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Abstract
The goal of subspace segmentation is to partition
a set of data drawn from a union of subspace into
their underlying subspaces. The performance of
spectral clustering based approaches heavily de-
pends on learned data affinity matrices, which are
usually constructed either directly from the raw
data or from their computed representations. In
this paper, we propose a novel method to simul-
taneously learn the representations of data and the
affinity matrix of representation in a unified op-
timization framework. A novel Augmented La-
grangian Multiplier based algorithm is designed to
effectively and efficiently seek the optimal solution
of the problem. The experimental results on both
synthetic and real data demonstrate the efficacy of
the proposed method and its superior performance
over the state-of-the-art alternatives.

1 Introduction
In scientific data analysis applications, we often have to face a
set of data X = [X1, ...,Xn] ∈ Rd×n derived from a union
of c subspaces {Ss}cs=1, where d is the feature dimension
and n is the number of data vectors. To characterize the given
data as different groups such that the data in the same group
are highly similar to each other (ideally drawn from one sub-
space), the subspace segmentation recently has been focus of
considerable research in machine learning, computer vision
and pattern recognition [Hong et al., 2006; Rao et al., 2010;
Ho et al., 2003; Liu et al., 2013; Nie et al., 2009].

1.1 Notation Summary
Lowercase letters (u, v, ...) mean scalars and bold lowercase
letters (u,v, ...) vectors. uj represents the jth entry in u.
Bold uppercase letters (U ,V , ...) stand for matrices. UT

and U−1 are the transpose and inverse of U , respectively.
U i stands for the ith column of U , while U ij the jth ele-
ment in the ith column of U . |U ij | is the absolute value of
U ij . ‖U‖0, ‖U‖1, ‖U‖F and ‖U‖∗ denote the `0 norm
(number of nonzero entries), `1 norm (

∑
i,j |U i,j |), `2 or

Frobenius norm (
√∑

i,j U
2
i,j), and nuclear norm (sum of all

the singular values) of U , respectively. ‖U‖2,0 and ‖U‖2,1
stand for the `2,0 norm (

∑
i ‖
√∑

j U
2
ij‖0) and `2,1 norm

(
∑
i

√∑
j U

2
ij), respectively. 〈U ,V 〉 is the inner product

of two matrices with identical size, which is equal to the trace
of UTV , i.e. tr(UTV ). U�V presents the Hadamard prod-
uct of two matrices with identical size. Moreover, 0, 1 and
I denote the vectors of all zeros, all ones and identity matrix
with compatible sizes, respectively.

1.2 Related Work
Recently, many subspace segmentation methods have been
proposed. From the perspective of their mechanisms of rep-
resenting the subspaces, existing approaches can be roughly
divided into four categories: iterative [Bradley and Mangasar-
ian, 2000], statistical [Ma et al., 2007], algebraic [Ma et al.,
2008; Vidal et al., 2005] and spectral clustering methods [Lu
et al., 2012; Elhamifar and Vidal, 2009]. An elaborate review
of these methods can be found in [Vidal, 2010]. Our method
belongs to the spectral clustering based one, therefore we re-
view the related work along this direction in the following.

The key of spectral clustering based approaches is to con-
struct a “good” affinity matrix A ∈ Rn×n, in which each el-
ement Aij reflects the similarity between data points Xi and
Xj . Ideally, the affinity should be 1 if they are from the same
cluster, 0 otherwise. Directly computing distances on the raw
data (e.g. k-NN using cosine or heat kernel distances) is pos-
sibly the most intuitive way to conduct the data affinity ma-
trix. Nie et al. [Nie et al., 2014] develop a more sophisticated
method to learn the similarity matrix by adaptively assigning
neighbors for each data point based on the local connectivity.
But, the affinity matrix constructed on the raw data is unable
to well reveal the global subspace structure of data.

