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Abstract
Multi-label classification with many classes has re-
cently drawn a lot of attention. Existing meth-
ods address this problem by performing linear la-
bel space transformation to reduce the dimension
of label space, and then conducting independent re-
gression for each reduced label dimension. These
methods however do not capture nonlinear cor-
relations of the multiple labels and may lead to
significant information loss in the process of la-
bel space reduction. In this paper, we first pro-
pose to exploit kernel canonical correlation analysis
(KCCA) to capture nonlinear label correlation in-
formation and perform nonlinear label space reduc-
tion. Then we develop a novel label space reduction
method that explicitly combines linear and nonlin-
ear label space transformations based on CCA and
KCCA respectively to address multi-label classifi-
cation with many classes. The proposed method
is a feature-aware label transformation method that
promotes the label predictability in the transformed
label space from the input features. We conduct
experiments on a number of multi-label classifica-
tion datasets. The proposed approach demonstrates
good performance, comparing to a number of state-
of-the-art label dimension reduction methods.

1 Introduction
Multi-label classification is an important problem in many
application domains, where each data instance can be as-
signed into multiple categories. For example, in image la-
beling [Zhou and Zhang, 2006] and video annotation [Qi
et al., 2007], an image can contain multiple objects and
thus have multiple labels from a large number of object
classes. In text categorization [Schapire and Singer, 2000],
a given article or webpage can be assigned into multiple
topics. A simple way of multi-label classification trans-
forms the multi-label learning problem into a set of indepen-
dent single label classification problems [Lewis et al., 2004;
Chen et al., 2007]. This type of methods however have the
obvious drawback of ignoring the critical correlation infor-
mation between the multiple labels. A significant number of
multi-label learning works developed in the literature have

centered on exploiting the label interdependency informa-
tion between the multiple labels [Elisseeff and Weston, 2001;
Guo and Gu, 2011; Dembczyński et al., 2010; Tsoumakas
and Katakis, 2007]. However, with the increase of the num-
ber of labels, these standard multi-label classification meth-
ods that work in the original label space can easily become
computationally impractical in training.

Recently, a number of label space reduction methods have
been developed in the literature to address multi-label clas-
sification with many labels [Balasubramanian and Lebanon,
2012; Bi and Kwok, 2013; Hsu et al., 2009; Chen and Lin,
2012; Tai and Lin, 2010; Zhou et al., 2012]. These meth-
ods transform label vectors from high dimensional spaces to
low dimensional spaces with random projections [Hsu et al.,
2009], maximum eigenvalue projections [Tai and Lin, 2010;
Chen and Lin, 2012], Gaussian random projections [Zhou et
al., 2012], and label subset selections [Balasubramanian and
Lebanon, 2012; Bi and Kwok, 2013], and then solve a small
number of independent regression or classification tasks effi-
ciently in the reduced output space. In addition to addressing
multi-label classification with many labels, these label space
reduction methods also share similar advantages as the fea-
ture space reduction methods on reducing the computational
cost of training without much loss of prediction performance.
However, all these current methods are limited to linear label
space transformations and fail to capture nonlinear correla-
tions between the multiple labels in the original label space.

In this paper, we first propose to exploit kernel canonical
correlation analysis (KCCA) to perform feature-aware non-
linear label space dimension reduction for multi-label clas-
sification problems with many labels. Then we develop a
unified approach that integrates both linear and nonlinear la-
bel space reductions based on canonical correlation analysis
(CCA) and kernel canonical correlation analysis (KCCA) re-
spectively to capture different types of label correlation pat-
terns in the original label space. In particular, we employ a
degree-2 polynomial nonlinear kernel in KCCA, which per-
mits an efficient gradient descent decoding procedure in the
test phase. After label space reduction, we solve a small num-
ber of independent regression problems in the transformed la-
bel space. The proposed approach works in a feature-aware
manner since the label space reductions are conducted by
using the feature inputs as a parallel view of the label vec-
tors under the CCA and KCCA frameworks, which promotes
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the label predictability from the input features in the trans-
formed label space. We conduct experiments on a number of
multi-label classification datasets and the proposed approach
demonstrates superior performance over a few state-of-the-art
comparison methods.

