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Abstract
Kernel SVM suffers from high computational com-
plexity when dealing with large-scale nonlinear
datasets. To address this issue, locally linear clas-
sifiers have been proposed for approximating non-
linear decision boundaries with locally linear func-
tions using a local coding scheme. The effective-
ness of such coding scheme depends heavily on
the quality of anchor points chosen to produce the
local codes. Existing methods usually involve a
phase of unsupervised anchor point learning fol-
lowed by supervised classifier learning. Thus, the
anchor points and classifiers are obtained sepa-
rately whereas the learned anchor points may not
be optimal for the discriminative task. In this pa-
per, we present a novel fully supervised approach
for anchor point learning. A single optimization
problem is formulated over both anchor point and
classifier variables, optimizing the initial anchor
points jointly with the classifiers to minimize the
classification risk. Experimental results show that
our method outperforms other competitive methods
which employ unsupervised anchor point learning
and achieves performance on par with the kernel
SVM albeit with much improved efficiency.

1 Introduction
Kernel Support Vector Machine (SVM) [Schölkopf and
Smola, 2002] is a widely used classification technique. Al-
though effective in dealing with nonlinear data, kernel SVM
is computationally expensive especially for large datasets. To
address this issue, locally linear classifiers [Ladicky and Torr,
2011; Yu et al., 2009] have been proposed to approximate
nonlinear decision boundaries with locally linear classifiers
using a local coding scheme. Since a nonlinear manifold be-
haves linearly in the local neighborhood, data on the manifold
can be encoded locally in a local coordinate system estab-
lished by a set of anchor points. Each data point can then be
approximated with a linear combination of surrounding an-
chor points, and the linear coefficients are local coordinate
values that can be used for subsequent classifier training.

Although effective, the classification performance of lo-
cally linear classifiers depends heavily on the quality of the

local coding, which further depends on the anchor points
being used. Current locally linear classification methods
learn the anchor points and classifiers in two separate steps.
In the first step, anchor points are learned and used to en-
code the training data with a local coding scheme. Af-
ter that, supervised classifier training is performed based on
the results of encoding. One major issue with this decou-
pled approach is that the purposes of each step are different.
While local coding techniques mainly focus on minimizing
the data reconstruction error and exploit unsupervised learn-
ing algorithms such as clustering [van Gemert et al., 2008;
Zhou et al., 2009] for anchor point learning, the main purpose
of classifier learning is to minimize classification error. Since
the anchor points are obtained in an unsupervised fashion
without making use of class label information, discriminative
information might be lost in the encoding step and the local
coding produced by these anchor points may not be optimal
for the classification task. Therefore, an optimized classifica-
tion model should exploit supervised information for anchor
point learning and update both the anchor points and classifier
simultaneously for further performance improvement.

In this paper, we propose an efficient nonlinear classifica-
tion algorithm based on the Locally Linear Classifiers with
Supervised Anchor Point Learning (LLC-SAPL). We take
a fully supervised approach for learning both anchor points
and classifiers jointly in a discriminative framework. Firstly,
we use a localized soft-assignment coding scheme [Liu et
al., 2011] for encoding the training data. The use of soft-
assignment coding enables us to express the local coordi-
nates in analytic form. With these local coordinates, any
nonlinear but smooth function defining the classifier can be
approximated using multiple linear functions. We can then
formulate a single optimization problem over both anchor
point and classifier variables that can be efficiently solved us-
ing stochastic gradient descent. Instead of choosing anchor
points independently from the classifiers, our LLC-SAPL
model is capable of refining the initial anchor points while
simultaneously updating the classifier to minimize the reg-
ularized classification risk. Moreover, the stochastic gradi-
ent descent is simple and fast so that it can be applied to
large datasets in an online fashion. Experimental results on
benchmark datasets show that LLC-SAPL outperforms state-
of-the-art methods with unsupervised anchor point learning
and achieves accuracy rates on par with the kernel SVM.
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However, LLC-SAPL achieves much higher efficiency than
kernel SVM in prediction.