Alternatively, inspired by the success of compressed sens-
ing [Candès et al., 2006; Donoho, 2006], a large body of re-
search on exploiting the relationship of data representations
R ∈ Rn×n has been carried out [Elhamifar and Vidal, 2009;
Lu et al., 2012; Liu et al., 2013; Lu et al., 2013; Saha et al.,
2013; Feng et al., 2014], the formulation of which can be
generally written as follows:

min Θ(E) + λΨ(R) s. t.X = XR + E, (1)

where E ∈ Rd×n denotes the residual, Ψ(R) stands for the
regularizer on R, and λ is the coefficient controlling the im-
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portance of the regularizer. Θ(E) is the model of E, which
can be with different forms depending on the characteristic
of data. For instance ‖E‖1 is optimal for Laplacian residuals
while ‖E‖2F for Gaussian. The choice of the model is impor-
tant for the task of subspace segmentation, but not the main
focus of this work. Hence, we simply adopt the `2 for the rest
of the paper as [Elhamifar and Vidal, 2009; Lu et al., 2012;
2013; Nie et al., 2014].

The main difference among the methods mentioned above
lies in the regularization on R. Specifically, Sparse Sub-
space Clustering (SSC: Ψ(R) ≡ ‖R‖0) [Elhamifar and Vi-
dal, 2009] introduces compressed sensing techniques to sub-
space segmentation. Because the `0 norm is non-convex and
NP-hard to approximate, replacing it with its tightest convex
surrogate `1 norm makes the problem tractable and gives the
optimal solution to the original problem under some condi-
tion. The main drawback of SSC is that it processes data
individually and thus lacks optimality due to the existence of
inherent joint structure between the representations of data
points. Instead of a sparse representation, Liu et al. [Liu
et al., 2013] propose the Low Rank Representation (LRR:
Ψ(R) ≡ rank(R)) to jointly find a low rank representa-
tion by minimizing the rank of R. As the rank(·) is also
intractable to directly optimize, its convex replacement, the
nuclear norm, is employed. Least Squares Regression (LSR:
Ψ(R) ≡ ‖R‖2F ) [Lu et al., 2012] is a much more efficient
solver for subspace segmentation than LRR with a similar
grouping effect. To further refine the representation, Feng
et al. [Feng et al., 2014] impose a block diagonal prior
on the representation, which shows a reasonable improve-
ment on the segmentation results. To simultaneously take
into account the grouping effect and sparsity of represen-
tation, Grouping Sparse Coding (GSC: Ψ(R) ≡ ‖R‖2,0)
[Saha et al., 2013] was developed. For efficiently solving the
GSC problem, the `2,0 norm needs to be convex relaxed to
`2,1. Besides, Correlation Adaptive Subspace Segmentation
(CASS: Ψ(R) ≡

∑n
i=1 ‖X Diag(Ri)‖∗) is designed [Lu

et al., 2013] to better explore the subspace structure, which
can be viewed as an adaptive interpolation between SSC and
LSR. However, the computational load of CASS is relatively
heavy as it involves a series of SVD operations for dealing
with every single data.

Traditionally, after solving the problem (1), the represen-
tation is utilized to define the affinity matrix of an undirected
graph in the way of |Rij |+|Rji|

2 for the data vectors Xi and
Xj , then spectral clustering algorithms such as Normalized
Cuts [Shi and Malik, 2000] are employed to segment the data
into c clusters. Although this kind of affinity is somehow valid,
the meaning of which is already not the same as the original
definition. In this paper, we propose a method to construct a
meaningful affinity matrix under the assumption that the data
points should have a larger probability to be in the same clus-
ter if their representations have a smaller distance.

1.3 Contribution
The contribution of this paper can be summarized in three as-
pects. 1) We propose a novel subspace segmentation method
to jointly learn the representations of data and their affinity
matrix in a unified optimization framework. 2) We design a

new Augmented Lagrange Multiplier based algorithm to ef-
ficiently and effectively seek the solution of the associated
optimization problem. 3) To demonstrate the efficacy and
the superior performance of the proposed algorithm over the
state-of-the-art alternatives, extensive experiments on both
synthetic data and several datasets are conducted.

