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Abstract
Model selection is an important problem of cost-
sensitive SVM (CS-SVM). Although using solu-
tion path to find global optimal parameters is a
powerful method for model selection, it is a chal-
lenge to extend the framework to solve two regu-
larization parameters of CS-SVM simultaneously.
To overcome this challenge, we make three main
steps in this paper. (i) A critical-regions-based bi-
parameter space partition algorithm is proposed to
present all piecewise linearities of CS-SVM. (ii)
An invariant-regions-based bi-parameter space par-
tition algorithm is further proposed to compute em-
pirical errors for all parameter pairs. (iii) The
global optimal solutions for K-fold cross valida-
tion are computed by superposing K invariant re-
gion based bi-parameter space partitions into one.
The three steps constitute the model selection of
CS-SVM which can find global optimal parameter
pairs in K-fold cross validation. Experimental re-
sults on seven normal datsets and four imbalanced
datasets, show that our proposed method has better
generalization ability and than various kinds of grid
search methods, however, with less running time.

1 Introduction
Ever since Vapnik’s influential work in statistical learning
theory [Vapnik and Vapnik, 1998], Support Vector Machines
(SVMs) have been successfully applied to a lot of classifi-
cation problems due to its good generalization performance.
However, in many real-world classification problems such
as medical diagnosis [Park et al., 2011], object recognition
[Zhang and Zhou, 2010], business decision making [Cui et
al., 2012], and so on, the costs of different types of mis-
takes are naturally unequal. Cost sensitive learning [Sheng
and Ling, 2006] takes the unequal misclassification costs into
consideration, which has also been deemed as a good solu-
tion to class-imbalance learning where the class distribution
is highly imbalanced [Elkan, 2001]. There have been sev-
eral cost-sensitive SVMs, such as the boundary movement
[Shawe-Taylor, 1999], biased penalty (2C-SVM [Schölkopf
and Smola, 2002] and 2ν-SVM [Davenport et al., 2010]),
cost sensitive hinge loss [Masnadi-Shirazi and Vasconcelos,

2010], and so on. In this paper, we focus on the most popular
one (2C-SVM1) of them.

Given a training set S = {(x1, y1), · · · , (xl, yl)} where
xi ∈ Rd and yi ∈ {+1,−1}, 2C-SVM introduces two cost
parameters C+ and C− to denote the costs of false negative
and false positive respectively, and considers the following
primal formulation:

min
w,b,ξ

1

2
〈w,w〉+ C+

∑
i∈S+

ξi + C−
∑
i∈S−

ξi (1)

s.t. yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , l
where φ(xi) denotes a fixed feature-space transformation,
S+ = {(xi, yi) : yi = +1}, and S− = {(xi, yi) : yi = −1}.
The dual problem of (1) is

min
α

1

2
αTQα−

∑
i∈S

αi, s.t.
∑
i∈S

yiαi = 0, (2)

0 ≤ αi ≤
C+ + C− + yi(C+ − C−)

2
, i = 1, · · · , l

where Q is a positive semidefinite matrix with Qij =
yiyjK(xi, xj) and K(xi, xj) = 〈φ(xi), φ(xj)〉. It is ob-
viously noted that how one tunes the cost parameter pair
(C+, C−) to achieve optimal generalization performance (it is
also called the problem of model selection) is a central prob-
lem of CS-SVM.

A general approach to tackle this problem is to specify
some candidate parameter values, and then apply cross vali-
dation (CV) to select the best choices. A typical implementa-
tion for this approach is grid search [Mao et al., 2014]. How-
ever, extensive explorating the optimal parameter values is
seldom pursued, because there exist double-sided difficulties.
1) It requires to train the classifier many times under different
parameter settings. 2) And testing it on the validation dataset
for each parameter setting.

