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Abstract

The Restricted Isometric Property (R.I.P.) is a very
important condition for recovering sparse vectors
from high dimensional space. Traditional methods
often rely on R.I.P or its relaxed variants. How-
ever, in real applications, features are often cor-
related to each other, which makes these assump-
tions too strong to be useful. In this paper, we
study the sparse recovery problem in which the fea-
ture matrix is strictly non-R.ILP. . 'We prove that
when features exhibit cluster structures, which of-
ten happens in real applications, we are able to re-
cover the sparse vector consistently. The consis-
tency comes from our proposed density correction
algorithm, which removes the variance of estimated
cluster centers using cluster density. The proposed
algorithm converges geometrically, achieves nearly
optimal recovery bound O(s?log(d)) where s is
the sparsity and d is the nominal dimension.

1 Introduction

In high dimensional statistics, an important problem is to re-
cover a sparse vector from a small number of observations
whose number is usually much smaller than the nominal di-
mension of the observation matrix. [Candes et al., 2006]
proves that sparse recovery is possible as long as the fea-
ture matrix satisfies the Restricted Isometric Property (R.I.P.)
condition. Informally, the R.I.P. condition requires any set
of columns of the feature matrix with size less than the
sparsity to be linearly independent. More likely than not,
the R.I.P. condition is too strong to be useful in real world
applications. Many R.I.P-like relaxations have been pro-
posed in the past decades [Van De Geer and Bhlmann, 2009;
Foucart, 2012]. These alternatives usually have better con-
stants, or more general forms of the restricted isometric in-
equalities. See [Van De Geer and Bhlmann, 2009] for a nice
survey.

Although there is a vast literature studying relaxed R.L.P.-
like conditions, their core requirement is that the feature ma-
trix must be well-conditioned on the sparse subspace. In other
words, their largest and smallest singular values must be close
to unit. For many real applications, such assumptions are still
too strong to be useful. Considering a simple case where we
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duplicate some columns of the feature matrix, these R.I.P.-
like conditions are no longer true because we can find a subset
of columns whose smallest singular value is exactly zero.

In this paper we consider a prevalent non-R.L.P. setting in
which the features form cluster structures, as can be seen in
many machine learning [Lehiste, 1976] and computer vision
problems [Lan et al., 2013; Lowe, 2004]. Due to the fact that
many features extractors are similar to each others and they
reflect the characteristics of the same image, vision features
are often correlated and have cluster structures. This corre-
lation is even stronger in those systems that have thousands
to millions of features [Lan ef al., 2013; Gan et al., 2015a;
2015b].

Under this setting, instead of requiring the observed fea-
ture matrix to be R.I.P., we only have the same requirement
on the cluster center matrix, which is much easier to satisfy.
A trivial solution to perform sparse recovery under this set-
ting is by first clustering the features and then applying the
conventional sparse recovery methods on the clustered fea-
ture matrix. However, due to the random perturbation, the
estimated cluster center is the biased version of the real clus-
ter centers. Unlike instance clustering where we can im-
prove the estimation accuracy by having more samples, the
bias in feature clustering process cannot be asymptotically
removed even if infinite training instances were given. This
inconsistency happens in all conventional methods, including
convex/non-convex sparse regularizers , greedy methods and
their stochastic or adaptive variants [Agarwal et al., 2012;
Shalev-Shwartz and Tewari, 2011; Ghadimi and Lan, 2013;
Ji Liu, 2013; Jin et al., 2013; Zhaoran Wang, 2013; Lin et
al., 2014b; Lin and Xiao, 2014; Yang et al., 2014; Lin et al.,
2014al.

In this paper, under cluster assumption, we develop a con-
sistent sparse recovery method, called density correction. The
key idea of density correction is that although we cannot elim-
inate the bias in feature clustering, we are able to estimate the
variance of this bias via the cluster density. We can correct the
bias in the gradient of the loss function with cluster density
in the sparse recovery process. When combining the density
correction with hard iterative thresholding, we obtain a con-
sistent sparse estimator.

The remaining paper is organized as following. In section 2
we briefly review several closely related works. We introduce
our notations and backgrounds of our method in section 3.



Section 4 gives the details of our algorithm. In section 5 we
prove the geometrical convergence rate and the consistency
of our method. We conclude our paper with discussions in
section 6.