2 Related Work
Local coding methods provide a useful tool for approxi-
mating data on the nonlinear manifold. Different encod-
ing schemes have been proposed in the literature, includ-
ing local soft-assignment coding [van Gemert et al., 2008;
Liu et al., 2011], Local Coordinate Coding (LCC) [Yu et al.,
2009]. All these methods employ a set of anchor points to
encode data as a linear combination of surrounding anchor
points, so as to minimize the approximation error. The anchor
points are learned in unsupervised fashion either by using
a clustering algorithm or solving a locality or sparsity con-
strained least squares optimization problem for direct mini-
mization of the reconstruction error.

A number of locally linear classifiers have been proposed
based on local coding methods, most notably LCC+SVM
[Yu et al., 2009] and LLSVM [Ladicky and Torr, 2011].
LCC+SVM applies a linear SVM directly to the local co-
ordinates obtained by the LCC [Yu et al., 2009] scheme by
treating them as feature values. Alternatively, LLSVM treats
the local coordinates as weight values for assigning training
data into different local regions. Separate linear classifiers are
then trained for the weighted data points in each local region
and combined to form a locally linear classifier.

Apart from local coding based methods, there exist other
locally linear classifiers, such as SVM-KNN [Zhang et al.,
2006], CSVM [Gu and Han, 2013] and LDKL [Jose et al.,
2013]. SVM-KNN employs a lazy learning strategy by train-
ing a linear SVM in the subregion of a testing example and us-
ing the trained SVM classifier for prediction. CSVM adopts
K-means to partition the data into clusters and then trains a
linear SVM for each cluster. Meanwhile, CSVM requires
the weight vector of each linear SVM to align with a global
weight vector, which can be treated as a type of regulariza-
tion. LDKL learns a tree-based primal feature embedding
that encodes non-linearities, and then combines this feature
embedding with the SVM classifier. Same as the proposed
LLC-SAPL, LDKL is a fully supervised technique where the
trees are built by utilizing the label information.

An alternative approach for large-scale kernel classifica-
tion is the Nyström method [Li et al., 2010; Williams and
Seeger, 2001; Yang et al., 2012], that provides a low rank
approximation to the kernel matrix by sampling a subset of
columns. As a generic technique for matrix factorization, the
Nyström method is not specifically designed for the classifi-
cation task and does not take into account label information in
the factorization process. Hence discriminative information
may be lost with the Nyström approximation, which leads to
sub-optimal solution for the classifier model.

3 LLC-SAPL Model
3.1 Localized Soft-assignment Coding
We first introduce the local coding scheme employed by the
LLC-SAPL model. Let {vj}mj=1 denote the set of m anchor
points generated by K-means clustering. Each data point x

is then approximated by a linear combination of surrounding
anchor points:

x ≈
m∑
j=1

γvj (x)vj (1)

The coefficient γvj
(x) specifies the degree of membership of

x to the jth anchor point vj and is defined by:

γvj
(x) =


exp(−βd(x,vj))∑

l∈Nk(x)
exp(−βd(x,vl))

j ∈ Nk(x)

0 otherwise
(2)

where d(x,vj) is the squared Euclidean distance between x
and vj , and Nk(x) denotes the set of indices of k-nearest
anchor points to x. Notice here only the k-nearest anchor
points are considered for encoding each data point x with k
nonzero coefficients, and the coefficients for the remaining
anchor points are all set to zero. In contrast, a global cod-
ing scheme expands a data point to all the anchor points and
ignores the underlying local manifold structure, which leads
to unreliable estimation of the membership to distant anchor
points. By assigning a data point only to its surrounding
anchor points, the above “localized” soft-assignment coding
scheme alleviates this problem and achieves computational
efficiency at the same time due to the sparse representation.