To overcome the first difficulty, solution path algorithms
were proposed for many learning models, such as C-SVM
[Hastie et al., 2004], ε-SVR [Gunter and Zhu, 2007], quantile
regression [Rosset, 2009] and so on, to fit the entire solutions
for every value of the parameter. It should be noted that there

1Actually, 2ν-SVM is equivalent to 2C-SVM as proved in [Dav-
enport et al., 2010]. For the sake of convenience, we do not distin-
guish the names of 2C-SVM and CS-SVM hereafter unless explic-
itly mentioned.
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are also several works involving the bi-parametric solution
path. Wang et al. [Wang et al., 2008] works with respect
to only one parameter of ε-SVR while the other parameter is
fixed. Bach et al. [Bach et al., 2006] search the space (C+,
C−) of 2C-SVM by using a large number of parallel one-
parametric solution paths. Rosset’s model [Rosset, 2009] fol-
lows a large number of one-parametric solution paths simul-
taneously. Essentially, they all follow one-parametric solu-
tion paths in bi-parameter space in different ways, and none
of them can explore all solutions for every parameter pair. To
address the second difficulty, a global search method [Yang
and Ong, 2011] was recently proposed based on the solution
path. It can find the global optimal parameters in K-fold CV
for C-SVM [Yang and Ong, 2011] and ν-SVM [Gu et al.,
2012]. The power of the method is proved by theoretical and
empirical analysis for model selection. Therefore, it is highly
desirable to design an extension version for CV on the bi-
parametric problem (e.g. CS-SVM) based on fitting all solu-
tions for each parameter pair.

The contributions of this paper can be summarized as fol-
lows. (i) We propose a bi-parameter space partition (BPSP)
algorithm, which can fit all solutions for every parameter pair
(C+, C−). To the best of our knowledge, it is the first such
contribution. (ii) Based on the bi-parameter space partition,
we propose a K-fold cross validation algorithm for comput-
ing the global optimum parameter pairs of CS-SVM. Exper-
imental results demonstrate that the method has better gen-
eralization ability than various kinds of grid search methods,
however, with less running time.

2 CS-SVM and KKT conditions

Figure 1: The corresponding relation between the (C+, C−)
and (λ, η) coordinate systems.

We reformulate the primal formulation of 2C-SVM with
λ = 1

C++C−
and η = C+

C++C−
, as presented in (3), and name

it (λ, η)-SVM. Fig. 1 shows the relation between the (C+,
C−) and (λ, η) coordinate systems. Specifically, the region
of C+ > 0, C− > 0, and C+ + C− ≥ 1 corresponds the
region of 0 < λ ≤ 1 and 0 ≤ η ≤ 1. Thus, the whole region
of (C+, C−) can be explored in 1.5 square units by searching
the region of (0, 1] × [0, 1] in the (λ, η) coordinate system,
and the lower triangle region of [0, 1]× [0, 1] in the (C+, C−)
coordinate system.

min
w,b,ξ

λ

2
〈w,w〉+ η

∑
i∈S+

ξi + (1− η)
∑
i∈S−

ξi (3)

s.t. yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , l
The corresponding dual of (3) is

min
α

1

2λ
αTQα−

∑
i∈S

αi, s.t.
∑
i∈S

yiαi = 0, (4)

0 ≤ αi ≤
1− yi + 2yiη

2
, i = 1, · · · , l

Letting gi = 1
λ

(∑
j∈S αjQij + yib

′′
)
− 1, from the KKT

theorem [Boyd and Vandenberghe, 2009], we obtain the fol-
lowing KKT conditions for (4):

∀i ∈ S :


gi > 0 for αi = 0
gi = 0 for 0 ≤ αi ≤ 1−yi+2yiη

2

gi < 0 for αi = 1−yi+2yiη
2

(5)

∑
i∈S

yiαi = 0 (6)

where b′ = λb′′, b′′ is the Lagrangian multiplier correspond-
ing to the equality constraint in (4). According to the value
of gi, a training sample set S is partitioned as π(λ, η) =
(M(λ, η), E(λ, η),R(λ, η)), where M(λ, η) = {i : gi =
0, 0 ≤ αi ≤ 1−yi+2yiη

2 }, E(λ, η) = {i : gi < 0, αi =
1−yi+2yiη

2 };R(λ, η) = {i : gi > 0, αi = 0}.
Similar to (5)-(6), we can give the KKT conditions for

(2). Accordingly, the set S has the partition π(C+, C−) =
(M(C+, C−), E(C+, C−),R(C+, C−)).