2 Related Work
A significant number of multi-label learning works have been
developed in the literature, most of which have centered on
exploiting the interdependency information between labels,
including probabilistic classifier chains [Dembczyński et al.,
2010; 2012; Kumar et al., 2013], graphical model based
methods [Guo and Gu, 2011; Ghamrawi and Maccallum,
2005], structured support vector machines [Tsochantaridis et
al., 2005] and max-margin methods [Guo and Schuurmans,
2011; Lampert, 2011].

The probabilistic classifier chains (PCC) method [Dem-
bczyński et al., 2010] applies the product rule of probability
to the joint distribution of labels to capture conditional la-
bel dependencies. It estimates the conditional probability of
every possible label set for an input instance and employs a
Bayes optimal inference rule to optimize the given task loss
function. The PCC method has appealing properties, but its
accuracy is sensitive to the pre-specified ordering of the la-
bels in training. Moreover, as suggested in [Dembczyński
et al., 2010], the applicability of the PCC method is lim-
ited to data sets with a small number of labels (no more than
about 15 labels) and it is computationally intractable for prob-
lems with many labels. Some later works have tried to im-
prove PCC by using an enhanced inference procedure [Dem-
bczyński et al., 2012] or applying beam search [Kumar et al.,
2013]. However the applicabilities of these improved meth-
ods are still limited to data sets with moderate number of la-
bels. Ghamrawi and Maccallum [2005] explored conditional
random field (CRF) classification models to parameterize la-
bel co-occurrences for multi-label classification. This work
however suffers from the intractability of the exact inference
problem for both training and testing processes due to the
high tree-width graphical structures, while approximate infer-
ence methods converge to local optima. Its applicability has
been limited to data sets with a small number of labels. The
work of [Guo and Gu, 2011] uses a conditional dependency
network to capture label dependencies, which also has similar
computational problems and has only been applied on prob-
lems with small numbers of labels. The structured support
vector machines (SSVMs) [Tsochantaridis et al., 2005] have
been developed to address prediction problems with struc-
tured and interdependent output variables. When applying
SSVMs on multi-label classification problems with pairwise
label-dependency structures, expensive inference procedures
are involved during both training and testing phases. Some
more recent max-margin works have developed novel loss
functions [Guo and Schuurmans, 2011] and new formula-
tions [Lampert, 2011] to specifically address multi-label clas-
sification. These methods however have only been applied on
data sets with small numbers of labels. When the number of
labels is large, these standard multi-label classification meth-
ods that work in the original label space can easily become

computationally impractical.
Recent works on multi-label classification with many la-

bels have focused on reducing the original large number of
labels to a manageable set of transformed labels, by using
linear label space projections and linear label subset selec-
tions [Hsu et al., 2009; Chen and Lin, 2012; Lin et al., 2014;
Tai and Lin, 2010; Zhou et al., 2012; Balasubramanian and
Lebanon, 2012; Bi and Kwok, 2013].

An early work in [Hsu et al., 2009] establishes a label pro-
jection framework to address multi-label classification with
many labels. It first projects the high dimensional label vec-
tors to a low dimensional space using a random transforma-
tion matrix, and then learns a regression model for each di-
mension of the transformed label vector. For a test instance,
the estimated label vector from the regression models is then
projected from the low dimensional space back to the orig-
inal high dimensional label space. Following this frame-
work, a number of improvements have been proposed. Tai
and Lin [2010] proposed a principal label space transforma-
tion (PLST) method, which employs the principal component
analysis (PCA) to reduce the label matrix in the original high
dimensional space to a low dimensional space. Unlike ran-
dom projections, the PCA dimensionality reduction produces
the low dimensional representation by minimizing an L2-
norm encoding error between the projected label matrix and
the original label matrix. Subsequently, Chen and Lin [2012]
proposed a conditional principal label space transformation
(CPLST) method. It is a feature-aware method, which simul-
taneously minimizes both the L2-norm label encoding error
and the least squares linear regression error in the reduced la-
bel space. Zhou et al. [2012] proposed a Gaussian random
projection method for label space transformation. Recently,
Lin et al. [2014] proposed a feature-aware implicit label space
encoding (FaIE) method, which directly learns a latent code
matrix and a linear decoding matrix by jointly maximizing the
recoverability of the original label space and the predictabil-
ity of the latent space.