2 Problem Formulation
Given a set of clean data points sufficiently sampled from
c independent subspaces {Scs=1}, X = [X1, ...,Xn]. By
introducing a hypothesized permutation matrix Γ that ar-
ranges the data to the true segmentation of data, we have
X∗ = XΓ = [X1, ...,Xc] ∈ Rd×n, where Xs denotes a
collection of ns data points from the sth subspace Ss with
n =

∑c
s=1 ns. The data can be self-represented by a lin-

ear combination of the items in X as X = XR. To avoid
the trivial solution, we should impose some constraint on R.
Considering the simplicity and the effectiveness leads us to
choose the `2 norm ‖R‖2F to do the job, any other choices
can, of course, be selected. Recall our assumption that the
data points should have a larger probability to be in the same
cluster if their representations have a smaller distance, thus
we naturally propose the following constraint:

min
∀i AT

i 1=1,Ai�0

n∑
i=1

n∑
j=1

‖Ri −Rj‖2FAij , (2)

where A ∈ Rn×n is the desired affinity matrix, Aij reflects
the probability of the data points Xi and Xj from the same
cluster based on the distance between their representations Ri

and Rj . The constraints AT
i 1 = 1 and Ai � 0 are to guaran-

tee the probability property of Ai. However, simply solving
the problem (2) results in that only the nearest representation
(or equally the nearest data) is assigned as the neighbor of Ri

(or Xi) with probability 1 and all the others with probabili-
ties 0. Similar to R, we again enforce minimizing ‖A‖2F to
prevent from the trivial solution.

Putting the concerns together with slight algebraic trans-
formation gives the following formulation:

minλ1‖R‖2F + λ2 tr(RLAR
T ) + λ3‖A‖2F

s. t.X =XR; ∀iAT
i 1 = 1;Ai � 0,

(3)

where LA is the Laplacian matrix of A, which is constructed
in the way of DA −A. The degree matrix DA is defined as
a diagonal matrix where the ith diagonal element is

∑
jAij .

In addition, λ1, λ2 and λ3 are three non-negative weights bal-
ancing the corresponding terms.

In real world applications, the noise free and independent
subspaces assumption may not be satisfied. It is desirable to
extend the problem (3) to be robust to noises. With the intro-
duction of the noise term ‖E‖2F , the problem can be finally
formulized as follows:

min ‖E‖2F+λ1‖R‖2F + λ2 tr(RLAR
T ) + λ3‖A‖2F

s. t.X = XR + E; ∀iAT
i 1 = 1;Ai � 0.

(4)

In the next section, we will propose a novel algorithm to ef-
fectively and efficiently solve the problem (4).
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3 Optimization
As we have seen in (4), it has combined all aforementioned
priors and constraints for learning the representations of data
and finding the meaningful affinity matrix with respect to the
data representations in a unified optimization framework. Al-
though the objective (4) is not jointly convex in A and R, but
convex with respect to each of them when the other is fixed.
The Augmented Lagrange Multiplier (ALM) with Alternat-
ing Direction Minimizing (ADM) strategy [Lin et al., 2011]
has proven to be an efficient and effective solver of problems
like (4). To apply ALM-ADM on our problem, we need to
make our objective function separable. Thus we introduce
one auxiliary variable Q to replace R in the trace term of
the objective function (4). Accordingly, Q = R acts as the
additional constraint. Note that the probability properties of
every Ai are enforced as hard constraints. The augmented
Lagrangian function of (4) L{∀i AT

i 1=1;Ai�0} is{
‖E‖2F + λ1‖R‖2F + λ2 tr(QLAQ

T ) + λ3‖A‖2F
+Φ(Z1,X −XR−E) + Φ(Z2,Q−R)