3 BPSP using Critical Regions

3.1 Detecting the Critical Convex Polygon Region

Given a partition π(λ0, η0), we have the critical region
CR(λ0, η0) = {(λ, η) ∈ (0, 1]×[0, 1] : π(λ, η) = π(λ0, η0)}
induced by the bi-parametric piecewise linear solution. The-
orem 1 shows that CR(λ0, η0) is a convex polygon region.

Theorem 1. The set CR(λ0, η0) is a convex set and its clo-
sure is a convex polygon region.

When adjusting λ and η, the weights of the samples inM
and the variable b′ should also be adjusted accordingly. From
gi = 0, ∀i ∈ M, and the equality constraint (6), and let
g̃i = λ(gi + 1), we have the following linear system:

∆g̃i
def
=

∑
j∈M

Qij∆αj + yi∆b
′ +
∑
j∈E

yjQij∆η

= ∆λ, ∀i ∈M (7)∑
j∈M

yj∆αj +
∑
j∈E

∆η = 0 (8)

If 1M defined as the |M|-dimensional column vector with
all ones, and let yM = [y1, · · · , y|M|]T , the linear system
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(7)-(8) can be rewritten as:[
0 yTM

yM QMM

]
︸ ︷︷ ︸

Q̃

[
∆b′

∆αM

]
(9)

=

[
0 −|E|

1M −∑j∈E yjQMj

] [
∆λ
∆η

]
LetR = Q̃−1, the linear relationship between

[
∆b′ ∆αTM

]T
and [∆λ ∆η]

T can be obtained as follows:[
∆b′

∆αM

]
= R

[
0 −|E|

1M −∑j∈E yjQMj

] [
∆λ
∆η

]
def
=

[
βλb′ βηb′
βλM βηM

] [
∆λ
∆η

]
(10)

Substituting (10) into (7), we can get the linear relationship
between ∆g̃i (∀i ∈ S) and [∆λ ∆η]

T as follows:

∆g̃i =
∑
j∈M

Qij
(
βλj ∆λ+ βηj ∆η

)
+yi

(
βλb′∆λ+ βηb′∆η

)
+
∑
j∈E

yjQij∆η

def
= γλi ∆λ+ γηi ∆η (11)

When adjusting λ and η, meanwhile keeping all the sam-
ples satisfying the KKT conditions, the following constraints
should be kept:

0 ≤ α(λ0, η0)i + βλi (λ− λ0) + βηi (η − η0) (12)

≤ 1− yi + 2yiη

2
,∀i ∈M

g̃(λ0, η0)i + γλi (λ− λ0) + γηi (η − η0) ≤ λ,∀i ∈ E (13)

g̃(λ0, η0)i + γλi (λ− λ0) + γηi (η − η0) ≥ λ,∀i ∈ R (14)
Obviously, the set of above inequalities is a convex polygon
region. The compact representation can be obtained after re-
moving redundant inequalities from (12)-(14) by the vertex
enumeration algorithm [Avis and Fukuda, 1992]. Here, we
use CR(λ0, η0) to denote the compact representation of (12)-
(14).

Similarly, given a partition π(C0
+, C

0
−), we can obtain the

critical region CR(C0
+, C

0
−) as (12)-(14). Obviously, it is also

a convex polygon region.

3.2 Critical-Regions-Based BPSP Algorithm
This section tries to find all critical convex polygon regions
in (0, 1]× [0, 1] for the (λ, η) parameter space, and the lower
triangle region of [0, 1] × [0, 1] for the (C+, C−) parameter
space. It means all solutions of CS-SVM would be obtained.

An intuitive idea to find all the regions is using a pro-
gressive construction method. Before designing this progres-
sive construction algorithm, there are three problems which
should be answered. (i) How do we give an initial solution
of the first critical convex polygon region for (λ, η)-SVM and
2C-SVM? (ii) How do we handle the problem of overlapped
critical convex polygon regions? (iii) How do we find the next
critical convex polygon regions based on the current one? Our
answers to the three problems are as follows, which derive a

recursive bi-parameter space partition algorithm (i.e., Algo-
rithm 1).