3.2 A Unified Framework for Learning Anchor
Points and Locally Linear Classifier

We next integrate the above local coding scheme into locally
linear classifier, leading to a unified framework for learning
both the anchor points and the locally linear classifier. In this
paper, we focus on the linear SVM classifier, but the tech-
nique discussed below can be applied to other linear classi-
fiers by modifying the loss function. Given the labeled binary
dataset {(xn, yn)}Nn=1 with xn ∈ RD and yn ∈ {−1, 1},
one can solve the optimization problem below for linear SVM
training:

min
w,b

λ

2
‖w‖2 + 1

N

N∑
n=1

`(yn, f(xn)) (3)

`(yn, f(xn)) = max(0, 1− ynf(xn)) (4)

f(xn) = wTxn + b (5)

where the first term in Equation (3) is the regularization term
on the classifier weight vector w and the second term is the
average hinge loss incurred. f(x) is the decision function for
linear SVM.

Although linear SVM is extremely efficient, it cannot han-
dle nonlinear decision boundaries with acceptable accuracy
due to the use of linear prediction function f(x). In a suf-
ficiently small region, a nonlinear decision boundary is ap-
proximately linear and data is locally linearly separable. To
encode this local linearity, the weight vector w and bias b of
the SVM classifier should vary according to the location of
the point x in the feature space as:

f(x) = w(x)
T
x+ b(x) =

D∑
d=1

wd(x)xd + b(x) (6)
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The dimensionality of feature vector x is D.
To deal with nonlinear data, a smooth decision bound-

ary with constrained curvature is desired, since an uncon-
strained decision boundary is likely to overfit [Ladicky and
Torr, 2011]. Smoothness and constrained curvature imply
that the functions w(x) and b(x) are Lipschitz smooth in the
feature space x. Thus according to [Yu et al., 2009], for a lo-
cal coding scheme defined by anchor points v, any Lipschitz
smooth function h(x) defined on a lower dimensional mani-
fold can be approximated by a linear combination of function
values h(v) over the set of anchor points as:

h(x) =
m∑
j=1

γvj
(x)h(vj) (7)

Thus we can approximate the weight functions wd(x) and
bias function b(x) in Equation (6) using the localized soft-
assignment coding as:

wd(x) =
m∑
j=1

γvj
(x)wd(vj) (8)

b(x) =
m∑
j=1

γvj
(x)b(vj) (9)

Substituting the above equations into Equation (6), we obtain:

f(x) =
D∑
d=1

m∑
j=1

γvj
(x)wd(vj)xd +

m∑
j=1

γvj
(x)b(vj)

=
m∑
j=1

γvj
(x)
( D∑
d=1

wd(vj)xd + b(vj)
)

=
m∑
j=1

γvj
(x)
(
w(vj)

Tx+ b(vj)
)

(10)

This transformation can be seen as a finite kernel transform-
ing a D-dimensional problem into a mD-dimensional one.
It can also be interpreted as defining a locally linear clas-
sifier as the weighted sum of m separate linear classifiers
for each anchor point, where the weights are determined by
the local coordinates γv(x). To evaluate f(x) for each data
point x, one needs to calculate the corresponding local co-
ordinates γv(x), which further depend on the anchor points
v being used for local coding. This leads to a natural two-
step approach taken by existing methods [Yu et al., 2009;
Ladicky and Torr, 2011], which involves learning the anchor
points first and evaluating the local codes for each data point,
followed by the subsequent step of supervised classifier train-
ing. The anchor points are learned separately from the clas-
sifier, and are directly obtained using unsupervised learning
techniques. This may lead to sub-optimal solutions for the
discriminative classification task.

Let W = [w(v1), . . . ,w(vm)]T be a m × D ma-
trix composed by stacking the m classifier weight vectors
in rows. Let b = [b(v1), . . . , b(vm)]T and γv(x) =
[γv1

(x), . . . , γvm
(x)]T be m-dimensional vectors of bias

terms and local coordinates respectively. The decision func-
tion of the locally linear classifier in Equation (10) can then

be written as:

fW,b,v(x) = γv(x)
TWx+ γv(x)

Tb (11)

Note that the decision function fW,b,v(x) in Equation (11)
depends on both the classifier variables W, b and the an-
chor point variable v, which determines the local coordinates
γv(x). This motivates an optimization-based approach for
jointly learning both the classifier and the anchor points. Us-
ing a similar formulation to Equation (3), we define the LLC-
SAPL optimization problem as follows:

min
W,b,v

Q(W,b,v) =
λ

2
‖W‖2F +

1

N

N∑
n=1

`(yn, fW,b,v(xn))

(12)
where ‖W‖2F =

∑m
j=1

∑D
d=1W

2
j,d. Note that here the an-

chor point variable v is treated as one of the target variables
to be optimized in the objective functionQ. This is made pos-
sible by the use of localized soft-assignment coding scheme
in our approach, where the local coordinates γv(x) are sub-
differentiable to the anchor point variable v. In contrast,
when using the standard sparse coding schemes, there is no
closed-form solution to local coordinate values. Hence, it is
infeasible to incorporate them into the optimization problem
formulated above.

