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Abstract

Most approaches to causal discovery assume a
fixed (or time-invariant) causal model; however,
in practical situations, especially in neuroscience
and economics, causal relations might be time-
dependent for various reasons. This paper aims to
identify the time-dependent causal relations from
observational data. We consider general formula-
tions for time-varying causal modeling on stochas-
tic processes, which can also capture the causal
influence from a certain type of unobserved con-
founders. We focus on two issues: one is whether
such a causal model, including the causal direc-
tion, is identifiable from observational data; the
other is how to estimate such a model in a prin-
cipled way. We show that under appropriate as-
sumptions, the causal structure is identifiable ac-
cording to our formulated model. We then propose
a principled way for its estimation by extending
Gaussian Process regression, which enables an au-
tomatic way to learn how the causal model changes
over time. Experimental results on both artificial
and real data demonstrate the practical usefulness
of time-dependent causal modeling and the effec-
tiveness of the proposed approach for estimation.

Introduction

In this paper we are concerned with the problem of causal
discovery, i.e., how to discover causal relations from purely
observational data. Traditionally, it has been noted that under
appropriate assumptions, one could recover an equivalence
class of the underlying causal structure based on conditional
independence relationships of the variables [Pearl, 2000;
Spirtes et al., 2000]. In contrast, functional causal models
provide a useful tool to model causal relationships [Pearl,
2000]; recently, it has been shown that with appropriately
restricted functional causal models [Shimizu et al., 2006;
Hoyer et al., 2009; Zhang and Hyvirinen, 2009b; Peters et
al., 2013], it is possible to identify the causal structure from
purely observational data. These restricted causal models ei-
ther assume that the analyzed data is in equilibrium states or
assume that the causal model is time-invariant.
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However, in many practical situations, especially in neuro-
science, economics and climate analysis, the causal relations
may change over time; if one still uses a fixed causal model,
the discovered causal relations might be misleading. Let us
consider the following situations.

e The causal sufficiency assumption, which states that
there is no unobservable common cause of any two ob-
served variables, holds, but causal effects (e.g., causal
strength or involved parameters) change over time.

The causal sufficiency assumption is not satisfied — there
is an unobserved confounder whose influence to the ob-
served processes changes over time. Ignoring this effect
will make the causal relations between the observed pro-
cesses appear to change over time.

The above situations may even happen at the same time. A
conceivable example is the causal interactions between dif-
ferent brain areas that change greatly during different tasks
and states [Shafi er al., 2012; Zhao et al., 2013]; thus, we see
that the inside causal influences change over time. Here we
are interested in how they vary along with time, and how the
outside environment, which is not directly measurable, influ-
ences the inside activities, if it does so. In this paper, we fo-
cus on the case where the causal influences between observed
processes change smoothly over time and the influence from
unobserved confounders, if it exists, can be approximated as
a smooth function of time.

To account for the issues above, we present a novel ap-
proach to modeling such time-dependent causal influences.
We show that by introducing time information as a common
cause for the observed processes, we can model the time-
varying causal influences between the observed processes, as
well as the influence from a certain type of unobserved con-
founders. We propose a linear time-dependent causal model
and a nonlinear one with additive noise. Two questions then
naturally arise: 1) Is such a causal model, including the causal
direction, identifiable? 2) If it is, how can we estimate it ac-
curately from data? Regarding the former question, we show
that under mild assumptions, the causal model is identifiable.

In order to identify the time-dependent causal model, one
needs to fit candidate models and then do model check-
ing. Existing methods for estimating the time-varying mod-
els mainly use adaptive filters or sliding windows [Karlsson
et al., 2013; Barrett ef al., 2012]. These methods might lead



to large estimation errors, especially when the causal influ-
ence varies quickly over time. On the other hand, Gaussian
Process (GP) regression provides a promising non-parametric
Bayesian approach to regression problems [Rasmussen and
Williams, 2006]. It not only enables the distributions of var-
ious quantities to be calculated explicitly, but also brings
a convenient way to infer model hyperparameters such as
those that control the kernel shape and noise level [Chu and
Ghahramani, 2005]. We will show that GP can be used as
a prior to automatically capture the smoothness level of the
time-varying causal influence; as a consequence, the time-
dependent causal model can be estimated in a non-parametric
manner. After this step, we evaluate whether a certain causal
model is valid or not by testing for the independence between
the estimated noise terms and the corresponding hypothetical
causes by Hilbert-Schmidt Independence Criterion (HSIC)
[Gretton et al., 20071.