In addition to these continuous label space dimensionality
reductions, label subset selection methods directly select a
discrete subset of the original labels to use. Balasubramanian
and Lebanon [2012] proposed a multiple output prediction
landmark selection method for multi-label classification with
many labels. It selects a subset of the labels by minimizing
the sparsity regularized encoding error. The approach in [Bi
and Kwok, 2013] selects a small subset of the class labels
from the original label space via randomized sampling.

These two groups of methods however are all limited to
linear label space reductions, which fail to capture nonlin-
ear label correlations in the original label space and may lead
to severe information loss. Moreover, all these methods, ex-
cept the works in [Chen and Lin, 2012; Lin et al., 2014], per-
form label transformation on the label matrix in an “unsuper-
vised” manner without taking the input feature information
into consideration. This may produce transformed labels that
are not well predictable from the input features. In this paper,
we develop a feature-aware nonlinear label space reduction
method for multi-label classification to address these two fun-
damental issues of existing works.
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3 Preliminaries
In this section, we review the preliminaries over canonical
correlation analysis (CCA) and kernel canonical correlation
analysis (KCCA).

3.1 Canonical Correlation Analysis
Canonical correlation analysis (CCA) [Hotelling, 1936] is a
well known tool for modeling linear associations between two
sets of multi-dimensional variables. Given two views of the
same set of objects, CCA projects each view into a low di-
mensional representation such that the two views are maxi-
mally correlated in the dimensionality reduced space. Tra-
ditionally, CCA has been used for supervised feature space
dimensionality reduction in multi-label classification [Sun et
al., 2011], in which it treats the input features and the class
labels as two parallel views of the same set of objects and
projects the input data into a low dimensional space directed
by the label information. Specifically, given an observed in-
put data matrix X ∈ Rt×d, and its corresponding label indi-
cator matrix Y ∈ {0, 1}t×k, CCA projects them into a low
dimensional space such that their correlation coefficient can
be maximized. This can be formulated equivalently as the
maximization problem below

max
u∈Rd,v∈Rk

u>X>Y v (1)

subject to u>X>Xu = 1, v>Y >Y v = 1

which induces the following generalized eigenproblems on u
and v [Hardoon et al., 2004]

X>Y (Y >Y )−1Y >Xu = λ2X>Xu (2)

Y >X(X>X)−1X>Y v = λ2Y >Y v (3)

By solving these eigenproblems for the topm eigenvectors,
CCA will find m pairs of projection vectors {(ui,vi)}mi=1,
where m < min(k, d). By using all the {ui}mi=1 vectors
as columns, one can form a d × m projection matrix U to
perform linear dimensionality reduction over the input matrix
X . Different from the unsupervised dimensionality reduction
method PCA, whose orthogonal matrix is derived solely from
the input data matrix, the orthogonal projection matrix U in
CCA has the advantage of encoding label information from
the label matrix Y .

Recently, CCA has also been considered for relating in-
puts to label projections in multi-label classification [Zhang
and Schneider, 2011], where CCA is used to produce trans-
formed labels to augment the original labels and increase la-
bel dimensions. By using all the {vi}mi=1 vectors as columns,
one can form a k × m projection matrix V to perform lin-
ear dimensionality reduction over the label matrix Y . We can
denote the CCA process that produces V as

V ← CCA(X,Y,m) (4)

Using this projection matrix V produced under the guidance
of the input data X , the label matrix Y can be mapped into a
low dimensional t×m matrix Z = Y V .

3.2 Kernel Canonical Correlation Analysis
The capacity of standard canonical correlation analysis
(CCA) for data analysis and dimensionality reduction is lim-
ited by its linearity. To increase its capacity, kernel techniques
have been used in CCA to produce a nonlinear extension, ker-
nel canonical correlation analysis (KCCA) [Hardoon et al.,
2004].