(5)

with the definition Φ(Z,C) ≡ µ
2 ‖C‖

2
F + 〈Z,C〉, where µ is

a positive penalty scalar and, Z1 and Z2 are the Lagrangian
multipliers. Besides the Lagrangian multipliers, there are four
variables, including E, R, Q and A, to solve. The solver
iteratively updates one variable at a time by fixing the others.
The solutions of the subproblems are as follows:
E-subproblem: For computing E(t+1), we take derivative
of L with respect to E with the unrelated terms fixed and set
it to zero, then obtain E(t+1) =:

argmin
E

‖E‖2F + Φ(Z
(t)
1 ,X −XR(t) −E)

=
Z

(t)
1 + µ(t)(X −XR(t))

2 + µ(t)
,

(6)

where {µ(t)} is a monotonically increasing sequence.
R-subproblem: It is obvious that all the terms related with
R are quadratic, thus dropping the constant terms and taking
derivative of L with respect to R gives R(t+1) =:

argmin
R

λ1‖R‖2F + Φ(Z
(t)
1 ,X −XR−E(t+1))

+ Φ(Z
(t)
2 ,Q(t) −R) =

(
2λ1 + µ(t)

µ(t)
I + XTX

)−1
T ,

(7)

where T ≡XT (X −E(t+1) +
Z

(t)
1

µ(t) ) + Q(t) +
Z

(t)
2

µ(t) .
Q-subproblem: In a similar way to updating E and R, the
closed form solution of this subproblem can be easily calcu-
lated by Q(t+1) =:

argmin
Q

λ2 tr(QL
(t)
A QT ) + Φ(Z

(t)
2 ,Q−R(t+1))

= (µ(t)Rt+1 −Z
(t)
2 )(2λ2L

(t)
A + µ(t)I)−1.

(8)

A-subproblem: The update of A(t+1) can be done via solv-
ing the following optimization problem:

argmin
A

λ2 tr(Q(t+1)LAQ
(t+1)T ) + λ3‖A‖2F

s. t. ∀iAT
i 1 = 1; Ai � 0.

(9)

Algorithm 1: Proposed Robust Subspace Segmentation

Input: Data matrix X ∈ RD×n, cluster number c,
nearest neighbor number k, λ1 ≥ 0, λ2 ≥ 0 and
λ3 ≥ 0.

Initial.: E(0) = Z
(0)
1 = 0 ∈ RD×n, F (0) = 0 ∈ Rc×n,

R(0) = Q(0) = A(0) = Z
(0)
2 = 0 ∈ Rn×n, µ(0) = 1.25,

ρ > 1, t = 0
while not converged do

Construct L(t)
A based on At;

Update E(t+1) via Eq. (6);
Update R(t+1) via Eq. (7);
Update Q(t+1) via Eq. (8);
for i from 1 to n do

Update A
(t+1)
i via Eq. (10);

end
Balance A(t+1) by A(t+1)+A(t+1)T

2 ;
Update the multipliers via Eq. (11);
µt+1 = µtρ; t = t+ 1;

end
Segment the data into c groups by Normalized cuts.
Output: Final Data Segmentation

As can be seen from (9), it can be separated into a set of
smaller independent problems, i.e.:

∀iA(t+1)
i = argmin

Ai∈{a|aT 1=1;a�0}
‖Ai + d

Q(t+1)
i ‖2F

where d
Q(t+1)
i ∈ Rn×1 is a vector, the jth element of which

is d
Q(t+1)
ij =

λ2‖Q(t+1)
i −Q(t+1)

j ‖2F
4λ3

. For each Ai, the closed
form solution is:

A
(t+1)
i =

(
1 +

∑k
j=1 d̃

Q(t+1)

ij

k
1− d

Q(t+1)
i

)
+

, (10)

where the operator (u)+ turns negative elements in u to
0 while keeps the rest. Please notice that the parameter
k ∈ {1, ..., n} is introduced to control the number of nearest
neighbors of Qi (or Xi) that could have chance to connect to