Our main contribution in this paper is two-fold. /. We for-
mulate time-dependent causal models to account for the time-
varying causal influences between the observed processes,
and/or a specific type of unobservable confounders whose in-
fluence on the observed processes can be approximated as
a function smooth in time. Based on the proposed models,
on the theoretical side, we discuss the identifiability of the
causal structure. 2. On the practical side, we propose a non-
parametric way to estimate the time-dependent causal influ-
ences, with the model complexity automatically inferred from
data.

Model Definition

By including the time information 7" as a special variable (a
common cause), we extend the functional causal model to
solve causal discovery problems in more general cases; see
Figure 1. In particular, it can represent time-varying causal
influences between the observed processes and the influence
from unobserved confounders that is approximately a smooth
function of time. Below we formulate both a linear time-
dependent function causal model, and a nonlinear one with
additive noise.

Figure 1: Causal graph G(V, E) (V = {1, x2, 23, T}) of the
time-dependent causal model, where time information 7' can
be considered as a common cause to the other observed vari-
ables. Dashed lines represent influences from 7', and we are
mostly interested in the identifiability of the causal structure
between z1, x5 and x3 represented by solid lines.

Preliminary

Before introducing our time-dependent functional causal
model, we first briefly review ordinary functional causal mod-
els [Pearl, 2000].
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In its general form, a functional causal model consists of a
set of equations of the form

xi:fi(pai,ui), i:17-~~ 7]\f (1)
where {z;} is the set of variables in a Directed Acyclic
Graph, pa; is the set of direct causes of variable x;, u; rep-
resents the disturbance term due to omitted factors, and the
disturbance terms are independent of each other. Each of the
functions f; represents a causal mechanism that determines
the value of z; from the causes and noise terms on the right
side.
In practice, we restrict the function form of f; to make the
causal structure identifiable [Shimizu et al., 2006; Hoyer et
al., 2009; Zhang and Hyvérinen, 2009b].

e Linear causal model:
- E . J )
T, = a;,j - pa; + uq,
J

where pa{ is the jth variable of pa,, and a; ; is the lin-
ear causal coefficients. If (pa;,u;) is not jointly Gaus-
sian distributed, the linear causal model is identifiable.

Nonlinear additive noise model:
z; = fi(pa;) + u;.
It has been shown to be identifiable except when f; is

linear and (pa,;, u;) is jointly Gaussian, as well as a few
’non-generic” cases.

Post-nonlinear causal model:

zi = gi(fi(pa;) + us),
where g; denotes an invertible post-nonlinear distortion.
It has been shown to be identifiable except when both g;
and f; are linear and (pa;, u;) is jointly Gaussian and a
few “non-generic” cases. All the non-identifiable cases
have been listed in [Zhang and Hyvirinen, 2009b].

The restricted functional causal model has also been ap-
plied to the time series by taking into account the temporal
constraints that the effect cannot precede the cause [Zhang
and Hyvirinen, 2009al. In particular, [Peters ef al., 2013]
considered the nonlinear causal relations,

xt(t) = fl(paf(t - P)a e apazl(t - 1)apa?(t)) + U,
where pa? (t — p) denote the p time-lagged direct causes of

variable x;. Note that here it is assumed that all causal rela-
tions are fixed.