The use of embedded optimization for both feature and
classifier variables in Equation (12) is crucial to the success of
our approach. A naı̈ve approach for selecting anchor points
with supervised information is not guaranteed to retain the
discriminative information for classification. Consequently,
the selected anchor points may not be optimal for the linear
classifier being used. On the contrary, our approach provides
a principled solution to joint anchor point optimization and
classifier training instead of treating them separately.

The LLC-SAPL formulation in Equation (12) defines a
generic framework that includes LLSVM [Ladicky and Torr,
2011] and LCC+SVM [Yu et al., 2009] as special cases.
Specifically, it reduces to LLSVM if the anchor points v are
fixed and only the classifier variables W and b are optimized.
LLSVM further reduces to the degenerate case LCC+SVM
if W = 0 and only b is optimized. In this case, the de-
cision function reduces to a linear classifier where the local
coordinate values γv(x) are used as input features and the
bias vector b becomes the weight vector for the linear clas-
sifier. We can improve either LLSVM or LCC+SVM with
the proposed LLC-SAPL framework by minimizing the ob-
jective function Q in Equation (12) with respect to both the
anchor points and classifier variables. In the following discus-
sion, we focus on the more generic scenario of LLC-SAPL,
which can be treated as the fully supervised counterpart of
LLSVM. However, the techniques presented below can be
easily adapted to obtain optimized anchor points for the de-
generate case LCC+SVM, which we refer to as LLC-SAPLlcc
in subsequent text.

3.3 The Stochastic Gradient Descent Algorithm
for LLC-SAPL

The Stochastic Gradient Descent (SGD) algorithm is simple
and efficient, and can be applied to large datasets in an online
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fashion. Empirical results have shown that SGD significantly
outperforms other complex optimization methods for train-
ing linear SVMs [Bordes et al., 2009; Shalev-Shwartz et al.,
2007]. We now apply the SGD algorithm to the LLC-SAPL
formulation in Equation (12). Each iteration of SGD involves
drawing a random data point x and its corresponding label y
and updating the current anchor points v and classifier vari-
ables W, b if the hinge loss is positive. For updating anchor
points v, we take the partial derivative of Q in Equation (12)
with respect to v while fixing W, b. Since the data point x is
approximated as a linear combination of its k-nearest anchor
points, only the k-nearest anchor points need to be optimized
in each iteration. Assume that the jth anchor point vj be-
longs to the k-nearest neighbors of x. Firstly, we take the
partial derivative of γv(x)T with respect to vj . The obtained

derivative
∂γv(x)

T

∂vj
is a D×m matrix, among which only k

columns are nonzero. The jth column is computed as:

s
(∑

l∈Nk(x)
exp(−βd(x,vl))− exp(−βd(x,vj))

)(∑
l∈Nk(x)

exp(−βd(x,vl))
)2 (13)

where

s=
∂ exp(−βd(x,vj))

∂vj
= 2β(x−vj)exp(−βd(x,vj)) (14)

The other nonzero columns except the jth column are com-
puted as:

− s exp(−βd(x,vh))(∑
l∈Nk(x)

exp(−βd(x,vl))
)2 (15)

where vh also belongs to the k-nearest neighbors of x and it
is not equal to vj .