Qi (or Xi). In addition, the elements of d̃
Q(t+1)

i are those of
d
Q(t+1)
i but with the ascending order. For clarity and com-

pleteness, the detailed proof of the closed form solution of
(10) can be found in the appendix. As the graph constructed
according to A obtained by (10) is generally an unbalanced
digraph, we employ A+AT

2 to achieve the balance.
Multipliers: Besides, there are still two multipliers to update,
which are simply done through:

Z
(t+1)
1 = Z

(t)
1 + µt(X −XR(t+1) −E(t+1));

Z
(t+1)
2 = Z

(t)
2 + µt(Q(t+1) −R(t+1)).

(11)

The procedure of solving the problem (4) terminates when
‖X − XRt+1 − Et+1‖F ≤ δ‖X‖F with δ = 10−7 or
the maximal number of iterations is reached. After obtain-
ing the affinity matrix A and the representation matrix R, the
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Figure 1: Left: clustering accuracy vs noise. Mid-Left: the affinity on synthesized data without noise. Rest: the affinity and,
the Hadamard product of the affinity and the representation on synthesized data with 0.25 white Gaussian noise, respectively.

spectral clustering techniques, Normalized Cuts for all the in-
volved methods in this paper, can be executed to segment the
input data into c clusters. The entire algorithm of subspace
segmentation is summarized in Algorithm 1.

It is worth noting that although there is no established the-
ory of global convergence in literature for ADM algorithms
applied to non-convex problem as the one solved in this work,
it is guaranteed that the proposed algorithm converges to at
least a stationary point (first order optimality condition). In
addition, empirical evidence on both synthesized and real
data presented in the next section suggests that the proposed
algorithm have very strong and stable convergence behavior.

4 Experimental Verification
In this section, we conduct experiments on synthetic data to
reveal the efficacy of our proposed method, and on real data to
demonstrate the superior performance of our method over the
state-of-the-art alternatives including k-NN using heat kernel
distance, CAN and PCAN [Nie et al., 2014], SSC [Elhamifar
and Vidal, 2009], LRR1 [Liu et al., 2013], LSR2 [Lu et al.,
2012] and CASS [Lu et al., 2013], the codes for which are
downloaded from the authors’ webpages. To obtain the best
possible performance of the compared methods for different
cases, we tune their corresponding parameters. Specifically,
for k-NN, CAN and PCAN, the free parameter k is tuned
from 1 to 10. For SSC, the space of the regularizer weight on
R is α ∈ {2, 4, ..., 20}, λ ∈ {0.1, 0.2, ..., 5.0} for LSR, λ ∈
{0.0001, 0.001, 0.01, 0.1, 1.0, 2.0, 3.0} for LRR, while λ ∈
{0.0001, 0.001, 0.01, 0.1, 1.0} for CASS. To simplify our pa-
rameters, we let λ1 = λ2 = λ3 = λ̂ ∈ {0.1, 0.2, ..., 1.0},
although the simplification may very likely exclude the best
performance for our method. By doing so, the parameter
space is significantly shrunken, but contained by the origi-
nal space. In other words, if the proposed algorithm with the
shrunken parameter space outperforms the state-of-the-arts,
the original parameter space can also achieve the same or pos-

1As the authors proposed two versions of LRR with different
models of E, i.e. the `1 and `2,1, we test both of them and denote
them as LRR1 and LRR21, respectively. For more details, please
refer to [Liu et al., 2013].

2LSR has two implementations, which are denoted as LSR1 and
LSR2, respectively. Please refer to [Lu et al., 2012].

sibly better performance. Due to space limit, we do not give
the influence analysis of each parameter individually. Please
note that our model also involves the parameter k, which will
be fixed in the experiments according to a k effect testing
(discussed in Sec. 4.2). Normalized Cuts [Shi and Malik,
2000] is employed to segment the input data into clusters for
all the competitors, average segmentation accuracies3 over 10
independent trials are finally reported.