Linear Time-Dependent Causal Model

In order to capture time-varying causal relations and con-
founder influences which are smooth in 7' explicitly, we
first formulate a linear time-dependent functional causal
model. We assume that a multivariate time series x(t)
(z1(t), 2(t), -+ ,xn(t))" with finite dimensionality N has
the following data generating process,

zi(t) =D > aip(t)z(t —p)+ Y bik()ar(t) +

j=1p=1 k#i
lagged terms instantaneous terms (2)
gi(t)  +ei(t),
N~

confounder term



where £;(¢) is i.i.d. (independent and identically distributed)
noise and independent of the causes x;(t — p), zx(t) and ¢,
a; ;p(t) represent the time-varying lagged causal coefficients,
b; 1(t) give the instantaneous causal coefficients which are
essential especially for low time resolution data, and g¢;(¢)
represent the causal influences from unobserved confounders
that are assumed to be functions smooth in time.

This formulation includes lagged influences, instantaneous
effects, and influences from a certain type of unobserved con-
founders. In practice it might suffice to consider its special
cases, e.g., drop the instantaneous terms if one believes that
they do not exist.

Nonlinear Time-Dependent Causal Model

In practice the relations among the observed processes are
usually nonlinear. For a nice trade-off between the identifi-
ability and generality of the causal model, we define a time-
dependent nonlinear model with additive noise:

zi(t) = fi(t,{z;(t —p)}j {zr(t) ori) +ei(D), 3)

where ¢;(t) is i.1.d. noise, and is independent of the causes

xj(t — p), x(t) and t. The argument ¢ inside the nonlinear
function f; explains both time-varying causal relations and
the confounder influence.

Discussion on the Identifiability of Causal
Structures

In this part, we discuss the identifiability of causal struc-
ture implied by the time-dependent functional causal models.
Identifiability implies that the causal model is asymmetric in
causes and effects and is capable of distinguishing between
them. More specifically, for the correct causal direction, the
noise is independent of the hypothetical causes, as assumed
in the model, but not for the backward direction.

From equation 2, we see that if the time-varying coeffi-
cients and the influences from unobserved confounders can
be represented as functions of time, the time information can
be seen as a cause to variable z;, and the same in equation
(3). Therefore, the variable 7" can be viewed as an additional
argument of the causal model, and it is represented as a com-
mon cause in the causal graph (Figure 1).

The time-dependent nonlinear model (3) can be seen as a
nonlinear additive noise model (ANM) on the variable set
{z;} U {T}. The linear one, (2), is actually a constrained
version of ANM where variable 7T is also included. Assum-
ing the ANM, it has been shown that the causal structure,
including the causal direction, is identifiable in the bivariate
case under mild assumptions on the nonlinear functions and
data distributions [Hoyer et al., 2009; Zhang and Hyvirinen,
2009b]; in the sense that for the backward direction, the noise
term is not independent from the hypothetical cause. This
identifiability result has been further extended to the multi-
variate case [Peters et al., 2011].

This directly implies that based on the formulated time-
dependent nonlinear causal model (3), the causal structure
is identifiable under mild assumptions (for details of the as-
sumptions, see [Hoyer er al., 2009; Zhang and Hyvirinen,
2009b; Peters et al., 2011]). Furthermore, the functional class
of the linear time-dependent causal model (2) is contained
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by that of the nonlinear one (3); under those assumptions,
given any function in the latter class, the noise is not inde-
pendent from the hypothetical causes for the backward di-
rection, implying that this is also the case given any func-
tion in the former class. In other words, generally speak-
ing, the causal structure is identifiable under the linear time-
dependent causal model (2).

Model Estimation

In this section, we propose a non-parametric method to
estimate the time-dependent causal models, where we use
GP [Rasmussen and Williams, 2006] as a prior to capture
the smoothness level of the time-varying causal influence.
With certain tricks, the estimation procedure for both the lin-
ear time-dependent causal model and the nonlinear one can
be formulated as specific GP regression problems. Below
we mainly focus on the estimation of the linear model, and
only briefly mention the estimation procedure for the nonlin-
ear model in the end, since they are similar.
In matrix form, the linear model (2) can be written as

P

(I-B)x(t) =Y Ay(t)x(t—p) + G(t) +£(t), or,

p=1

x(t) = > (I - B(1)) " A, (t) x(t — p)+

p=1

AL (1)
(I - B@®) 'G@)+ (I - B®)) ‘e(t),

G'(t)

(C))

&’ (t)

where x(t) = (x1(t), z2(t), -+ ,xn(t))T, I the N x N iden-
tity matrix, B(t) the matrix with entries b; x (), which could
be permuted to be strict lower triangularity to imply instanta-
neous causal relations, A, (¢) the matrix with entries a; ; (%),
G(t) the vector of g;(t), and (t) the vector of &;(t).