Initialization A simple strategy for initialization is di-
rectly using the SMO technology [Cai and Cherkassky, 2012]
or other quadratic programming solvers to find solution for a
parameter pair in (0, 1]× [0, 1] for the (λ, η) parameter space,
or the lower triangle region of [0, 1]× [0, 1] for the (C+, C−)
parameter space, respectively. Here, a method without re-
quiring any numerical solver is presented in Lemma 1 and 2,
which can directly give the solutions for the parameter pairs
of (λ, η)-SVM and 2C-SVM, respectively, under some con-
ditions.
Lemma 1. All the αi = 1−yi+2yiη

2 , which is the optimal

solution of the minimization problem (4) with η = |S−|
|S| and

λ ≥ 1
2

(
maxi∈S+

∑
j∈S αjQij + maxi∈S−

∑
j∈S αjQij

)
.

Lemma 2. All the αi = C++C−+yi(C+−C−)
2 , which is the

optimal solution of the minimization problem (2) with C+

C−
=

|S−|
|S+| and C+ + C− ≤ 2

maxi∈S+ hi+maxi∈S− hi
, where hi =∑

j∈S+
|S−|
|S| Qij +

∑
j∈S−

|S+|
|S| Qij .

Partitioning the Parameter Space The minimization
problem (4) or (2) can not be guaranteed to be strict convex
in many real-world problems. There exists the phenomenon
of overlapped critical convex polygon regions (see Fig. 2
(a)). This makes it difficult to find all critical convex polygon
regions by a progressive construction method. A parameter
space partition method is presented by Theorem 2 [Borrelli,
2003], where A and b are issued from the compact represen-
tation of inequalities (12)-(14), which can be computed by
the vertex enumeration algorithm [Avis and Fukuda, 1992].
m is the number of inequalities in the compact representa-
tion. (ρ, %) is the shorthand implying (λ, η) and (C+, C−)
hereafter.
Theorem 2. Let X ⊆ R2 be a convex polygon region, and
R0 = {(ρ, %) ∈ X : A [ρ %]

T ≤ b} be a convex polygon
subregion of X , where A ∈ Rm×2, b ∈ Rm×1, R0 6= ∅. Also
let

Ri =

{
(ρ, %) ∈ X

∣∣∣∣ Ai [ρ %]
T
> bi

Aj [ρ %]
T ≤ bj , ∀j < i

}
,

∀i = 1, · · · ,m
then {R0,R1, · · · ,Rm} is a partition of X , i.e.,

⋃m
i=0Ri =

X , andRi ∩Rj = ∅, ∀i 6= j, i, j ∈ {0, 1, · · · ,m}.
Theorem 2 defines a partition procedure which consists of

considering one by one the inequalities ofR0. See Fig. 2 (b),
the four inequalities ofR0 induce four disjoint subregions of
X (i.e., R1, R2, R3, and R4), respectively, and

⋃4
i=0Ri =

X . Obviously, this partition method can be used to handle the
problem of overlapped critical convex polygon regions.

Computing Solution for a Parameter Pair in Ri For
each convex subregionRi, similar to the above Initialization,
we need to find the solution for a parameter pair (ρi, %i) in
Ri, and compute the corresponding CR(ρi, %i), then partition
Ri based on CR(ρi, %i) ∩ Ri. Repeat the above steps until
the full parameter space are partitioned with critical convex
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polygon regions (see Fig. 2c and 2d). Obviously, how to find
the solution for a parameter pair in Ri is the key to compute
the next critical convex polygon region. A simple strategy
is using the SMO technology [Cai and Cherkassky, 2012] or
other quadratic programming solvers similar to the Initializa-
tion. Instead, Theorem 3 allows us to compute α and g̃ (g)
for a parameter pair in the subregion of Ri adjacent to R0

directly.

