears in 80% of graphs constructed from the sub-samples.

To the best of authors’ knowledge, the use of stability se-
lection procedure to obtain the undirected graph of label de-
pendence is a novelty of our paper.

3.2 Task parameters estimation

Once estimated the graph G, we turn our attention now to the
joint learning of all single-label classifiers.

In I-MTSL, we use the learned dependence structure
among labels in an inductive bias regularization term which
enforces related tasks to have similar task parameters w.
Tasks coefficients in -'MTSL are estimated by solving:
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where L is the signed Laplacian matrix computed from the
signed edge set E [Kunegis et al., 20101, tr(-) is the trace
operator, and v > 0 is a penalization parameter. L is
computed as L = D — E, where D € R9*? is a di-
agonal matrix D;; = >, . |Ei|. As matrix L is pos-
itive semi-definite (see [Kunegis er al., 2010]) the prob-
lem (5) is (non-smooth) convex. The signed Laplacian is
an extension of the ordinary Laplacian matrix when nega-
tive edges are present. Allowing negative edges, the multi-
task learning method is then capable of modeling positive
and negative tasks relationships, which is not always the
case in existing MTL formulations [Argyriou et al., 2008;
Obozinski et al., 2010].

The first term in the minimization problem (5) refers to any
binary classification loss function, such as logistic and hinge
loss. The second term is the bias inductive term which favors
related tasks’ weights to be similar. The third term induces
sparsity on W matrix, which automatically selects the most
relevant features, setting to zero weights of non-relevant ones.

The I-MTSL algorithm is outlined in 1. Note that no itera-
tive process is required.

q=1

Algorithm 1 [-MTSL algorithm.
Require: X, Y A >0,7>0
1: for¢g=1to Q) do ~
L O = argrrglin {logloss(Y\j, ¥k, 0q) + Al[0g]l1 }:

2

3: end for

4: L=D - E;

5: Compute W by solving (5);
6. return W, E.

3.3 Optimization

For both optimization problems (2) and (5), an accelerated
proximal gradient method was used. In such class of al-
gorithms the cost function h(z) is decomposed as h(z) =
f(z) + g(x), where f(x) is a convex and differentiable
function and g(z) is convex and typically non-differentiable.
Thus, the accelerated proximal gradient iterates as follows

Zt+1 = Xt + wt (Xt _ Xt—l)

6
xith = Prox,:, (ZH'1 —p'Vf (z“‘l)) ©

where w! € [0, 1) is an extrapolation parameter and p' is the
step size. The w! parameter is chosen as w! = (n; — 1) /7441,
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with ;41 = (1++/1 + 4n?)/2 in [Beck and Teboulle, 2009]
and p can be computed by a line search.

The g(z) term in both problems corresponds to the ¢-
norm, which has a cheap proximity operator defined as

proxptg(x)i = (o] — a)4sgn(x;) @)

which is known as soft-threshold operator and is interpreted
element-wise. It is a simple application of a function that
can even be done in parallel. The convergence rate of the
algorithm is O(1/k?) [Beck and Teboulle, 2009]. Defining
logistic loss as the cost function ¢(-) and writing (5) in the
form of vec(W) € R¥2*! the gradient of the function f(-)
is computed as

V£ (vec(W)) = X7 [vec(Y) — o (Xvec(W))] +

_ 8
P (L®1,;) P"vec(W) ®

where o (-) is the sigmoid function, P is a permutation matrix
that converts the column stacked arrangement of vec(W) to
a row stacked arrangement, and ® is the Kronecker product.
X is a block diagonal matrix where the main diagonal blocks
are the task input data matrices X ,Vq = 1,...,Q, and the
off-diagonal blocks are zero matrices. The gradient of (2) is
simply the derivative of the logistic loss function w.r.t. 0,..

4 Related work

A number of papers have explored ways of incorporating la-
bel dependence into ML algorithms. The early work of [Mc-
Callum, 1999] used a mixture model trained via Expectation-
Maximization to represent the correlations between class la-
bels. In [Read et al., 2011] information from other labels are
stacked as features, in a chain fashion, for the binary classifier
corresponding to a specific label. Then, high importance will
be given to those features associated with correlated labels.
None of these, however, explicitly model labels dependence.

Among the explicit modeling approaches, [Rai and Daume,
2009] present a sparse infinite cannonical correlation anal-
ysis to capture label dependence, where a non-parametric
Bayesian prior is used to automatically determine the number
of correlation components. Due to the model complexity, the
parameters estimation relies on sampling techniques which
may be very slow for high-dimensional problems.