This inspires a computationally efficient two-step proce-
dure to estimate a; ; ,(t), b; x(t), ¢;(t), and the noise term
e;(t), by extending the procedure in [Hyvirinen ez al., 2010]:
we first estimate A7 (t), G'(t), and €’(t) in the model (4),
which does not have instantaneous effects; after that, we es-
timate B(¢) and then A,(t), G(t), and &(¢) by making use of
the relationship between &’ (t) and e(¢).

Step 1: We first only consider the lagged terms and the
confounder terms, but no instantaneous terms. For conve-
nience, we consider each row in equation (4), i.e.,

/

N P
Qi j,p

) =33"

j=1p=1

Bzt —p)+  gi(t) +ei(t), (6)
N

confounder term

lagged terms

separately. To use the GP prior, we collect all data points and
represent equation (5) in matrix notation:

y=Dx -f+¢, 6)



where
y=&(P+1),--- ,x(T))T,
X0 0
0 X 0
Dx=| . . . )
0 0 Xr_p
xT(1) x'(P)) 1
A S
x"(T — P) x"(T-1) 1
X =(X). o1,

f=[{al;p(t), i) }iwe)"

e = [{ei()}i]"
Here ® denotes kronecker product, and the entries in vectors
f and € have been aligned according to D x.

We put the GP prior on each time-varying coefficient and
confounder term to describe their uncertainty:

i jp(t) ~ GP(pijp(t), Kijp(t,t)),
gi(t) ~ GP(ui(t), Ki(t,t)),

where p. and K. (with appropriate subscripts) denote the cor-
responding mean and covariance in GP (we use a zero mean
and squared exponential covariance function), and ¢ is the
vector of collected time points. We have assumed that the
priors for a; ; , and g; are independent of each other for dif-

ferent 4, j, p. Then we represent f as
£(t) ~ GP(u(t), K(t,t)), ®)

where p(t) = {1 5,p(t), pi(t)}i ;. p, and K(¢, ) is a block-
diagonal matrix, with {K; ; ,(t,t)}; ;, and {K;(¢,t)}; on
its diagonal and aligned according to f(t).

To simplify the estimation procedure, we assume that the
noise is i.i.d. Gaussian random variable, ¢;(t) ~ N(0,0?),
and consequently we can derive various quantities explicitly.
With the GP priors and assumed Gaussian noise, the marginal
likelihood of the observations can be represented as a multi-
variate Gaussian distribution N'(y; m, ¥), withm = Dy p
and ¥ = DyKDx" + 021

We maximize the marginal likelihood to learn the hyperpa-
rameters in the mean functions, covariance functions of GP,
and the variance o2 of the noise. Then by Bayes’ Theorem,
we can derive the posterior distribution of f, which also fol-
lows a Gaussian distribution with mean

it = p+ (D2K)'[DyKDx" + 021 (y — m).

@)

©))

The posterior mean here gives the estimated lagged coeffi-
cients {a; ; ,(t)}ij.p.« and confounder terms {g;(t)}: ;-

In practice, specific knowledge of the physical system may
imply that some coefficients vary at a similar level of smooth-
ness, that is, with the same hyperparameters on those coeffi-
cients. This will greatly decrease the number of hyperparam-
eters to be learned.

Under the assumption of a priori independence among
a; ; »(t) and g;(t) for different , j, and p and the assumption
that the coefficients share the same hyperparameters (e.g.,
the kernel width), we can make the calculation computation-
ally more efficient. We can do matrix operations of product

!
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D+ KDY and inversion [Dx KDY + 021]~! in equation (9)
in terms of a 7' x T matrix, and then go back to the original
space by making use of kronecker product, instead of operat-
ingona N(NP + 1)T x N(NP + 1)T kernel matrix. This
greatly improves the efficiency of calculation.