2 Related Work

In this section, we briefly review several closely related
works. Our review is by no means to be comprehensive but
to capture the backgrounds of our approaches.

Sparse recovery methods can be roughly grouped into three
categories: convex regularizer, non-convex regularizer and
greedy methods. The convex regularizer mainly bases on
¢1-norm LASSO problems [Shah, 2012; Xu et al., 2010;
Tibshirani, 1996]. The non-convex regularizer is proved to be
more accurate than convex methods in several cases [Zhao-
ran Wang, 2013; Xiang et al., 2013; Loh and Wainwright,
2013; Gong et al., 2013; Zhang, 2012]. Recently, greedy
methods are rediscovered in the sparse community due to its
simplicity and efficiency [Xiaotong Yuan, 2014; Ji Liu, 2013;
Blumensath, 2012; Foucart, 2011]. However, all these stud-
ies are based on R.I.P.-like assumptions therefore fail to cover
the non-R.L.P. problems discussed in this paper.

The gradient correction technique dates back to the cor-
rected least square regression [Markovsky and Van Huffel,
2007]. The same technique is considered in sparse regres-
sion under feature corruption settings [Chen et al., 2013;
Loh and Wainwright, 2012]. These methods require that the
feature matrix to be R.I.P. when noise is small. In our setting,
the observed feature matrix becomes non-R.I.P. when the per-
turbation is small. Also, traditional methods require the noise
level to be known while our method not.

3 Notations and Backgrounds

The sparse recovery problem aims to recover a sparse vector
W, € R? from feature matrix X € R™*? and label y €
R™. The sparsity of w, is denoted by s and its support set
is denoted as S, . We assume that y is generated by a linear
model ~
where £ is additive subgaussian noise with noise level
1
I Tn
We denote X, the submatrix of X whose columns are in-
dexed by set S. we denote [w]p the truncation of w whose
elements are zero outside F'. For simplicity, let Vp{(w)
[V4(w)]F be the truncated gradient. V4¢(w) is the truncated
gradient with largest s elements in absolute value. In this pa-
per we assume that both S, and X are unknown. We can
only observe feature matrix X whose columns are randomly
sampled from a clustering model with cluster center X . That
is,

ey

X' <€

X:[X17X17X27X27X2"'Xd]+€éXP+€7 (2)

where P is called duplication matrix. The random noise € is
subgaussian satisfying

E{%GTE} = D([o1,09,--- ,04]) .
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D(-) is the diagonal function. In the i-th cluster, there are k;
features. We denote ¢ = max; o; .

The feature cluster model defined in Eq. (2) coincides with
many real world applications. For example, in computer vi-
sion, we usually need to encode low level features by clus-
tering, which is called “feature encoding” in literature. Some
features are built on other features. For example, semantic
features are built from low-level features hence are correlated
to low-level features. In those scenarios, for set S with size s,
the submatrix Xg is usually ill-conditioned.

The conventional sparse recovery methods assume the fea-
ture matrix X to satisfy the R.I.P. [Candes and Plan, 2011] or
its variants [Trzasko and Manduca, 2009]. Roughly speaking
it requires X g to be well-conditioned for |S| < s. Then we
can estimate W, via the following optimization problem:

1
P, wi = argminf(w) £ 5, 1Xw -yl?
w n
i€s.

To recover w,, ,
(1)

W, ~ Pwy

However in Eq. (2), when € — 0, the R.I.P.-like condition
clearly does not hold hence conventional methods PP; are no
longer applicable. To address this issue, a naive approach is to
cluster the feature matrix and then apply IP; on the clustered
features. Denote X the clustered feature matrix. The naive
approach can be formulated as

XTw H2
y

P, w'® = argmin i(w)

st [wlo<s.

After clustering, X is expected to be R.LP. if X is RLP.. A
(2)

*

main drawback of P; is that w

is not a consistent estima-
tor. The inconsistency of wg) comes from the uncertainty of

X. Recall that X is an estimation of X by matrix column
clustering, from concentration inequality, it is easy to see that
with high probability,

0;

Vk;

Therefore, X is a biased estimation of X . This bias cannot be
eliminated by more training instances since the right side of
Eq. (3) does not depend on n. As a consequence, Py which
is based on X is biased. Even if we already know the support

set S, , wf) is still biased due to the uncertainty of X. This
is known as the least square inconsistency when we are given
the support set S, . In short, we have the following proposi-
tion. We omit the proof since it is trivial once we realize the

uncertainty in Eq. (3).