Theorem 3. Supposing X ⊆ R2 is a convex polygon region,
CR(λ0, η0)∩X def

= R0 or CR(C0
+, C

0
−)∩X def

= R0,R0 has
the partition π, and {R0,R1, · · · ,Rm} is a partition ofX as
Theorem 2. ∀i ∈ {1, · · · ,m}, if Ri 6= ∅, the i-th inequality
Ai [ρ %]

T ≤ bi of CR only corresponds to the t-th sample of
S,

1. from the left part of (12), there will exist a subregion
of Ri adjacent to R0 with the partition π = (M \
{t}, E ,R∪ {t});

2. from the right part of (12), there will exist a subre-
gion of Ri adjacent to R0 with the partition π =
(M\ {t}, E ∪ {t},R);

3. from (13), there will exist a subregion of Ri adjacent to
R0 with the partition π = (M∪ {t}, E \ {t},R);

4. and from (14), there will exist a subregion ofRi adjacent
toR0 with the partition π = (M∪ {t}, E ,R \ {t}).

The partition π for the subregion of Ri adjacent to R0 is
given by Theorem 3. Thus, we can update the inverse ma-
trix R corresponding to the extended kernel matrix Q̃ in time
O(|M|2) as the method described in [Laskov et al., 2006],
and compute the linear relationships between ∆b′ (∆b′′),
∆αTM, ∆g̃ (∆g) and [∆ρ ∆%] as (10)-(11). Further, α(ρi, %i)
and g̃(λi, ηi) (g(C+, C−)), where (ρi, %i) is a parameter pair
in the subregion of Ri adjacent to R0 with the partition π,
can be computed by (12)-(14) directly.

Algorithm 1 CR-BPSP (CRs-based BPSP algorithm)

Input: α(ρ0, %0), g̃(λ0, η0) (g(C0
+, C

0
−)), π(ρ0, %0), a con-

vex polygon region X with (ρ0, %0) ∈ X .
Output: P (a partition of X in a nested set structure).

1: Detect CR(ρ0, %0) according to (12)-(14).
2: LetR0 := CR(ρ0, %0) ∩ X , and P := {R0}.
3: Partition the parameter spaceX with {R0,R1, · · · ,Rm}

(c.f. Theorem 2).
4: while i ≤ m &Ri 6= ∅ do
5: Update π, R, for the subregion ofRi adjacent toR0.
6: Compute α and g̃ (g) for a parameter pair (ρi, %i) in

the subregion ofRi adjacent toR0.
7: Pi:=CR-BPSP(α(ρi, %i), g̃(λ0, η0) (g(C0

+, C
0
−)),

π(ρi, %i),Ri). {Pi is the partition ofRi.}
8: Update P := P ∪ {Pi}.
9: i := i+ 1.

10: end while

4 BPSP using Invariant Regions
4.1 Invariant-Regions-Based BPSP Algorithm
Based on the above bi-parameter space partition, the
decision function of CS-SVM can be obtained as
f(λ, η)(x) = 1

λ

(∑
j∈S αj(λ, η)yjK(xj , x) + b′(λ, η)

)
for all (λ, η) in (0, 1] × [0, 1], and f(C+, C−)(x) =∑
j∈S αj(C+, C−)yjK(xj , x) + b′′(C+, C−) for all

(C+, C−) in the lower triangle region of [0, 1] × [0, 1].
Given a validation set V = {(x̃1, ỹ1), · · · , (x̃n, ỹn)}, and
assuming C(−,+) and C(+,−) are the misclassifica-
tion costs of false negative and false positive respectively
(no costs for the true positive and the true negative), the
empirical error on the validation set can be computed as
C(ρ, %) = 1

n

∑n
i=1 C (sign (f(ρ, %)(x̃i)) , ỹi). To select the

parameter pairs with the lowest empirical error, we need to
investigate empirical errors for all parameter pairs.

Detecting the Invariant Convex Polygon Region Ac-
cording to the sign of f(x̃i), the validation set V can be par-
titioned as:

π̃(ρ, %) = {{i ∈ V : f(ρ, %)(x̃i)) ≥ 0},
{i ∈ V : f(ρ, %)(x̃i)) < 0}}

def
= {I+(ρ, %), I−(ρ, %)} (15)

Based on the partition, we have the invariant region
IR(ρ0, %0) = {(ρ, %) ∈ CR(ρ0, %0) : π̃(ρ, %) = π̃(ρ0, %0)},
in which the empirical error obviously remains unchanged.
Theorem 4 shows that IR(ρ0, %0) is also a convex polygon
region. Thus, we can compute all empirical errors though
finding invariant convex polygon regions in the two parame-
ter spaces.