Then the jth anchor point vj is updated as:

v
(t+1)
j = v

(t)
j +

1

λ(t+ t0)
y
∂γv(x)

T

∂vj
(W(t)x+ b(t)) (16)

where t denotes the current iteration number. The optimal
learning rate is denoted as 1

λ(t+t0)
[Shalev-Shwartz et al.,

2007], where t0 is a positive constant [Bordes et al., 2009],
that avoids producing too large steps in the first few iterations.
The classifier variables W and b are updated as:

W(t+1) = W(t) +
1

λ(t+ t0)
y
(
γv(x)x

T
)

(17)

b(t+1) = b(t) +
1

λ(t+ t0)
yγv(x) (18)

To speed up the training process, we adopt a similar strategy
to [Bordes et al., 2009] and perform a regularization update
to the weight matrix W every skip iterations by:

W(t+1) = W(t+1) − skip

t+ t0
W(t+1) (19)

Our LLC-SAPL algorithm is presented in Algorithm 1. K-
means is utilized to initialize the set of anchor points v, which
are then used to encode the training data with the localized

Algorithm 1 LLC-SAPL
Input: Training data {(xn, yn)}Nn=1 ⊂ RD × {−1, 1}, the

number of anchor points m and parameters λ, t0, T , skip
Output: Classifier variables W, b and anchor points v

Initialize anchor points v by K-means.
Convert each x to z via Equation (20) and initialize classi-
fier variables W, b by training a linear SVM on the trans-
formed dataset {(zn, yn)}Nn=1.
t = 0
while t ≤ T do

Sample a data point x randomly.
Compute the local coordinates γv(x) via Equation (2).
Compute hinge lossL=1−y

(
γv(x)

TWx+γv(x)
Tb
)
.

if L > 0 then
for j = 1→ k do

Update the jth nearest anchor point of x via
Equation (16).

end for
Update W via Equation (17).
Update b via Equation (18).

end if
if t mod skip == 0 then

Update W via Equation (19).
end if
t = t+ 1

end while

soft-assignment coding scheme and obtain the local coordi-
nates γv(x). To initialize the classifier weights W and biases
b, the following transformation is applied to each data point
in the training set

z = γv(x)⊗ [x; 1] (20)

where the operator⊗ is the Kronecker product. This is equiv-
alent to appending 1 to the column vector x and multiply-
ing each element of γv(x) with the augmented feature vector.
Then we apply LibLinear [Fan et al., 2008] to the new data
{(zn, yn)}Nn=1 for obtaining the initial W and b.

The SGD iterations start after the initialization steps. In
each iteration, a subset of anchors corresponding to the k-
nearest neighbors of the selected data point are updated along
with the classifier variables if a positive hinge loss is incurred.
In this way, all the anchor points are updated after one epoch
(a full pass through the whole training set).

For the degenerate version LLC-SAPLlcc, we need to make
some minor modifications to the LLC-SAPL algorithm. Most
importantly, we need to set all occurrences of W to 0 in the
relevant algorithm steps and equations for LLC-SAPLlcc and
ignore those steps that involve updating W in Algorithm 1.
To obtain initial b, we only need to train a linear SVM on
the local coordinates γv(x). Moreover, as the bias vector b
serves as the weight vector of the globally linear SVM, we
should also apply regularization updates via Equation (19)
by substituting W with b in the equation, in addition to the
regular updates of b in Equation (18).

For prediction, the test data are encoded using the learned
anchor points and then classified by the locally linear classi-
fier. The prediction complexity is linear in the number of an-
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(c) Kernel SVM

Figure 1: Learned classifiers on the synthetic Sine dataset

chor points while the prediction complexity of kernel SVM
scales with the number of support vectors. For large datasets,
the number of support vectors is usually orders of magnitude
larger than that of anchor points. Hence the proposed algo-
rithm is much more efficient than kernel SVM in prediction,
which is critical for large-scale or online applications.