4.1 Synthetic Data
This part attempts to verify the robustness of our method to
different levels of noise. We generate 5 independent sub-
spaces {Ss}5s=1 of 4 dimensions, whose ambient dimension is
250. There are 100 unit data points randomly sampled from
each subspace, a part of which are chosen to be corrupted
with different levels of white Gaussian noise N (0, 1). For
this experiment, the proportion of polluted data is fixed to
50%, the nearest neighbor number and λ̂ are set to 10 and 0.1
respectively, and the noise level varies from 0 (no noise) to
0.5. We evaluate the clustering performance of executing the
Normalized Cuts on the affinity only (A, red curve), the pre-
sentation only (R, blue curve) and their Hadamard product
(A �R, green curve). The combination of R and A is mo-
tivated by that the probability of two data points drawn from
different subspaces simultaneously having high responses in
R and A should be low. As can be seen from the first picture
in Fig. 1, all the three schemes achieve very high accura-
cies when data are clean. But, as the noise level increases,
the clustering performance of R only sharply drops to about
0.6. While the accuracies of A only (for most cases) and
A �R are much higher. Please notice that, the red curve is
always superior to the green until the noise level is up to 0.2.
Afterwards, the green precedes the red. That is to say, us-
ing the affinity matrix only can provide a promising result on
slightly polluted data, while further introducing the represen-
tation matrix is able to significantly boost the robustness to
heavily corrupted data. The second picture in Fig. 1 displays
the affinity matrix obtained by our method corresponding to
the case of zero noise, which shows the perfect block sparsity.
The rest two pictures in Fig. 1 give the affinity matrix and, the

3The metric, segmentation accuracy, is calculated by finding the
best matching between cluster labels and ground truth labels.
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Table 1: Performance Comparison on Extended Yale B
Methods k-NN CAN PCAN SSC LRR1 LRR21 LSR1 LSR2 CASS Ours A Ours A�R

Free Para. k k k α λ λ λ λ λ λ̂ λ̂
5 sub. 71.56 69.94 72.19 97.19 65.94 83.25 86.44 94.06 94.03 99.06 95.63
Para. 2 2 3 4.0 0.1 1.0 0.3 0.3 - 0.1 0.1

10 sub. 49.59 48.02 48.88 63.97 60.56 60.00 57.03 61.73 81.88 92.28 87.70
Para. 2 5 2 10.0 0.01 2.0 1.0 0.1 - 0.1 0.1

30 sub. 52.59 38.79 42.78 50.19 58.23 61.24 57.77 58.38 NA 76.84 76.35
Para. 2 5 3 10.0 0.1 2.0 0.2 0.3 - 0.1 0.1

38 sub. 47.53 38.24 40.89 45.89 55.11 57.39 56.13 57.73 NA 74.48 71.91
Para. 2 5 3 10.0 0.1 2.0 0.5 0.5 - 0.1 0.1

combination of affinity and representation with respect to the
case with 0.25 noise, the block sparsities of which are not
perfect but very well preserved.

4.2 Extended Yale B
We compare the proposed method with other state-of-the-art
methods for face clustering on the Extended Yale B dataset
[Lee et al., 2005]. The dataset contains face images of 38
subjects. For each subject, there are about 64 frontal face im-
ages taken under different illuminations. More than half of
the data vectors in this dataset have been corrupted by “shad-
ows”, which makes the task difficult. In this experiment, we
resize the images into 32× 32 and use the raw pixel values to
form data vectors of 1024 dimensions.

k Effect. We use first 10 subjects to test the parameter ef-
fect of k, say the number of nearest neighbors. To eliminate
the effect from other parameters, we empirically set λ̂ to 0.1.
In addition, the three kinds of matrix including R only, A
only and A�R are again employed to see the difference. As
displayed in the left graph of Fig. 2 , it is easy to see that using
A only and A�R give much more promising results when k
ranges from 2 to 30 than using R only. Similar to the conclu-
sion drawn from Sec. 4.1, A �R shows a better robustness
than A only in this experiment. Based on this testing, we will
fix k = 3 for our method for the rest experiments.