Theorem 4. The sets IR(ρ0, %0) is a convex set and its clo-
sure is a convex polygon region.

∀(λ, η) ∈ CR(λ0, η0), according to (10), we can get the
linear relationship between ∆f(x̃i) and [∆λ ∆η] as follows:

∆f(x̃i) =
∑
j∈M

yjK(xj , x̃i)
(
βλj ∆λ+ βηj ∆η

)
+
(
βλb′∆λ+ βηb′∆η

)
+
∑
j∈E

K(xj , x̃i)∆η

def
= γ̃λi ∆λ+ γ̃ηi ∆η (16)

Combining (16) with the constraint of π̃(λ0, η0), we can get
the following constraints:
∀i ∈ I+(λ0, η0) :

f(λ0, η0)(x̃i) + γ̃λi (λ− λ0) + γ̃ηi (η − η0) ≥ 0 (17)
∀i ∈ I−(λ0, η0) :

f(λ0, η0)(x̃i) + γ̃λi (λ− λ0) + γ̃ηi (η − η0) < 0 (18)
Obviously, the closure of inequalities (17)-(18) is a con-
vex polygon region, and the compact representation is de-
noted IR(λ0, η0). The same analysis can be extended to
IR(C0

+, C
0
−).

Partitioning Each CR with IRs To find all invariant
convex polygon regions in the whole parameter space, we use
the strategy of divide and conquer (i.e., find all invariant con-
vex polygon regions for each critical convex polygon region).
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Figure 2: (a): Two overlapped CRs (λ1 = λ2 = 0.5, η1 = 0.51, and η2 = 0.49). (b): Partitioning the parameter space X
based on Theorem 2. (c): Partitioning the lower triangle region of [0, 1] × [0, 1] for (C+, C−) through CRs. (d): Partitioning
(0, 1]× [0, 1] for (λ, η) through CRs.
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Figure 3: BPSP in 2-fold CV. (a)-(b): All parameter pairs of (λ, η) in (0, 1]× [0, 1]. (c)-(d): All parameter pairs of (C+, C−) in
the lower triangle region of [0, 1]× [0, 1]. (a), (c): The results of the first fold. (b), (d): The results of 2-fold CV.
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Thus, similar to Algorithm 1, a recursive procedure (called
IR-BPSP) can be designed to find all invariant convex poly-
gon regions and compute the corresponding empirical errors
for each critical convex polygon region. A nested set structure
for the output of IR-BPSP can be retained based on Theorem
2. The nested set structure will speed up finding the global
optimal solution for K-fold CV in Section 4.2. Combining
all results of the critical convex polygon regions based on the
framework of Algorithm 1, we can obtain the empirical errors
for all parameter pairs of (λ, η) in the region of (0, 1]× [0, 1]
as shown in Fig. 3a, and the empirical errors for all parameter
pairs of (C+, C−) in the lower triangle region of [0, 1]× [0, 1]
as shown in Fig. 3c.

4.2 Computing the Superposition of K BPSPs
The validation set V is randomly partitioned into K equal
size subsets. For each k = 1, · · · ,K, we fit the CS-SVM
model with a parameter pair (ρ, %) to the other K − 1 parts,
which produces the decision function f(ρ, %)(x) and com-
pute its empirical error in predicting the k part Ck(ρ, %) =
1
|Vk|

∑
i∈Vk C

(
sign

(
fk(ρ, %)(x̃i)

)
, ỹi
)
. This gives the CV

error CVC(ρ, %) = 1
K

∑K
k=1 Ck(ρ, %). The superposition of

K invariant region partitions can be easily computed for se-
lecting the best parameter pairs of (C+, C−) in R+×R+ (see
Fig. 3b and 3d), which is omitted here.