Step 2: We then consider the instantaneous terms if nec-
essary. For low time resolution data, it is important to con-
sider the instantaneous causal influence, and [Hyvirinen et
al., 2010] demonstrated that neglecting it might lead to mis-
leading interpretations of causal relations.

Suppose that we are given a candidate causal ordering for
the instantaneous causal effects, denoted by O; we aim to
estimate the causal model following this instantaneous causal
ordering and test whether it is plausible. Denote by &'(t) =
(81(t),85(t), - ,&(t))" the estimated noise from the first
step; we then do the following.

1. The relationship between £’ () and £(t) in (4) gives (1 —
B(t))e'(t) = (t), or
ei(t) = D bik(t)ek(t) +elt),

kEpa;

(10)

where pa; denotes the set of instantaneous causes of
x;(t) according to O. To estimate b; 1, (t) and ;(t), we
use the estimated values &’(t) as £'(t) into the above
equation. We also put a GP prior on b; j, i.e., b; x(t) ~
GP(u; 1(t), K; 1(t,t)), and estimate the hyperparam-
eters by maximizing the marginal likelihood. Here we
also assume a priori independence among b; j (¢) for dif-

ferent ¢, k.
2. Then the estimated lagged causal coefficients and con-
founder influence from the first step can be adjusted as:
Ap(t) = (I = B) A1), G(1) = (I-B1)G'(#). A1
3. We finally evaluate whether the causal model corre-

sponding to O is valid or not by testing for the inde-
pendence between the estimated noise terms and cor-
responding hypothetical causes by HSIC; recall that in
principle, the independence condition is valid for the
right causal direction, but not for the wrong directions.

To find a plausible instantaneous causal ordering, one can
apply Step 2 on all candidate orderings and choose the one
with independent noise terms. (Sometimes one may find mul-
tiple orderings with independent noise, because of the non-
identifiable cases, although very rare, and the finite sample
size effect.)

Alternatively, we can estimate both the lagged terms and
instantaneous terms in a single step. This, however, is com-
putationally more demanding.

Note that given an instantaneous causal ordering, the non-
linear time-dependent model (3) is actually a nonlinear re-
gression model. A similar procedure can be developed to es-
timate the model corresponding to the given causal ordering
and test whether it is plausible. In the nonlinear case, we have
to estimate all involved quantities in a single step.

Experimental Results

We have applied the proposed approach to time-dependent
causal modeling to a variety of simulated and real data.



Simulations

Simulation 1 (With Both Instantaneous and Lagged Causal
Influence)

We generated 1500 data points from the following equa-
tion set which includes both lagged and instantaneous causal
influence, and has smoothly changing coefficients:

.’El(t) = a171,1(t)x1(t — 1) + a172,1(t)x2(t — 1) + E1(t),
xz(t) :agﬁl,l(t)xl(t — 1) + a2,271(t)$2(t - 1)
+ ba,1 ()21 (t) + €2(t),

where the coefficients have sinusoidal shapes:
ai,1,1(t) = 0.3(sin(c- t) + 1.1), a1,2,1(t) = 0.2 cos(c - t) + 0.05,
az,1,1(t) = 0.2sin(c- t) + 0.1, az,2,1(t) = 0.5(cos(c - t) + 0.05),
b2,1(t) = 0.2cos(c - t), gi(t) ~ N(0,0%) witho = 0.1fori =
{1,2}.

We used the proposed linear time-dependent functional
causal model to fit the data. For the order of the time lag
P, we estimated it by choosing the one minimizing the cross-
validated prediction error.