To exploit kernel techniques, the original two view rep-
resentations X and Y can be first mapped into high-
dimensional feature spaces, Φ(X) and Ψ(Y ), respectively.
Then the input kernel matrix can be obtained as Kx =
κx(X,X) = Φ(X)Φ(X)> and the label kernel matrix can be
obtained as Ky = κy(Y, Y ) = Ψ(Y )Ψ(Y )>, where κx(·, ·)
and κy(·, ·) denote the kernel functions. Note that the high-
dimensional representations, Φ(X) and Ψ(Y ), do not need to
be given explicitly and one only needs to provide the kernel
functions κx(·, ·) and κy(·, ·). With the input and label kernel
matrices, KCCA maximizes the kernelized correlation coeffi-
cient, which can be equivalently formulated as the following
maximization problem

max
α∈Rt,β∈Rt

α>KxKyβ (5)

subject to α>KxKxα = 1, β>KyKyβ = 1

Moreover, to cope with the potential singular problem of the
kernel matrices, a regularization term ηI with a small η > 0
can be added to the constraints.1 The regularized KCCA leads
to the following generalized eigenproblems

KxKyβ = λ(K2
x + ηI)α (6)

KyKxα = λ(K2
y + ηI)β (7)

which is equivalent to the unified eigenproblem below(
0 KxKy

KyKx 0

)[
α
β

]
= λ

(
K2
x + ηI 0
0 K2

y + ηI

)[
α
β

]
(8)

By solving this eigenproblem for the top q eigenvec-
tors, KCCA will produce q pairs of projection vectors
{(αi,βi)}

q
i=1. One can then produce a projection matrix A

for the input kernel matrix by using all {αi}qi=1 vectors as
columns of A, and produce a projection matrix B for the la-
bel kernel matrix by using all {βi}

q
i=1 vectors as columns of

B. For the convenience of presentation, we denote the pro-
cess of producing the B matrix as

B ← KCCA(Kx,Ky, q) (9)

4 Nonlinear Label Space Transformation
In this section, we present a nonlinear label space transfor-
mation method to integrate both CCA and KCCA for multi-
label classification with a large number of labels. The pro-
posed methodology is motivated from two aspects: First, the
input feature information guided label space dimensionality
reduction can produce transformed labels that are easily pre-
dictable from the input features. Second, a combination of
linear and nonlinear label transformations can capture both

1Similar regularization can be employed in the linear CCA case
as well to ensure valid matrix inversions.
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Algorithm 1 A Unified Training Algorithm
Input: X , kernel matrix Kx, label matrix Y ,

output kernel matrix Ky , m, q.
Output: label projection matrices V and B,

regression functions h(·) and f(·).
Procedure:

1. perform CCA and KCCA:
V ←CCA(X,Y,m), B ←KCCA(Kx,Ky, q).

2. label transformation: Z = Y V, Q = KyB.
3. learn a multi-dimensional regressor h(·) from

the labeled data matrices (X,Z).
4. learn a multi-dimensional regressor f(·) from

the labeled data matrices (X,Q).

linear and nonlinear label correlations in the high dimensional
label space and hence maximally reserve the original label in-
formation in the reduced label space. By integrating contri-
butions from these two aspects, we expect the unified label
space transformation method can effectively exploit poten-
tial label correlations to improve the high-dimensional multi-
label classification performance.

Following the classic label projection framework estab-
lished in the literature, our proposed approach has three steps:
label encoding, independent regression, and label decoding.
The first two steps form the training process and the decod-
ing is performed to classify test instances.

4.1 A Unified Training Algorithm
Given a training data matrix X ∈ Rt×d, and its correspond-
ing label indicator matrix Y ∈ {0, 1}t×k, we first perform
both linear and nonlinear feature-aware label space transfor-
mations to produce transformed label matrices in lower di-
mensional spaces. CCA can be directly performed over the
label matrix Y and the input feature matrix X , using the pro-
cess denoted by Equation (4), which produces a label space
projection matrix V . Then the high dimensional label matrix
Y can be projected into a low dimensional matrix Z ∈ Rt×m
by Z = Y V .