5 Experiments
Design of Experiments We compare the generalization abil-
ity and runtime of BPSP with other three typical model selec-
tion methods of CS-SVM: (1) grid search (GS): a two-step
grid search strategy is used for 2C-SVM. The initial search
is done on a 20 × 20 coarse grid linearly spaced in the re-
gion {(log2 C+, log2 C−)| − 9 ≤ log2 C+ ≤ 10,−9 ≤
log2 C− ≤ 10}, followed by a fine search on a 20 × 20
uniform grid linearly spaced by 0.1; (2) a hybrid method of
one-parametric solution path searching on η and grid search-
ing on λ (SPη+GSλ): λ is selected by a two-step grid search
in the region {log2 λ| − 9 ≤ log2 λ ≤ 10} with the gran-
ularity 1 and followed by 0.1; (3) a hybrid method of one-
parametric solution path searching on λ and grid searching
on η (SPλ+GSη): η is selected by a two-step grid search in
the region {η|0 ≤ η ≤ 1} with the granularity 0.1 and fol-
lowed by 0.01.

Implementation We implemented SPη+GSλ, SPλ+GSη ,
and our BPSP in MATLAB. To compare the run-time in the
same platform, we did not directly modify the LIBSVM soft-
ware package [Chang and Lin, 2011] as stated in [Davenport
et al., 2010], but implemented the SMO-type algorithm of
2C-SVM in MATLAB. All experiments were performed on
a 2.5-GHz Intel Core i5 machine with 8GB RAM and MAT-
LAB 7.10 platform. C(−,+) and C(+,−) are the misclassi-
fication costs of false negative and false positive respectively.
To investigate how the performance of an approach changes
with different settings in misclassification cost, C(−,+) was
set to 2, 5, 10 for normal datasets of binary classification,
and the class imbalance ratio for imbalanced datasets, re-
spectively, while C(+,−) was fixed at 1. Gaussian kernel

K(x1, x2) = exp(−κ‖x1 − x2‖2) was used in all the exper-
iments with κ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103}, where
the value of κ having the lowest CV error was adopted. For
BPSP (or SPη+GSλ, SPλ+GSη), our implementation returns
a center point from the region (or the line segment) with the
minimum error.

Table 1: The results of 5-fold CV with GS, SPη+GSλ,
SPλ+GSη and BPSP (time was measured in minutes).

C(+,−) Dataset GS SPη+GSλ SPλ+GSη BPSP
CV error time CV error time CV error time CV error time

2

Son 0.4667 43 0.282 7.7 0.271 7.3 0.2564 4.4
Ion 0.3623 73 0.0725 12.7 0.0857 13.3 0.0435 9.7
Dia 0.6275 294 0.5948 9.5 0.606 10.2 0.5752 5.5
BC 0.6593 229 0.6 9 0.611 9.82 0.5642 7.1
Hea 0.52 59 0.464 9.2 0.478 9.1 0.444 5.9
HV 0.463 176 0.45 5.3 0.462 5.8 0.4417 4.9
SI 0.5017 86 0.2754 7.4 0.278 8.2 0.2650 4.9

5

Son 0.4872 51 0.3167 7 0.322 7.3 0.3167 4.6
Ion 0.3768 65 0.1159 14 0.1324 16.3 0.1159 10.3
Dia 0.6536 302 0.632 9.6 0.638 10.1 0.632 5.9
BC 0.6741 227 0.6074 8 0.6222 8.3 0.6074 6.7
Hea 0.537 57 0.463 6.8 0.485 8.5 0.463 5.5
HV 0.6 164 0.55 5.6 0.493 7.2 0.4417 5.2
SI 0.524 77 0.383 8.1 0.3795 8.5 0.3562 5.6

10

Son 0.564 46 0.4615 6.4 0.473 6.8 0.4359 4.9
Ion 0.3823 77 0.2319 15.3 0.2425 16.1 0.2319 9.9
Dia 0.6863 312 0.6601 9.2 0.672 9.8 0.6601 5.6
BC 0.6815 219 0.6741 7.3 0.6741 7.2 0.6626 6.9
Hea 0.556 69 0.556 5.6 0.562 5.9 0.556 5.4
HV 0.5 169 0.5 4.9 0.5 6.3 0.458 4.7
SI 0.536 81 0.4783 7.8 0.464 8.3 0.4493 5.1

ratio

Ecoli1 0.1722 65 0.117 12.2 0.124 13.1 0.0833 8.8
Ecoli3 0.1905 76 0.0909 11.6 0.1102 12.3 0.0595 9.3
Vowel0 0.1586 195 0.101 103 0.095 89 0.0449 21
Vehicle0 0.472 262 0.1834 16d5 0.2092 134 0.1024 26