3)

-

<O(—=) .

Proposition 1. No matter how many training instances were
given, Py and Py cannot estimate W, consistently even if we
know the support set S, and the duplication matrix P.

Proposition 1 shows that the conventional sparse recovery
methods are far from optimal because they are all inconsis-
tent even in the ideal case. Note that their suboptimality does



not inherit from the way they solve the problem P; or Ps.
We can use any algorithm to solve the above two problems.
For example, directly optimize the ¢, norm constraint by
greedy methods [Tropp and Gilbert, 2007; Blumensath and
Davies, 2008; Xiaotong Yuan, 20141, or use convex [Tibshi-
rani, 1996] or non-convex relaxation methods [Zhang, 2012;
Zhaoran Wang, 2013; Lin er al., 2014al. All these methods
cannot eliminate the uncertainty in X, By proposition 1, no
consistent estimation is possible by these methods.

A direct corollary of proposition 1 is that it is impossible to
consistently estimate X by any other method. Based on Eq.
(3), even when we know the duplication matrix P, the best
possible accuracy in estimating X; is O(o;/v/k;). This up-
per bound is based on the concentration of mean value of k;
random variables. Because k; is finite, it is impossible to im-
prove this estimation unless we find a better way to estimate
the mean of random variables.

In next section, we will show that by using the proposed
density correction, we can design a consistent sparse estima-
tor under model Eq. (2) even if we cannot eliminate the un-

certainty in X.

4 Density Corrected Sparse Recovery

From Eq. (3), it is impossible to eliminate the uncertainty

in X. To motivate an alternative approach, we examine the
gradient of loss function in P,

nVul(w) = X" Xw - X"y .
Denote X = X + 6, we have
nVul(w) =(X + )" (X +0)w — (X +60)Ty
=XTXw+ 00w
——
Eq
+@TX +XTO)w— (X +0)"y.

E;

Therefore, the bias in the gradient comes from E; and Es.
Since the perturbation € is zero mean subgaussian random
variable, ¢ is also zero mean subgaussian. When n is large
enough, E/n will converge to X Ty/n thus is consistent.
However, F; will not converge to zero. This inspires us to
eliminate £y without eliminating 6 itself. In other words,
although it is impossible to eliminate the bias term 6, we can
still get a consistent estimator if we are able to estimate the
variance of this bias term. Based on this intuition, we propose
our Density Corrected Sparse Recovery (DCSR) in Algorithm
1.

Algorithm 1 is based on Hard Iterative Thresholding (HIT)
[Blumensath and Davies, 2009]. It first clusters features into
r groups. r could be potentially much larger than the sparsity
s. Although we can use any clustering algorithm to cluster
features, we prove that the pairwise tree clustering is suffi-
cient to recover the cluster center X with the optimal bias
O(o;/\/k;) up to constants. For the i-th cluster, its cluster
density is stored in v;. Actually, v; is an unbiased estimation
of the variance of perturbation term £ in model Eq. (2). Then
the algorithm does a gradient descent with step size 1. The
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Algorithm 1 Density Corrected Sparse Recovery (DCSR)

1: Input: X is the feature matrix . 7 is the number of
columns of X. s is the sparsity of w, . T is the total
iteration number. 7 is the step size in gradient descent.

2: Use pairwise tree clustering to cluster columns of X into
r groups. The distance between i-th and j-th column is
defined by

d(i, j) = | X: — X;], (4)

Denote the index set of i-th clusteras C; ,i=1,2,---7r.