KCCA is used to perform nonlinear label space transfor-
mation with the input data kernel matrix Kx and label ker-
nel matrix Ky , aiming to capture nonlinear label correlations
in the original label space. To enable an efficient decoding
process from the reduced label vector to the original high di-
mensional label vector later in the test phase, in this work, we
consider a polynomial kernel function with degree 2 as the la-
bel kernel function, κy(y,y′) = (y>y′)2, such that the label
kernel matrix is computed as

Ky = κy(Y, Y ) = (Y Y >) ◦ (Y Y >) (10)

where ◦ denotes matrix Hadamard product. This polynomial
kernel function can capture any pairwise dependence among
the multiple labels. The input kernel matrix Kx can be com-
puted using any mercer kernel functions. In our experiments
later, we used a linear input kernel such that Kx = XX>.
After performing KCCA over Kx and Ky , as indicated by
Equation (9), to produce a label projection matrix B, the la-
bel kernel matrix can be projected into a lower dimensional
matrix Q ∈ Rt×q by Q = KyB.

Algorithm 2 Decoding Algorithm
Input: a test instance x, projection matrices V, B,

regressor functions h(·), f(·),
trade-off parameters µ ≥ 0, 0 ≤ γ ≤ 1

Output: a solution label vector ŷ∗.
Procedure:

set z = h(x), q = f(x)
initialize y(1) as a (k × 1) zero vector
for r = 1, . . . ,maxiters

1. compute the gradient g(y(r))
2. find the optimal step-size τ∗

using back-tracking line search in (19)
3. set y(r+1) = PC

(
y(r) − τ∗g(y(r))

)
4. check convergence, break out if converged

end for
set ŷ∗ = y(r+1).

By combining both CCA and KCCA, we can obtain a uni-
fied projected label matrix Ŷ = [Z,Q], where each trans-
formed label vector Ŷi is located in a low dimensional space
Rm+q with m+ q < k.

Next we learn a set of independent regression models from
the input features to each dimension of the projected label
matrix. This leads to training a multi-dimensional regres-
sor on the unified transformed training data (X, Ŷ ), which
is equivalent to training two multi-dimensional regressors
h(·) and f(·) from the transformed training data (X,Z) and
(X,Q) respectively.2 Specifically, we conduct linear regres-
sion by minimizing the following regularized least squares
losses:

min
W,b

‖Z −XW − 1b>‖2F + α‖W‖2F (11)

min
Ω,d

‖Q−XΩ− 1d>‖2F + α‖Ω‖2F (12)

where ‖ · ‖F denotes the Frobenius matrix norm, 1 denotes
a column vector with all 1 values. Closed-form solutions can
be derived to solve these least squares regression problems ef-
ficiently in the reduced label spaces. Then the regressors h(·)
and f(·) can be obtained using the trained model parameters

h(x) = x>W + b> (13)

f(x) = x>Ω + d> (14)

The overall training algorithm is given in Algorithm 1.

4.2 Decoding
In the test phase, given a new test instance x ∈ Rd, we pre-
dict its label vector y in the original label space by solving a
decoding problem. First, we can compute its regression label
vectors, z ∈ Rm and q ∈ Rq , in the reduced label spaces
using the regressors trained above such that z = h(x) and
q = f(x). Given the two label vectors, z and q, in the re-
duced linear and nonlinear label spaces respectively, we next
recover a unified k × 1 label vector y in the original label

2For the convenience of algorithm presentation in the test phase,
we use two multi-dimensional regressors instead.
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space by minimizing a sparsity regularized joint least square
loss function over both the linear and nonlinear label space
transformations

min
y

µ‖y‖1+
γ

2
‖z−V >y‖2+

1−γ
2
‖q−B>κy(Y,y)‖2

subject to y ∈ {0, 1}k (15)
where µ and γ are trade-off parameters. The L1-norm, ‖y‖1,
is used to promote the sparsity of the label vector. This is
based on the observation that in many real world problems
each instance is typically only assigned a few positive labels
though the overall number of labels is large. The γ param-
eter balances the contributions of linear CCA and nonlinear
KCCA label transformations for label vector recovery. For
the polynomial label kernel function with degree 2, we have
κy(Y,y) = (Y y) ◦ (Y y). This optimization problem how-
ever is hard to optimize due to the integer constraints over
y. We thus relax the integer constraints into linear inequal-
ity constraints 0 ≤ y ≤ 1, and solve the following relaxed
optimization problem

min
y

`(y) subject to 0 ≤ y ≤ 1 (16)

where

`(y) = µ‖y‖1 +
γ

2
‖z− V >y‖2

+
1−γ

2
‖q−B>((Y y) ◦ (Y y))‖2 (17)