3.4 Extension to Multi-class Classification
For multi-class classification problems, we can combine mul-
tiple binary classifiers discussed above following standard
one-vs-all strategy. However, in this case, the multi-class al-
gorithm learns class-specific anchor points, with different an-
chor points obtained for different binary classification prob-
lems. This leads to significant computational overhead for
multi-class problems with many classes, as the number of an-
chor points produced scales bymI , where I denotes the num-
ber of classes. Hence it is desirable to share the same anchor
points among different classes, which leads to the following
formulation for multi-class classification problem:

argmin
WI

i=1,b
I
i=1,v

λ

2

I∑
i=1

‖Wi‖2F+
1

N

N∑
n=1

I∑
i=1

`(yn,i, fWi,bi,v(xn))

(21)

fWi,bi,v(xn) = γv(xn)
TWixn + γv(xn)

Tbi

The variables WI
i=1 and bIi=1 represent the weight matrices

and bias vectors of the locally linear classifiers for I classes.
The label yn,i equals 1 if the nth example belongs to the ith
class and −1 otherwise. Compared with the LLC-SAPL for-
mulation for binary classification in Equation (12), the multi-
class formulation in (21) learns different weight matrices and
bias vectors for different classes while sharing the same an-
chor points among classes. This is much cheaper than in-
ducing different anchor points for different classes with the
naı̈ve one-vs-all approach, and scales our algorithm up to
large multi-class datasets nicely. This multi-class classifica-
tion problem can be solved by the same SGD algorithm pre-
sented in Algorithm 1 subject to slight modifications.

4 Experiments
4.1 Synthetic Dataset
The synthetic dataset contains points randomly sampled from
two Sine signals, as shown in Figure 1. Each signal contains
1000 points and forms one class. We then apply LLSVM,

LLC-SAPL and Kernel SVM to this dataset. The number
of anchor points is set to four for both LLSVM and LLC-
SAPL. The decision boundaries produced by the above meth-
ods are displayed by red curves in Figures 1(a), (b) and (c)
respectively. These results clearly show that LLSVM pro-
duces sub-optimal decision boundary compared to the other
two methods. Since LLSVM employs unsupervised anchor
point learning and fixes the anchor points for subsequent clas-
sifier learning, the anchor points thus obtained may not be
optimized for the learned classifier and be likely to lead to
degenerate performance. On the contrary, our LLC-SAPL
model utilizes a fully supervised approach for learning both
the anchor points and classifier jointly. The decision bound-
ary produced by LLC-SAPL is quite similar to that of kernel
SVM. However, LLC-SAPL only uses four anchor points,
while kernel SVM learns 186 support vectors. The predic-
tion cost scales linearly with the number of anchor points
for LLC-SAPL and the number of support vectors for ker-
nel SVM. Therefore, LLC-SAPL is much more efficient than
kernel SVM in the prediction phase.

4.2 Real Datasets
We use ten benchmark datasets: Banana, IJCNN, SKIN,
Magic04, CIFAR, RCV1, USPS, MNIST, LETTER and
MNIST8m. The Banana, USPS and MNIST datasets are used
in [Rätsch et al., 2001] [Hull, 1994] [LeCun et al., 1998]. The
IJCNN, RCV1 and MNIST8m datasets are obtained from the
LibSVM website [Chang and Lin, 2011]. The preprocessed
binary CIFAR dataset is taken from [Jose et al., 2013]. The
others are available at the UCI repository [Bache and Lich-
man, 2013]. The first six datasets are used for binary classi-
fication tasks, and the other four are multi-class datasets. All
the datasets have been divided into training and testing sets
except the Banana, SKIN, Magic04 and MNIST8m datasets.
For Banana and Magic04, we randomly selected two thirds of
examples for training and the rest for testing. For SKIN, we
used half for training and the rest for testing. The MNIST8m
dataset contains 8.1 million examples and was generated by
performing careful elastic deformation of the original MNIST
training set [Loosli et al., 2007]. We used the first 8 million
examples as training data and tested on the 10,000 examples
in the original MNIST testing set. All the datasets are normal-
ized to have zero mean and unit variance in each dimension.
Table 1 gives a brief summary of these datasets. It can be
seen that the datasets used in our experiments have a wide
coverage of different scenarios, including high-dimensional
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(RCV1) and large-scale data (MNIST8m).