Convergence Speed. Without loss of generality, the con-
vergence speed of Algorithm 1 by setting λ̂ = 0.1 on 10 sub-
jects is given in the right picture of Fig. 2, in which the stop
criterion sharply drops to the level of 10−6 with about 10 it-
erations and to 10−7 using 27 iterations. Our algorithm takes
4s to finish the computation on our PC, which is slower than
LSR that spends 0.06s, but much more efficient than SSC
(39s), LRR (60s) and CASS (34, 560s). This indicates that
our proposed algorithm can converge sufficiently fast. More-
over, all the experiments conducted in this paper by our algo-
rithm are converged with about 25− 40 iterations.

Performance Comparison. Table 1 provides the quantita-
tive comparison among the competitors on the Extended Yale
B dataset. We evaluate the performance of the competitors
on the tasks with different numbers of subject including 5,
10, 20, 30 and 38. The bold and italic numbers in each row
represent the best and the second best results, respectively,
for the corresponding task. Our parameter λ̂ is determined
according to the highest accuracy of the case with 5 subjects,
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Figure 2: Left: parameter effect of k. Right: convergence
speed of the proposed algorithm.

i.e. 0.1, and fixed for all the cases in this experiment. While,
for different cases, each of the alternatives reports its best ac-
curacies individually obtained by tuning its parameters in the
corresponding parameter space. Please notice that the results
of CASS with respect to the 5- and 10-subject cases are the
best results reported by the authors of CASS [Lu et al., 2013].
For the rest cases, we do not provide the results as CASS
takes too much time to handle even the 20-subject task (and
not reported in [Lu et al., 2013]). As can be observed from
Table 1, both our methods using A only and A�R with the
uniform setting greatly outperform the others with tuned pa-
rameters for all the involved cases. We can also see that in
this experiment A�R is slightly behind A only. The reason
may be that although the data in this dataset are corrupted by
different illuminations, they are well aligned and thus largely
preserve the subspace structure. In [Feng et al., 2014], the
authors state that their proposed scheme can improve the per-
formance of LRR and LSR by 3%−6% on the (only reported)
cases with 5 and 10 subjects4, even though, our method still
significantly outperforms [Feng et al., 2014].

4.3 USPS
Further, we compare the performance of SSC, LRR, LSR,
CASS and our method on the USPS dataset5, which consists
of 10 classes corresponding to 10 handwritten digits, 0 ∼ 9.
We use the first 100 examples with the size 16 × 16 of each
subject for this experiment. The examples of each class are

4Since the code of [Feng et al., 2014] is not available when this
paper is prepared, we do not explicitly compare with it.

5www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html
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Table 2: Performance Comparison on USPS
Methods SSC LRR1 LRR21 LSR1 LSR2 CASS Ours A Ours A�R

Free Para. α λ λ λ λ λ λ̂ λ̂
10 subjects 73.72 74.40 74.40 72.40 72.20 72.70 80.79 82.58
Parameter 4.0 0.1 0.01 4.8 4.1 0.1 0.8 0.8

Table 3: Performance Comparison on UMIST
Methods SSC LRR1 LRR21 LSR1 LSR2 CASS Ours A Ours A�R

Free Para. α λ λ λ λ λ λ̂ λ̂
20 subjects 67.84 52.38 49.70 53.57 53.39 51.50 68.09 70.12
Parameter 4.0 0.01 0.001 1.3 1.0 0.1 1.0 1.0

with many variations on appearance, and of different classes
may share some features (e.g. digits 3 and 8), which violates
the assumption of independent subspaces and thus increases
the difficulty of clustering.