We develop an efficient iterative projected gradient descent
algorithm to solve the relaxed decoding minimization prob-
lem above. In the r-th iteration, the gradient of the objective
function of (16) at the current point y(r) can be computed as

g(y(r)) = µ1 + γV (V >y(r) − z) + (18)

2(1−γ)Y >
[(
BB>diag(Y y(r)y(r)>Y >)−Bq

)
◦ (Y y(r))

]
The next point y(r+1) can then be reached by conducting a
backtracking line search to find an optimal step-size τ∗ and
projecting the gradient update to the feasible set defined by
the inequality constraints; that is,

τ∗ = arg min
0≤τ≤1

`
(
PC
(
y(r) − τg(y(r))

))
(19)

y(r+1) = PC
(
y(r) − τ∗g(y(r))

)
(20)

where C = {y ∈ Rk : 0 ≤ y ≤ 1} is the feasible set of y,
and the projection function is defined as

PC(·) = min(max(·, 0), 1). (21)
The overall decoding algorithm is given in Algorithm 2.

Finally, one can recover the {0, 1}-valued label vector y∗
of x in the original label space by rounding the solution ŷ∗

obtained from the relaxed optimization problem (16).

5 Experiments
To evaluate the proposed approach, we conducted experi-
ments on five real-world multi-label datasets, comparing the
proposed nonlinear approach to previous label reduction and
transformation methods for multi-label classification with
many labels. We report our experimental setting and results
in this section.

Table 1: Statistical information of the datasets. Label card.:
the average number of labels assigned to each instance.

Dataset # of instances # of labels label card.
Corel5K 5,000 244 3.36
ESPGame 5,000 268 4.72
Iaprtc12 5,000 289 5.63
Enron 1,702 53 3.38
Delicious 16,105 983 19.02

5.1 Experimental Setting
We used five real world multi-label datasets for image
and text categorization tasks in our experiments, including
Corel5K, ESPGame, Iaprtc12, Enron, and Delicious. The
first three datasets are image datasets. Corel5K is an impor-
tant benchmark for keyword based image retrieval and an-
notation [Duygulu et al., 2002]; ESPGame contains images
obtained from an online game [von Ahn and Dabbish, 2004];
and Iaprtc12 contains images initially published for cross-
lingual retrieval [Makadia et al., 2008]. From each of these
three datasets, we constructed a subset to use by randomly
sampling 5000 instances. Enron is a textual dataset that con-
sists of 1702 email messages [Klimt and Yang, 2004]. The
last dataset, Delicious, is a large scale textual dataset, which
was extracted from a social bookmarking site and contains
16, 105 web pages along with 983 tags [Tsoumakas et al.,
2008]. Table 1 presents the statistical information of these
datasets. We can see each of them has many label classes,
and the average number of labels assigned to each instance
is reasonably large, maintaining a valid multi-label classi-
fication problem with many labels in each case. For the
image datasets, we used the GIST features [Oliva and Tor-
ralba, 2001], and each instance was represented as a 512-
dimensional vector. We preprocessed each dataset by per-
forming standardization over each column feature vector and
normalization over each row instance vector.

In our experiments, we compared the following seven
methods: (1) the proposed combination approach, denoted
as COMB; (2) the nonlinear component of the combination
approach, KCCA; (3) the linear component of the combi-
nation approach, CCA; (4) the Feature-aware Implicit La-
bel space Encoding method (FaIE) [Lin et al., 2014], which
is a state-of-the-art label dimension reduction method for
multi-label classification; (5) the label space transformation
method [Zhang and Schneider, 2011], which constructs out-
put codes using CCA to augment initial labels for multi-
label classification and is denoted as OC-CCA; (6) the
Conditional Principal Label Space Transformation method
(CPLST) [Chen and Lin, 2012], which is another state-of-the-
art label dimension reduction method for multi-label classifi-
cation; and (7) the baseline method, partial binary relevance
(PBR), from the empirical study of [Chen and Lin, 2012].