. Denote X, ; the cluster center and v; the density of C;. For
|Ci| = ki, X; and v; is computed by

5 1
Xi=— > X (5)
' JEC:
1 12
Vi =———— Z HXj - X; (6)
nkl(kz — ].) jec
4: v =[v,va, T
5: Wo = 0.
6: fort =1to T do
7:  Gradient descent with density correction:
Wi =Wy_1 — )Vwl(Wi_1) +nDW)wi_1  (7)
1 A
=Wi_1 — nﬁXTXWt—l ®)
1~
+ nﬁXTy +nD(V)w;_1 . 9)
8:  Hard iterative sparse thresholding: let .S; be the set of
indexes of elements in W, of s largest amplitude ,
Wl e S
{widi = {0 otherwise
9: end for

10: Output: Cluster index C; and sparse vector wr .

range of 7 is given in the next section. The key difference is
that the gradient is corrected by the cluster density v; in Eq.
(7). Eq. (7) can be reformulated as a gradient descent step for
the following objective function

. s 1,
Py min{(w;_1) — 5D V2w . (10)
This is similar to Elastic-Net [Zou and Hastie, 2005]. In

Elastic-Net, an /5-norm regularizer is added in the sparse
regression objective function to ensure a faster convergence
rate. While in density correction, we subtract an £3-norm reg-
ularizer adaptively to remove the bias in the gradient.

After gradient descent, the algorithm truncates w; greed-
ily. Note that the density correction is a principled method.
We can apply density correction in various sparse regression
methods such as LASSO and adaptive non-convex regular-
izer. We choose HIT because it is recently proven to be ef-
ficient in sparse recovery [Xiaotong Yuan, 2014]. In each
iteration, the intermediate solution w; is always s sparse.



5 Theoretical Analysis

In this section, we give theoretical guarantees for Algorithm
1. Our analysis relies on the following matrix concentration
facts [Tropp, 2012].

Lemma 1. Let € € R"*¢ be a subgaussian random matrix
with covariance

1
E{ﬁeTe} = D([Uf,dga e ,03]) .

The eigenvalue of ~AAT is bounded by [p, ).
probability at least 1 — 8, denote A = A + ¢,

Then with

1 -po2 A 1 o &
)\max{fATA} SB )\min{fATA} Z ﬂ )
n n
where c is at least 1/4,

A A\/(d + 1) log(2d/9)

nc
B2(5 + max{o?}) + A

(5 + max{o?})

~ A 2
fr =(p —max{oi}) —
We assume the feature cluster center matrix X to be 7-
distinguishable:

Definition 1. Feature matrix X is T-distinguishable, if for a
positive constant T ,

m1n7||X Xl >7.
i#i N

Clearly, feature clustering is possible if and only if X is 7-
distinguishable for 7 large enough. In the following theorem,
we prove that the pairwise clustering step correctly groups
features in X if X is sufficiently 7-distinguishable.

Theorem 1. When X is at least T-distinguishable with

7 >2max{o?}(2 + 2 log(2k+/9)
t ne

n \/2log(2kt(d — k) /0)

e ),
then with probability at least 1 — 2rd, Vi € {1,2,- - -
cluster center X; is an inconsistent estimator of X; ,

2 /
1 < l( 210g 2/5
ki k teC;

X - X, max o2

, 1}, the

)

Proof. First we prove that the columns in X can be separated
when noise € is not too large. For X; and its cluster index set
Cy, we require

max — ||X X; <  min
,jECE N 1€C,kEC: N

With probability at least 1 — 24,

X - xP . a2

1
max — || X; — X;|° = max — |l& — ¢
1,J€CE N ,j€ECE N
log(2k¢/9)

<2 211+ 2 )
< gézgf{at}( + )

nc

And
min f||X Xel?
1€C,kgCy
= min f||Xt Xk—i—ei—ekHQ
zECthCf
2
> X - X e —
zectgcnelg;éct H o= Xl - O gc, nHeZ €|l

> 2max{o?}(1 + Wlog(zkt;ci—kt)/é)

Therefore, Eq. (12) is satisfied when
log(2k: /6
g(2k/0) +
ne

).

v >2 max{at H2+

\/210g(2kt(d — k) /6)

nc

).

From concentration,

Theorem 1 claims that when different features in X is dis-
similar to each other, we can correctly cluster the feature ma-
trix X. However, the estimated cluster center is not consis-
tent. The squared bias of the cluster center estimation is on
order of O(c?/k; + 2 /\/n). Even n is infinity, this bias will
never converge to zero. Theorem 1 shows that it is impossi-
ble to consistently estimate X, no matter how many training
instances are given. B

As conventional sparse analysis, we assume that X satis-
fies R.I.P. condition. Note that our definition is slightly differ-
ent from conventional one in order to simplify the notation.