Somewhat similar in spirit to our approach, many papers
have employed probabilistic graphical models to explicitly
capture label dependence. Bayesian networks were used to
model label dependence in [de Waal and van der Gaag, 2007;
Zhang and Zhang, 20101, and [Bielza er al., 2011]. However,
the structure learning problem associated with Bayesian net-
works is known to be NP-hard [Chickering, 1996]. Markov
networks formed from random spanning trees are consid-
ered in [Marchand et al., 2014]. Conditional random field
(CRF) was used in [Ghamrawi and McCallum, 2005], where
the binary classifier for a given label not only considered its
own data, but also information from neighboring labels de-
termined by the undirected graphical model encoded into the
CRF model. [Bradley and Guestrin, 2010] also proposed a
method for efficiently learning tree structures for CRFs. For
general graphs, however, the inference problems in CRF are
intractable, and efficient exact inference is only possible for
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more restricted graph structures such as chains and trees [Sut-
ton and McCallum, 2011]. [Shahaf and Guestrin, 2009] also
present a structure learning method for a more restrict class
of models known as low-treewidth junction trees. We use a
more general undirected graph, I-MREF, that can capture any
pairwise label dependence and for which efficient (and highly
parallelizable) structure learn procedures have been recently
proposed. These new approaches including [Ravikumar et
al., 2010] avoid the explicit reliance of the classical struc-
ture learning approaches on inference in the graphical model,
making them computationally efficient and statistically accu-
rate. We have discussed recent developments on Ising model
structure learning in Section 2.1. Here, the dependence graph
is plugged into a regularized MTL formulation, a paradigm
which has shown improvements in predictive performance
relative to traditional machine learning methods.

5 Experimental design

In this section we present a set of experiments on multi-label
classification to assess the performance of the proposed I-
MTSL algorithm.

5.1 Datasets

For the experiments we have chosen eight well-known
datasets in the multi-label classification literature. Those
datasets are from different application domains and have dif-
ferent number of samples, labels, and dimensions. Table 1
shows a basic description of the datasets. For a detailed char-
acterization, refer to [Madjarov er al., 2012]. All datasets
were downloaded from Mulan webpage'.

Dataset Domain #samples Features # labels
Emotions music 593 72 6
Scene image 2407 294 6
Yeast biology 2417 103 14
Birds audio 645 260 19
Genbase  biology 662 1186 27
Enron text 1702 1001 53
Medical text 978 1449 45
CAL500 music 502 68 174

Table 1: Description of the multi-label classification datasets.

5.2 Baselines

Five well known methods were considered in the compari-
son: three state-of-the-art MTL algorithms: CMTL [Zhou et
al., 2011al, Low rank MTL (LowRank) [Ji and Ye, 2009],
and MTL-FEAT [Argyriou et al., 2008]; besides two popu-
lar ML algorithms: Binary Relevance (BR) [Tsoumakas and
Katakis, 2007] and Classifier Chain (CC) [Read et al., 2011].
CC algorithm incorporates other labels information as covari-
ates in a chain fashion, then label dependence information is
explored in the classifier parameter estimation process. For
CMTL, LowRank, and MTL-FEAT we used the MALSAR
[Zhou er al., 2011b] package. The remaining methods were
implemented by the authors (I-MTSL code will be released).

'http://mulan.sourceforge.net/datasets-mlc.html



5.3 Experimental setup

Logistic regression was used as the base classifier for all al-
gorithms. Z-score normalization was applied to all datasets,
then covariates have zero mean and standard deviation one.
For all methods, parameters were chosen following the
same procedure. We selected 20% of the training set to act
as validation set (holdout cross-validation) and tested the pa-
rameters on a grid containing ten equally spaced values in
the interval [0,5]. The parameter with the best average accu-
racy over all binary classification problems in the validation
set was used in the test set. The results presented in the next
sections are based on ten independent runs of each algorithm.

5.4 Evaluation measures

To assess the performance of multi-label classifiers is essen-
tial to consider multiple and contrasting evaluation measures
due to the additional degrees of freedom that the multi-label
setting introduces [Madjarov et al., 2012]. Thus, six differ-
ent measures were used: accuracy, I - Hamming loss (1-HL),
macro-F1, precision, recall, and F1-score. For a detailed de-
scription of those measures, refer to [Madjarov er al., 2012].
In essence, all the measures produce a number in the interval
[0,1], with higher values indicating better performance. We
show the complement of HL for easy of exposition.

6 Results and Discussion

The results for all datasets and evaluation measures are shown
in Figure 1. As expected, the performance of the algorithms
varies as we look at different evaluation measures.

BR shows the worst performance among the algorithms
for almost all datasets/metrics, except for Emotions dataset,
which has the smallest number of labels/attributes. How-
ever, the difference is more pronounced as we have more la-
bels, low performance seen on Medical, Enron, and CAL500
datasets. It indicates that the information regarding depen-
dence among labels, indeed, helps to improve performance.

The use of several performance measures is intended to
show the distinct characteristics of the algorithms. As we can
see in the plots, many algorithms do well for some metrics,
while do poorly in others. To have an overall performance
investigation we propose the use of a metric to compare all
algorithms’ relative performance. To do so, we use a mea-
sure inspired in a well-known metric in the literature of learn
to rank, Discounted Cumulative Gain (DCG) [Jirvelin and
Kekildinen, 2002]. Such measure we referred to here as rel-
ative performance (RP).