We conducted experiments using 10-fold cross validation
on four datasets, except the large scale dataset Delicious,
on which we conducted experiments using 5-fold cross val-
idation. In each cross validation iteration, we performed
parameter selection for all the comparison methods by us-
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Figure 1: Comparison results in terms of Micro-F1 on all datasets with different label dimension reduction rate θ.
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Figure 2: Comparison results in terms of Macro-F1 on all datasets with different label dimension reduction rate θ.

ing 80% of the training set for training and the remaining
20% for performance evaluation. For the proposed COMB
method, there are two parameters µ and γ to be tuned for
the decoding process. We selected the µ value from the set
[0.001, 0.005, 0.01, 0.05, 0.1], and selected the γ value from
the set [0, 0.2, 0.4, 0.6, 0.8, 1]. Moreover, for the proposed
COMB method, we need to split a given reduced label di-
mension k̂ into two parts, m and q, for its linear and nonlin-
ear components. We used m = round(k̂γ) and q = k̂ −m
with the given trade-off parameter γ. For the four compari-
son methods from previous works, we performed parameter
selection with values suggested in their original papers.

All the comparison approaches are evaluated using two
popularly used multi-label classification evaluation measures,
micro-F1 and macro-F1 [Tang et al., 2009]. The micro-F1
measure gives equal weights to per-instance classification de-
cision and is affected more by the major classes, whereas the
macro-F1 measure gives equal weights to all classes and thus
is more sensitive to the performance of rare classes.

5.2 Experimental Results

Let k̂ be the reduced label dimension for a given original label
dimension k. We define θ = k̂/k as the label dimension re-
duction rate. Different θ values indicate different experimen-
tal settings: A smaller θ value indicates more severe label di-
mension reduction and possibly more information loss. Note
for OC-CCA, we take the label dimension reduction rate of
its CCA part as its θ value. For each dataset, we investigated
a set of different label dimension reduction rates, θ ∈ [10%,
30%, 50%, 70%, 90%]. For each setting, we report the aver-
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Figure 3: Comparison results in terms of Micro-F1 and
Macro-F1 on Delicious.

age and standard deviation results of the two F1 measures.
Figure 1 presents the micro-F1 results of all the compari-

son methods on all the first four datasets, Corel5K, ESPGame,
Iaprtc12 and Enron, with different label dimension reduction
rates. We can see that the three linear label space reduction
methods, CCA, FaIE and CPLST, have strengths in different
scenarios. For example, FaIE outperforms CCA and CPLST
on ESPGame across different θ values; CCA outperforms
FaIE and CPLST on Iaprtc12 with large label reduction rates
θ ∈ {0.5, 0.7, 0.9}; and CPLST outperforms FaIE and CCA
on Corel5K with large θ values {0.5, 0.7, 0.9}. They never-
theless demonstrate general advantages over the baseline PBR
in most cases. But FaIE is the only one among the three that
consistently outperforms PBR across all the datasets. The la-
bel transformation method OC-CCA also consistently outper-
forms the baseline PBR on all the datasets. OC-CCA also
outperforms FaIE on Iaprtc12 with different θ values and
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Table 2: Running time (training and testing) on the five datasets (in seconds).

Methods Corel5K ESPGame Iaprtc12 Enron Delicious
Training Testing Training Testing Training Testing Training Testing Training Testing

COMB 481 3006 537 4372 763 5266 154 708 3754 26687
KCCA 290 1857 374 2847 508 3173 110 463 2324 18937
CCA 267 1789 311 2631 412 2948 85 420 2143 17294
FaIE 563 296 634 336 709 358 175 82 2022 1504
CCA-OC 9973 556 13736 1053 13796 1526 2773 181 - -
CPLST 8 4 9 6 12 5 3 2 44 9
PBR 7 3 8 5 11 4 2 1 40 8