Table 1: Summary of the real datasets in our experiments
Datasets # training # test # features # classes
Banana 3,533 1,767 2 2
IJCNN 49,990 91,701 22 2
SKIN 122,529 122,528 3 2

Magic04 12,680 6,340 10 2
CIFAR 50,000 10,000 400 2
RCV1 20,242 677,399 47,236 2
USPS 7,291 2,007 256 10

MNIST 60,000 10,000 784 10
LETTER 16,000 4,000 16 26

MNIST8m 8,000,000 10,000 784 10

We compare our methods with seven previously mentioned
methods: linear SVM, kernel SVM, LLSVM, LCC+SVM,
SVM-KNN, CSVM and LDKL. We use LibLinear [Fan et
al., 2008] and LibSVM [Chang and Lin, 2011] for training
linear SVM and Gaussian kernel SVM respectively. The reg-
ularization parameter C is tuned by 5-fold cross validation on
the training set for both linear and kernel SVMs. Cross val-
idation is also used to tune the kernel width of the Gaussian
kernel for kernel SVM, and the number of nearest neighbors
for SVM-KNN. For the two proposed methods (LLC-SAPL
and LLC-SAPLlcc), LLSVM and LCC+SVM, we adopted the
same parameter values suggested in [Ladicky and Torr, 2011]
by setting the number of anchor points m to 100 and number
of nearest neighbours k to 8 for the local coding step. The
parameters of all the other methods are set as in their origi-
nal papers, with most parameters set by cross validation. For
those methods involving K-means clustering or other random
factors, we take the average testing results and the standard
deviation over 10 random repetitions. The comparison re-
sults in terms of classification accuracy and testing time are
presented in Tables 2 and 3. Note that the results for ker-
nel SVM and SVM-KNN are left empty for the RCV1 and
MNIST8m datasets, since the large size of the datasets makes
the training or testing of kernel SVM and SVM-KNN infea-
sible.

Unsurprisingly, linear SVM does not perform well on all
the datasets as it can not handle nonlinear data. Kernel SVM
achieves the best performance overall. Nevertheless, kernel
SVM is expensive in prediction especially for large datasets
as shown in Table 3. The proposed LLC-SAPL achieves com-
parable performance to kernel SVM, but it is much more
efficient in prediction. This is due to the fact that LLC-
SAPL uses much less number of anchor points compared
to the large number of support vectors used by the kernel
SVM model, which hinders efficiency in prediction. As a
degenerate case of LLSVM, LCC+SVM does not perform as
well as LLSVM. This is also true for LLC-SAPL and LLC-
SAPLlcc. However and most notably, LLC-SAPL outper-
forms LLSVM in classification accuracy on all datasets, and
so does LLC-SAPLlcc and LCC+SVM. Since LLC-SAPL
and LLC-SAPLlcc are supervised counterparts of LLSVM
and LCC+SVM, this clearly demonstrates the effectiveness
of anchor point learning for classification. Moreover, LLC-
SAPL is as efficient as LLSVM for prediction since both fol-
low the same procedure for prediction and use same number

of anchor points. Hence we have only included the testing
time results for LLC-SAPL in Table 3. For the same reason,
the testing time results for LLC-SAPLlcc are included while
the results of LCC+SVM are omitted.

The training speeds of LLC-SAPL and LLC-SAPLlcc are
slower than LLSVM and LCC+SVM due to the update of an-
chor points during training. However, training LLC-SAPL
is much faster than kernel SVM for large datasets. For each
epoch, classifier learning amounts to training multiple linear
SVMs over small subsets of training data, which can be effi-
ciently solved and effectively parallelized for further speedup.
The extra operations for searching and updating k nearest an-
chor points scale linearly with training size and anchor point
number in each epoch. Therefore the whole SGD algorithm
simply repeats linear operations over different epochs for an-
chor point optimization and linear SVM training. In contrast,
there are no linear-time algorithms known for kernel SVM
training, which scales poorly to large-scale data.

For other locally linear classifiers, both SVM-KNN and
CSVM perform well on some datasets but not all of them.
Moreover, SVM-KNN is time-consuming due to the nature of
lazy learning. CSVM enforces alignment between the weight
vectors of individual linear SVMs and a global weight vector,
which is undesirable in some cases. Additionally, the perfor-
mance of CSVM is heavily influenced by the initial K-means
clustering results. Hence it is likely to perform poorly with
improper initialization. LDKL achieves quite good perfor-
mance overall, but LLC-SAPL still gains a margin of advan-
tage over LDKL. The reason lies in the fact that LDKL learns
a tree-based primal feature embedding to partition the feature
space, which may lead to non-smooth partition over the fea-
ture space and abrupt change across region boundaries.