Figure 2 shows the estimated time-varying coefficients of
our model when ¢ = 1, given by our approach and the
window-based method from [Karlsson et al., 2013] with
window lengths 50 and 100. Figure 3(A) shows the mean
squared error (MSE) in the estimated coefficients along with
the changing smoothness level ¢ of the coefficients. Figure
3(B) shows the 10-step prediction error for z5(t). From them
one can see that the proposed method produces much more
accurate estimates of the coefficients and predictions of the
time series. This verifies the usefulness of the automatically
learned GP prior. For comparison, we also fitted a static struc-
tural vector auto-regressive model on the data; the causal link
from x5 (t — 1) to 1 (¢) is then missing, because the estimate
of the corresponding coefficient is not significant at level 0.05
according to the Wald test.

A1 8121
0.8
P~ A0 A L ) N ——ground truth
of = N N M| —GP model
. window methods (I=50)
A1 821 B, 1.1
0.8
P g ™
Lz o~ —~ N 7N \ K] L S
0 e o \\\::/VA \»// \\ \\\-,4"’ \\41” ™
70'00 500' 1000 1500 0 500 | 1000 1500 0 500 i 1000 1500
time time time

Figure 2: Estimated time-varying coefficients from Simula-
tion 1. The mean squared error in the estimated coefficients
by our GP linear time-dependent causal model, and the win-
dow methods with window length | = 50 and [ = 100 are
0.0243, 0.0738, 0.1070, respectively. Here for clarity, we do
not show the results for [ = 100.

Simulation 2 (With Confounders)
We generated 2000 data points from the following equation
set:
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Figure 3: Mean squared error along with the changing in-
verse smoothness level c of the coefficients. (A) MSE of the
estimated coefficients; (B) 10-step prediction error for zo(t).

where ai1,1,1(t) = 0.5sin(t), az,2,1(t) = 0.35(cos(t) + 1),
g1(t) = 0.3z(t — 1), g2(t) = 0.2z2(t), 2(t) = cos(2t + 0.5),
gi(t) ~ N(0,0%) witho = 0.1 fori = {1,2}.

Figure 4 shows the estimated causal coefficients and con-
founder influence under the linear time-dependent causal
model. For simplification, we assumed that every coefficient
and confounder term share the same hyperparameters; as a
consequence, the estimated a; 21 and as 1,1 fluctuate around
zero slightly, while their true value should be zero. In or-
der to test whether they are significant zero, we compared the
cross-validated prediction error with other three cases: (1)
fix 121 = 0, (2) fix 211 = 0, (3) fix a121 = 0 and
ag,1,1 = 0. The results indicate that there is no time-delayed
causal relation between x; and x5, which is consistent with
the ground truth.

1 a4 14 8121 94
AN AN ANl S B VAVAVAVAVAVA
-1
1 3511 804 9
ey [NV AAAAANA
_10 1_000 2000 0 1_000 2000 0 1_000 2000
time time time

Figure 4: Estimated causal coefficients and confounder in-
fluence in Simulation 2. The blue dashed lines indicate the
ground truth, and the red solid lines show our estimation.

Simulation 3 (Linear Instantaneous Model with Various
Types of Coefficients )

We tried to estimate causal coefficients which are gener-
ated by different types of functions.

Here we assumed a simple model, which only includes in-
stantaneous causal relations,

23 (t) = b(t)a1(t) + (D),

and we changed different types of functions for causal coef-
ficients b(t), e.g. Laplace functions, polynomial functions,
step functions and noisy square-waves. Figure 5 shows the
underlying coefficients, as well the estimated results with our
GP linear time-dependent causal model. We can see that
our method derives accurate estimations on different types of
functions for causal coefficients.
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Figure 5: Different types of functions for causal coefficients,
where the blue lines indicate the ground truth, and the red
lines are the estimation with our GP linear time-dependent
causal model. (A) Laplace function. (B) Combination of sinc
function and polynomial function. (C) Step function. (D)
Noisy square-waves.

Simulation 4 (Nonlinear Model)

Next, we generated the data according to the following
time-dependent nonlinear model, which is uni-directional
(z1(t—1) — z2(t)) and does not have instantaneous effects:

z1(t) = z1(t — 1)(3.8 — 3.8z1(t — 1)) + e1(¢),
{ x2(t) = x2(t — 1)(3.5 — 3.522(t — 1) — A(t)z1(t — 1))

+e2(1),

where A(t) has a sigmoid shape.