Performance Comparison. As shown in Table 2, the
best possible clustering accuracies of SSC, LRR, LSR and
CASS are very close to each other, which fall into the range
[72.20, 74.40]. These results are reasonably good although
the USPS is more challenging than the Extended Yale B, as
the subject number of the USPS is only 10 and the amount
(sampling) of each subject of USPS is more than that of the
Extended Yale B. As for our method, the performance of the
scheme using A achieves 80.79, while that of the scheme us-
ing A � R obtains 82.58, which significantly improve the
clustering accuracy on USPS compared with the others. It is
worth mentioning that, in this experiment, the A�R scheme
emerges its advantage over the A only.

4.4 UMIST

Moreover, we attempt to test the abilities of different ap-
proaches on a more challenging dataset UMIST [Graham and
Allinson, 1998]. The UMIST collects 575 images from 20
subjects, which are resized into 56 × 46 for this experiment.
Each subject has about 28 images with different poses, which
significantly breaks the assumed subspace structure. There-
fore, the performance of SSC, LRR, LSR, CASS and our
method on subspace segmentation may degenerate or even
fail, because they are primarily designed under the assump-
tion of strong subspace structure.

Performance Comparison. Table 3 shows the perfor-
mance comparison on the UMIST, from which we can see
that the segmentation accuracies of LRR, LSR and CASS
are around 0.51. This verifies the fact that the UMIST is
a very challenging subspace segmentation dataset. Surpris-
ingly, SSC and our method achieve reasonably high accura-
cies, i.e. 67.84, 68.09 and 70.12, respectively. This is mainly
because SSC processes data individually instead of enforcing
the subspace structure, which is more suitable for this dataset
than the strategies of LRR and CASS. While our method in-
troduces k nearest neighbor concept (with relatively small k)
in the affinity matrix, which may connect the faces of the
same subject with slight pose changes.

5 Conclusion
Subspace segmentation is an important yet challenging prob-
lem in many research fields, such as machine learning, com-
puter vision and pattern recognition. Differently to previ-
ous spectral clustering based work that computes the affin-
ity based either directly on the distance between data or on
the similarity of data representations, this paper has shown a
novel method that simultaneously learns data representations
and their affinity matrix. We have formulated the problem
into a unified optimization framework and designed an effi-
cient Augmented Lagrangian Multiplier based algorithm to
seek the solution. The experimental results, compared to the
state-of-the-art alternatives, have demonstrated the clear ad-
vantages of the proposed method.

Appendix
Given a problem with the following shape:

argmin
a
‖a + d‖2F s. t. aT1 = 1; a � 0, (12)

where a ∈ Rn×1 is the target, and d ∈ Rn×1 is a known
(distance) vector. To be more general, we can further appoint
the number of nonzero elements in a as k ∈ {1, ..., n}. The
closed form solution of the problem (12) is as follows:

a =

(
1 +

∑k
j=1 d̃j

k
1− d

)
+

, (13)

where the elements of d̃ ∈ Rn×1 are those of d but with the
ascending order.

Proof. The Lagrangian function of the problem (12) is as:

C =
1

2
‖a + d‖2F − α(aT1− 1)− ωTa, (14)

where α � 0 and ω � 0 are the Lagrangian multipliers. It
is easy to verify the optimal solution of a can be obtained
through solving the following equation system, with the help
of the KKT condition:

∂C
∂a

= a+d−α1−ω = 0; aT1−1 = 0; ωTa = 0. (15)
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The third equation holds when the condition that if aj > 0
then ωj = 0 is satisfied, thus we have

a =

(
α1− d

)
+

. (16)

And there are k positive elements in a � 0. Namely:

α− d̃k > 0 and α− d̃k+1 ≤ 0. (17)

According to Eq. (16) together with aT1 = 1, we have
k∑
j=1

(α− d̃j) = 1⇒ α =
1 +

∑k
j=1 d̃j

k
. (18)

Substituting α in Eq. (16) with
1+

∑k
j=1 d̃j

k in Eq. (18) rec-
ognizes the form stated in Eq. (13). Please notice that only
those data points with representation distances to the target

smaller than
1+

∑k
j=1 d̃j

k are its neighbors.
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