Definition 2 (6,-RIP). A matrix X is §s-R.LP. if there is a
constant 0 < d5 < 1, for any s sparse vector w whose sup-
port setis F,

1~ _
(1= 0wl < [l Xp" Xwl < (1+6,)[wl| .

Remark 1 If X is 6,-R.I.P. , it must be 7-distinguishable.
To see this, take any two 1-sparse vector e;, e; where e; is the
unit vector along the i-th coordinate. When s > 2, we have

(ei — ej)|| > 2\/ 1 —53 .

Therefore X is at least 2y/1 — J; distinguishable. The con-
verse is not true. Clearly X r can be well separated but is low
rank. Here we want to emphasize that we should treat the
constants 65 and 7 independently. This is because although
X is at least 24/1 — ¢, distinguishable, its optimal 7 may be
significantly larger than 21/1 — J.

Following Definition 2, it is easy to check the next lemma.
We omit the proof to save space.

1o - 1.
— X=X =-X
I =1
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Lemma 2. Assume that u, v are s sparse vectors and X is
d2s-R.LP. . Denote set F = supp(u) Usupp(v), then for any
positive n < 1/(1 — da5),

1 1
||u—nEXFTXu— (v—nEXFTXv)H < plu—v]. (13)

where p =1 —n(1 — da5).

Lemma 2 claims that the gradient descent operator is re-
stricted isometric when X is R.I.LP. . Lemma 2 can be ex-
tended to a more generalized version of R.I.P. condition, as
shown in [Xiaotong Yuan, 2014]. Lemma 2 is critical in the
convergence analysis because when p < 1, Eq. (13) is a con-
traction map which indicates a geometrical convergence rate.

With the help of the above discussion, we give the conver-
gence rate of Algorithm 1.

Theorem 2. Under the same assumptions in Theorem I and
X is 035-R.IP. . Algorithm 1 converges to w, geometrically,

e —w. | < (1w +b)p" +b,

where
a :rnax{kl_2 Z o?}
v teC;
_ _ 3s 4 1)3slog(6d/d
B (I 7+ 1+ 5,) 4 )y Bt D Ton(60/0)
6slog(6d/0
ey 209 5
ne
p=2(1—n(1l—d3s — Asy))
2n , 3s _
= — A % s
23 ek )

provide that 0 < p < 1.

Theorem 2 claims that the convergence rate of Algorithm
1 is linear. The p controls the exponential convergence rate
which depends on the step size and R.I.P. condition. Agg is
the bias term due to clustering which converges to zero at
speed O(1/+/n). b is the estimation error due to the noise
in label y and the uncertainty in the clustering step. We see
that when the noise level € is zero and n is sufficiently large,
the estimation error b converges to zero, which indicates the
consistency of Algorithm 1.

The novelty of Theorem 2 is its consistency. It is easy to
verify that without density correction, sparse recovery meth-
ods based on P; and Py can only estimate w, up to ac-
curacy O(c;/+/ki), no matter how many training instances
are given. By density correction, we improve the accuracy
to O(o;/+/nk;). This is significantly better than traditional
methods when n is large enough. However, this power does
not come free. In R.I.P. sparse recovery, the sampling com-
plexity is O(slogd). From Theorem 2, in non-R.LP. sparse
recovery, our sampling complexity is O(s?logd), which is
slightly larger than the R.I.P. one. This extra s in the sampling
complexity comes from the uncertainty of clustering step. In
our proof, we prove that with a fix support set we can bound
the gradient after density correction and this bound holds for
any set no larger than s. This step brings us an extra s in
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sampling complexity. At the time when we write this paper,
we are not aware of any published results showing a sharper
bound.

We give a sketch of our proof of Theorem 2. First we show
that in Eq. (7) the gradient descent after correction is consis-
tent.

Lemma 3. For any w supported on set F, |F| < s, with
probability at least 1-9,

IVri(w) = [DW)]pw — Vrl(w)|| < Ay|wl|

where
Ay = [|w] M%%&lmmiax{% Z o+
v teC;
(s+ 1)slog(6d/4) 1 9
iy ek (sl 3 of 41+

V(T /ONWES SRS

nc
v teC;

Proof. For a fix set F', similar to standard online learning
analysis,

IVré(w) = [DW)]rw — Vpl(w)]|

< (X" Xp — Xp" Xp) - B{DW))

Ey

LE(D®)} — D)) allwll + |- (XrTy — X6Ty)]| -
N—— — n

E,

Es
From matrix concentration Lemma 1, with probability at least
1-4,

PR (e

nc

1 2
(max{ > 0Pt +1+46,)

v teC;
2log(2s/0) 1
[ Eall2 < Tmiax{? Z ot}
v teC;
(s +1)log(2s/9) 1 9
|| Es]| <\/nc mlax{k—?tgc: oi}.