on Corel5K with large θ values, while having similar perfor-
mance with FaIE on ESPGame and Enron. The performance
of FaIE however is quite stable across different label dimen-
sion reduction rates on the three image datasets. This suggests
that most of the linear information in the label matrix of the
image datasets can be captured with the low-dimensional or-
thonormal code matrix used by FaIE, while the nonlinear in-
formation can not be retrieved by increasing the code dimen-
sion. The nonlinear method KCCA significantly outperforms
CCA, FaIE, CPLST and OC-CCA on the Corel5K, ESPGame
and Enron datasets across different θ values. But it demon-
strates inferior performance on the Iaprtc12 dataset with large
dimension reduction rates θ ∈ {70%, 90%}. One possible
reason is that KCCA takes all possible pairwise label corre-
lations into account, which may capture some spontaneous
noisy information under certain scenarios and induce overfit-
ting. Hence smaller reduced label dimensions may lead to
relatively more robust performance in such scenarios. The
proposed combination method COMB, which integrates the
strengths of CCA and KCCA in a complementary way, on
the other hand demonstrates the strongest capacity of deal-
ing with different datasets and different learning scenarios. It
produces the best average results among all the comparison
methods on all the four datasets across different label dimen-
sion reduction rates.

Similar results are presented in Figure 2 in terms of macro-
F1 measure. FaIE demonstrates an overall better performance
than the other two linear label dimension reduction methods,
CCA and CPLST, in most scenarios. It also demonstrates con-
sistent advantages over the baseline PBR across most cases.
OC-CCA has similar but slightly better performance than
FaIE. The nonlinear method KCCA again demonstrates better
performance than the linear methods in most cases on three
image datasets, Corel5K, ESPGame, Iaprtc12, but does not
show much advantages on the Enron dataset. The proposed
combination method COMB produces the best results among
all the comparison methods across all the settings except only
when θ = 0.1 on Corel5K and ESPGame.

The comparison results in terms of the two F1 measures
on the large scale dataset Delicious are presented in Figure 3.
The OC-CCA method cannot handle this large scale dataset,
we hence do not have results for this method. We can see
that FaIE and the nonlinear KCCA perform much better than
the other two methods CCA and CPLST, while COMB again
produces the best average results across all cases.

In summary, all these results demonstrate that the proposed
integrated nonlinear label space dimension reduction can
better preserve the original label information across different
scenarios. Moreover, we can see the performance of COMB
is much better than both of its two components in most cases.
This suggests that the proposed adaptive approach COMB is
an effective integration model, instead of a simple switching
procedure between its components, CCA and KCCA.

Running Time. To compare the empirical computational
complexity of the comparison methods, we reported in Ta-
ble 2 the training time and testing time of each method for a
single run with θ=0.3 on a 64-bit PC with 4 processors (3.4
GHz) and 16 GB memory. We can see that COMB has longer
running time than both KCCA and CCA, which is reasonable
since COMB integrates the capacity of both KCCA and CCA.
Nevertheless, COMB is more efficient than FaIE and CCA-
OC in terms of training time on most datasets, except on
Iaprtc12 where FaIE is a bit faster and on Delicious where
FaIE is faster but CCA-OC fails to run. Though COMB has
higher testing time, it is still feasible to run on the large scale
dataset. Moreover, the testing time can be significantly re-
duced if parallel resource is available, since test instances can
be predicted independently. CPLST and PBR are efficient, but
their poor performance cannot be compensated by time.

6 Conclusion
In this paper we proposed a novel nonlinear label space re-
duction method to address multi-label classification problems
with high dimensional label spaces. The proposed approach
integrates both linear CCA and nonlinear KCCA to perform
label space dimensionality reduction in a feature-aware man-
ner. It thus has the capacity of capturing both linear and non-
linear label correlation patterns in the original high dimen-
sional label space and hence greatly increases the label in-
formation reservation level in the reduced label space. To
recover a label vector in the original label space from the
jointly reduced low dimensional space in the test phase, we
formulated the decoding process as a sparsity regularized
least square loss minimization problem and developed an ef-
ficient projected gradient descent algorithm to solve the min-
imization problem. We conducted experiments on a num-
ber of real-world multi-label datasets by comparing the pro-
posed approach to a few state-of-the-art methods on multi-
label classification with many labels. The empirical results
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demonstrated the efficacy of the proposed approach on cap-
turing useful label information in the reduced label space and
improving the performance of multi-label classification.
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