We used the nonlinear time-dependent causal model to fit
the data. In order to find the time-lagged causal direction,
we compared the cross-validated errors in the following four
cases: (1) z1(t — 1) — za(t), 2) z2(t — 1) — z1(1),
3) !L‘l(t — 1) — .Q?Q(t)7$2(t — 1) — :1?1(t>, (4) no time-
delayed causal relation between x; and z5. Their prediction
errors are 0.0073, 0.0102, 0.0076, and 0.0102, respectively.
Case 1 is favored by the cross-validated prediction error. We
then tested the independence between the estimated noise and
21(t — 1),z2(t — 1) in the first case, and failed to reject the
independence hypothesis, with the HSIC p value 0.13. This
indicates the causal influence z1(t — 1) — x2(t).

Real Data Test

Stock Indices We chose the daily dividend/split adjusted
closing prices from 03/16/2005 to 07/31/2014 of three stock
indices: Nasdaq in US, FTSE in UK, and N300 in Japan.
These three indices are
among the major stock in-
dices all over the world, so
it is interesting to see how
they are causally related.

Figure 6: HSIC p values
between the estimated noise
and hypothetical causes.

We analyzed the return se- causal direction | p value
ries of the indices. IleTSdE ->Nasdaq 8(2)58
: asdaq ->FTSE .

We first .con31dered all B0 FTSE— 01081
possible pairs and tested FTSE-SN300 1 0.0030
whether the proposed ap- N300 ->Nasdaq | 0.0082
proach is able to find plau- Nasdaq ->N300 | 0

sible causal directions. In
particular, we fitted our linear time-dependent causal model

Nasdagq(t-1) —> Nasdaq(t)
0.4 . 0.4

FTSE(t-1) —> Nasdaq(t) FTSE(t) —> Nasdaq(t)
0

0

-0.4]

FTSE(t-1) -> FTSE(Y)
0.4 0.4

N300(t-1) —> FTSE(t)

0.8

04N ]

T1 T2 T3 T4
Time (MM/DD/YY)

Tt T2 T3 T4 T1 T2 T3 T4
Time (MM/DD/YY) Time (MM/DD/YY)

Figure 7: Part of the estimated causal coefficients on stock
indices, where T1, T2, T3, and T3 stand for 12/21/2006,
12/11/2008, 12/01/2010, and 11/21/2012, respectively.

for both directions of each pair. Figure 6 shows the corre-
sponding p values of HSIC independence test [Gretton et al.,
2007] between the estimated noise and hypothetical causes.
We failed to reject the independence hypothesis for FTSE —
Nasdaq and N300 — FTSE at significance level 0.05. As
seen from the p values, the proposed approach favors N300
— FTSE — Nasdagq; this indeed matches the ordering due
to time differences: the time zones corresponding to N300,
FTSE, and Nasdaq are UTC+9, UTC, and UTC-5, respec-
tively. Note that the data were aligned according to the local
time.

For comparison, we also fitted a structural vector autore-
gressive model on the data to find the instantaneous causal
ordering, and found that the independence condition between
the estimated noise term and the hypothetical cause does not
hold in either direction for any pair. Recall that when we al-
low the time-dependent causal influence, we will be able to
find a uni-directional causal influence.

We then fitted the model on the three time series with the
above causal ordering. Figure 7 shows some of the estimated
causal coefficients. The instantaneous causal effects from
FTSE to Nasdaq, and from N300 to FTSE are obvious, while
the one-day delayed causal effect from N300 to FTSE is quite
small. These results are consistent with the influence due to
the time difference. Interestingly, during the financial crisis
of 2008, the causal coefficients become much larger.

Temperature in House This hourly temperature data set
was recorded in six places (1 - Shed, 2 - Outside, 3 - Kitchen
Boiler, 4 - Living Room, 5 - WC, 6 - Bathroom) of a house
in the black forest in Germany. This house was not inhabited
most of the time except for some periods including Christmas,
and lacked central heating; the electric radiators in room 3,
5, and 6 started when the temperature dropped close to zero
(there was no electric radiator in 4) [Peters et al., 2013].