Now we consider the all possible set |F/| < s in d dimen-

sional space. Clearly there are no more than (f) < (ed/s)®
such sets. We have

d
log(25(<2)*/8) < slog(6d/9) .
S
Combining all the above together, the proof is done. [

In Lemma 3, A, is the bias of the corrected gradient
Vel(w) + [D(v)]pw. A, converges to zero at speed
O(1/+y/n). The complete proof of Theorem 1 follows im-
mediately. Our proof is based on the proof given in [Yuan et
al., 2013, Theorem 2 part b]. It is worth to mention that their
model cannot deal with non-R.L.P. feature matrix.



proof of Theorem 2. Denote F = S® U S¢t-D U S, . So
|F| < 3s. We try to bound estimation accuracy of the 3s
sparse vector u = [W¢]r. We have

la = Wl = [[[we]p — W]
<|lwi1 = n(Vel(wi1) = [D@)]rwi1)
= (W =V pl(w.))|| + 1l VrE(w.)|
<fwis = gV el(wio) — (W =V el(5,)]
+ 0| Vrl(w.)|
+lIVel(wi 1) = n[D@)]pwi 1 = Vpl(wi )|
<1 =n(1 = 835)) [wem1 = Wl + 0l V(W) |
|V el(we1) = [D@W)]swiy — Viel(wey)|
<(1— (1 — 85)[We_1 — W
+ IVl )| + nAss | wi ]|
<1 =n(1 = d3s) +nA)[We1 — W]
+ 0 Vasl(W.) || + 0w -
Fro R.I.P. condition,
[[a—w.||
<1 =01 = 835)) [wi—1 — Wi || + 0| V(W)

+ | Vel(wio1) = [D@)]pwi—1 — Vel(wi1)||

1
<

—
—

(1 =n(1 = d35))[[wi—1 — W
+ VW) + nlss]|wii ]|
<1 =n(1 = d3s) +nA)[|wi—1 — W]
+ 0| Vas (W) | + nlgs [ w.|| -
(1) comes from Lemma 3. Because S, is the largest s ele-
ments in w;, we have
[ we = we| < 2llu; - w. .

Then we get the recursive inequality about w,. Therefore we
have
[we =Wl < (Jwill +b)p" +b,

where
p=2(1—=n(1—d3s — Aszs))

__ 2
(1=p)

To ensure the convergence, we require p < 1.
Since y is generated by model Eq. (1),

(IVasl(w)ll + Assl| W) -

Va0 ) = N X" < T2

6 Conclusion

We propose a density correction sparse recovery algorithm
for non-R.I.P. problems. We first show that the conventional
methods cannot consistently recover the sparse vector due to
feature correlation and cluster center uncertainty. Then we
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propose the density correction that combines with hard iter-
ative thresholding to recover the sparse vector consistently.
The proposed algorithm has geometrical convergence rate. It
adaptively removes the variance of the bias term in the clus-
tered feature matrix.

The density correction has potentially more applications
other than sparse recovery. It shows that directly learning on
the clustered features may not be optimal. The cluster center
is usually biased therefore the estimation is usually incon-
sistent. The density correction improves the estimation to be
consistent without estimating the bias term itself, which could
be rather difficult in many applications. Instead it exploits the
cluster structure to estimate the second order statistics: the
variance of the bias term. Considering the fact that cluster-
ing is widely used in machine learning, the density correction
might be applied in various circumstances.

‘We mainly focus on least square loss function in this paper.
For general convex loss function, it is much more difficult to
derive the density correction. A key difficulty is that the ex-
pectation of the bias term in the gradient is no longer the clus-
ter density. We need more sophisticated statistics to estimate
the variance of this bias term. For example, recent devel-
opment in convex total least square [Malioutov and Slavov,
2014] extends the total least square estimation to general con-
vex loss functions. We open this topic for future research.
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