Datasets The sonar (Son), ionosphere (Ion), diabetes
(Dia), breast cancer (BC), heart (Hea), and hill-valley (HV)
datasets were obtained from the UCI benchmark repository
[Bache and Lichman, 2013]. The spine image (SI) dataset
collected by us is to diagnose degenerative disc disease de-
pending on five image texture features quantified from mag-
netic resonance imaging. The dataset contains 350 records,
where 157 are normal and 193 are abnormal. They are normal
datasets for binary classification. Ecoli1, Ecoli3, Vowel0, and
Vehicle0 are the imbalanced datasets from the KEEL-dataset
repository2. Their class imbalance ratios are varying from
3.25 to 9.98.

We selected 30% from a dataset once as a validation set.
The validation set was used with a 5-fold CV procedure to
determine the optimal parameters. We then randomly parti-
tioned each dataset into 75% for training and 25% for testing
for many times. Each time, we removed the instances appear-
ing in the validation set from the testing set to guarantee that
the test set of each run is disjoint from the validation set.

Experimental Results The CV errors are presented in
Table 1 for 5-fold CV of each method. It is easily ob-
served that BPSP obtains lowest CV error for all datasets
and settings of C(−,+). This is reasonable because GS and
SPη+GSλ, SPλ+GSη are points-based and lines-based grid
search method, respectively, however, BPSP is a regions-
based method which covers all candidate values in the bi-
parameter space, and give the best choices from them. Noted

2http://sci2s.ugr.es/keel/imbalanced.php.
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Figure 4: The results of cost sensitive errors on the test sets, over 50 trials. The grouped boxes represent the results of GS,
SPη+GSλ, SPλ+GSη , and BPSP (red color), from left to right on different datasets. The notched-boxes have lines at the lower,
median, and upper quartile values. The whiskers are lines extended from each end of the box to the most extreme data value
within 1.5×IQR (Interquartile Range) of the box. Outliers are data with values beyond the ends of the whiskers, which are
displayed by plus signs. (a): C(−,+) = 2. (b): C(−,+) = 5. (c): C(−,+) = 10. (d): C(−,+) = ratio, for imbalanced
learning.

that SPη+GSλ, SPλ+GSη and BPSP can have the same CV er-
ror for some datasets, because both of them find the optimal
on these datasets. BPSP always find an optimal parameter
pair, and SPη+GSλ, SPλ+GSη can also find an optimal some-
times. Based on the optimal parameters in Table 1, the empir-
ical errors on each dataset in different methods over 50 trials
are presented in Figure 4 as C(−,+) = 2, 5, 10, and ratio,
respectively. The results show that BPSP has better general-
ization ability than GS, SPη+GSλ, and SPλ+GSη generally.
Especially, BPSP has the best stability, because it returns a
center point from the optimal region with the minimum error.

The empirical running time (in minutes) for different algo-
rithms on each dataset is also presented in Table 1, which is
the average result on the seven different values of κ. It is easy
to find that GS method has the longest running time. Because
SPη+GSλ and SPλ+GSη searche a large number of parallel
one-parametric solution paths, we find that BPSP has the less
running time than SPη+GSλ and SPλ+GSη .

6 Conclusion
We proposed a bi-parameter space partition algorithm for
CS-SVM which can fit all solutions for each parameter pair
(C+, C−). Based on the space partition, a K-fold cross val-
idation algorithm was proposed which can find the global
optimum parameter pair. The experiments indicate that our
method has better generalization ability than various kinds of
grid search methods, however, with less running time. In fu-
ture work, we plan to extend this framework to a more general

formulation which can cover bi-parametric learning models,
and even multi-parametric learning models [Mukhopadhyay
et al., 2014].
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