To obtain RP, first we compute the ranking r of all algo-
rithms for a specific dataset/metric, then for a given algo-
rithm a, RP(a) is obtained as: RP(a) = 1ifr, = 1 and
RP(a) = 1/logyr(a), otherwise. It basically gives higher
values to algorithms at the top with a logarithm discount as
the rank goes down. Similar to the definition DCG [Jirvelin
and Kekildinen, 20021, RP also gives equal importance to the
first and second best algorithms. RP can be seen as a special
case of DCG metric used to measure learn to rank algorithms,
where only one relevant (1) document is returned at position
r and all other are non-relevant (0), given a query. RP value
ranges from O to 1, with 1 representing that the algorithm
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figured at the top. The logarithm discount in RP induces a
smoother penalization to algorithm’s rank than when consid-
ering the ranks directly. Table 2 shows the RP values com-
puted over all datasets for all pairs algorithm/metric.

1-HL Acc MacF1 Rec Prec F1

R 039 054 046 041 070 0.54
102 409 409 +£04 £21 +.09

o 065 077 069 055 095 077
£25 4022 429 +£21 +.14 +22

065 080 074 063 054 080
CMTL 95 125 425 +26 406 425
o 064 041 051 086 041 04l
ace +26 +.02 422 425 402 +.02
079 043 073 095 041 043
MIL-E o6 104 +£27 414 +£02 +04
082 1.00 081 055 095 100

IEMTSL {5 40 424  +.08 +.04 40

Table 2: Mean and standard deviation of RP values. -MTSL
has a better balanced performance and is among the best al-
gorithms for the majority of the metrics.

I-MTSL obtained better accuracy when compared to the
remaining methods, as it figures at the top of all the datasets.
In essence, the accuracy computes the Jaccard similarity co-
efficient between the set of labels predicted by the algorithm
and the observed labels. The algorithm is also at the top for
the majority of the datasets regarding /-HL, macro-F1, pre-
cision, and F1-score. Thus, -MTSL obtained more balanced
solutions, figuring at the top for the most of the analyzed met-
rics, except for recall. CMTL, LowRank, and MTF-FEAT, on
the other hand, yielded the highest recall, but the lowest pre-
cision. Notice that it is easy to increase recall by predicting
more 1’s, however it may hurt accuracy, precision and F1-
score. As the class imbalance problem is recurrent in multi-
label classification, it may deceive the algorithm to polarize
the prediction to a certain class.

In terms of macro-F1, I-MTSL also outperforms the con-
tenders. Macro-F1 evaluates the algorithm performance
across the labels not across samples. It shows how good is
an algorithm to classify labels independently. BR clearly has
the worst result, which was expected, as BR is the only algo-
rithm that does not use label dependence information.

Figure 2 presents examples of signed Laplacian matrices
computed from the graph associated with the Ising model
structure learned by I-MTSL for four of the datasets consid-
ered in the experiments. It is interesting to note the high spar-
sity of the matrices, showing that only a few tasks are con-
ditionally dependent on each other and that structure led to
a better classification performance. For some datasets, such
as Enron, Medical, and Genbase we can clearly see a group
of labels which are mutual dependent. Such matrix can be
very useful in a posterior investigation regarding the reasons
underlying those dependent labels.

7 Conclusion

We presented a method for multi-label classification prob-
lems that is capable of estimating the inherent label depen-
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Figure 2: Signed Laplacian matrix of the undirected graph
associated with I-MTSL using stability selection procedure.
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structure among labels.
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Algorithms’ performance on multi-label classification problems in terms of six distinct evaluation measures. The
performance significantly varies as we look at different metrics.

However, I-MTSL figures at top for the majority of the

dence structure. Such information is incorporated into the
classifier learning process through a convex multi-task learn-
ing formulation. We model class labels as binary random
variables and the interaction among the labels as an Ising
Markov Random Field (I-MRF), so that the structure of the
I-MREF captures the conditional dependence graph among the
labels. We propose the use of a stability selection procedure
to choose only stable label dependencies (graph connections).
The problem of learning the labels dependence then reduces
to the problem of structure learning in the Ising model, to
which efficient methods have been recently proposed.

A comprehensive set of experiments on multi-label classi-
fication were carried out to demonstrate the effectiveness of
the algorithm. Results showed its superior performance in
several datasets and multiple evaluation metrics, when com-
pared to already proposed multi-label and MTL algorithms.
The algorithm exhibits the best compromise considering all
performance metrics. Also, the learned graph associated with
the I-MRF can be used in a posterior investigation regarding
the reasons behind the relationship between labels.

Learning label dependence using more general graphical
models (such as the ones described in Section 2.1) and em-
bedding it into the binary relevance classifiers learning pro-
cess will be the subject of future work.
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