Since the temperature sensor in the shed was taken to other
places occasionally, the recorded data contain a number of
outliers. We only analyzed the relations between the temper-
ature in the other five places denoted by variables 2 — 6. Here,
we considered one time-lagged causal influence and the in-
fluence from possible unobserved confounders, with the prior
knowledge that temperature inside does not have causal effect
on the outside temperature. We found that when the temper-
ature dropped close to zero, that is, when the electric radia-



tors started, or when there were people living there (during
Christmas), the causal relations among these rooms, as well
as the influences from the confounders, obviously changed.
Figure 8 shows the estimated causal graph in three different
states: normal state when the electric radiators were off, and
there were no guests living there (state A); the period when
the electric radiators started automatically for the low tem-
perature (state B); the period when people lived in the house
(e.g., during Christmas) (state C). For illustrative purposes,
we only considered the causal links whose estimated coeffi-
cients are larger than 0.06. Figure 9 shows part of the esti-
mated causal coefficients and the influences from the unob-
served confounders in these three states (the three states are
separated by dashed blue lines). We see that the casual rela-
tions, including causal strength and time-lagged causal struc-
ture, among these five places change across different states.
In state A, variable 2 influences 3 and 4, 5 influences the
other three rooms, 4 is the sink node, and each variable is in-
fluenced by its previous value. The estimated influence from
unobserved confounders g is small. In state B, the outside
2 does not have an obvious effect on the inside temperature.
Since there is no electric radiator in 4, the causal directions
between 3 and 4, 4 and 5 are reversed, compared to state
A. The causal influence from unobserved confounders is ob-
vious to the inside. Interestingly, the confounder seems to
be consistent with the status of electric radiators. In state
C, the outside 2 weakly influences the inside, the causal re-
lations among the remaining rooms are densely connected,
and the influence from unobserved confounder is obvious,
which might be reasonable due to complicated human be-
havior. Therefore, it seems that the confounder here can be
viewed as the influence from electric radiators or human be-

havior.
3 3

Figure 8: Causal relations among the five places in three dif-
ferent states. We only show causal coefficients which are
larger than 0.06 for illustrative purposes. In particular, the
self-loop represents the self-influence from its own previous
value. (A) Normal state when the electric radiators were off
and no guests lived there. (B) The period when the electric
radiators were on. (C) The period when people lived in the
house.

Conclusion and Discussions

By including the time information as a common cause, this
paper extends ordinary functional causal models to identify
the time-dependent causal influences, and proposes a non-
parametric way to estimate the time-varying causal model and
the influence from certain unobserved confounders which can
be represented as a smooth function of time.

This work can be extended in several directions. First, we
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Figure 9: Part of the causal coefficients and the causal in-
fluences from the unobserved confounders in the three states
(blue solid lines). The three states are separated by the
dashed blue lines: state A is during [1, 700]; state B is during
[701,1150]; state C is during [1151,1400]. The red dashed
lines correspond to zero. In the left column, the panels from
top to bottom show the causal coefficients of the following di-
rections: 3 — 4,3 — 6,5 — 6, and 6 — 4, respectively. The
right column, from top to bottom, shows the causal influence
from the unobserved confounders to 3, 4, 5, 6, respectively.

are interested in the cases when the causal structure, instead
of only the causal influences, changes over time. We find that
if the time information can be viewed as a common cause, the
varying causal structure is still identifiable under our frame-
work. However, it is not straightforward to find an efficient
way to infer the time-varying instantaneous causal structure
automatically from observational data, especially for the non-
linear model. Secondly, we can extend our formulation to in-
corporate heteroscedastic noise, where the noise is not i.i.d.,
but its distribution changes along with the cause; it can then
identify the underlying causal structure in more general sit-
uations. Another line of our future work is to analyze the
causal relations between brain regions from fMRI data with
the proposed model and method.
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