Now we investigate how the performance of LLC-SAPL
varies over different numbers of anchor points. Figure 2
shows the classification accuracies of LLC-SAPL in solid
line with the number of anchor points m ranging from 2
to 180. For comparison, we also display the accuracy val-
ues of LLSVM in broken line on the same plots. It can be
clearly seen that the performances of both LLC-SAPL and
LLSVM improve with increasing number of anchor points m
and stabilize as m exceeds a certain threshold. After that,
the changes in classification accuracy become quite small.
Hence, both methods are not overly sensitive to the exact
choice of m, which makes it easier for model selection. No-
tably, LLC-SAPL outperforms LLSVM for all different num-
bers of anchor points on all these datasets, which demon-
strates the effectiveness of supervised anchor point learning.
To achieve a similar performance as LLC-SAPL with 40 an-
chor points, LLSVM needs to use more than 100 anchor
points for local coding, leading to higher prediction cost.

To further demonstrate the effectiveness of anchor point
optimization, we record the objective function value as well
as the classification accuracy on the testing set for each epoch
and plot the values over different epochs. Figure 3 displays
the epoch-wise results for optimization and classification,
where red solid lines and black broken lines show the changes
of accuracy values as well as objective function values respec-
tively against epoch number. Due to space limitation, we only
show the results of LLC-SAPL for two datasets, namely the
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Table 2: Comparison of different classifiers in terms of classification accuracy (%)
Methods Banana IJCNN SKIN Magic04 CIFAR RCV1 USPS MNIST LETTER MNIST8m

Linear SVM 55.29 92.25 93.34 79.30 69.09 93.21 91.87 91.91 57.52 83.48
Kernel SVM 91.05 98.52 98.98 86.70 81.62 - 94.86 97.84 97.57 -

LLSVM 89.71±0.09 96.86±0.25 95.24±0.46 85.19±0.28 72.60±0.29 94.43±0.27 93.67±0.21 96.50±0.17 95.03±0.32 96.63±0.21
LLC-SAPL 90.82±0.13 98.79±0.32 98.57±0.14 86.53±0.23 76.57±0.23 95.48±0.29 94.46±0.26 97.67±0.22 97.27±0.18 97.96±0.24
LCC+SVM 89.47±0.17 91.58±0.37 94.04±0.08 80.24±0.19 65.48±0.25 87.62±0.13 89.43±0.33 80.35±0.15 77.54±0.20 82.79±0.35

LLC-SAPLlcc 90.15±0.20 95.03±0.26 96.65±0.19 83.75±0.32 72.85±0.16 92.18±0.26 92.63±0.17 88.27±0.29 86.36±0.25 89.44±0.28
SVM-KNN 90.61 96.11 98.15 85.52 76.13 - 93.57 97.04 96.37 -

CSVM 89.64±0.17 97.25±0.48 97.41±0.29 85.01±0.51 73.37±0.21 94.77±0.25 92.85±0.18 95.75±0.24 94.58±0.13 96.02±0.37
LDKL 90.15±0.45 98.31±0.26 98.08±0.38 86.22±0.23 76.04±0.48 95.24±0.19 93.83±0.34 97.24±0.31 97.15±0.37 97.63±0.29

Table 3: Comparison of different classifiers in terms of testing time (in seconds)
Methods Banana IJCNN SKIN Magic04 CIFAR RCV1 USPS MNIST LETTER MNIST8m

Linear SVM 0.0029 0.1475 0.0212 0.0043 0.1631 33.5286 0.0315 0.3339 0.0076 0.3427
Kernel SVM 0.74 357.06 68.58 10.82 594.08 - 43.17 867.59 13.49 -
LLC-SAPL 0.035±0.009 0.851±0.023 0.647±0.048 0.090±0.020 2.909±0.142 92.355±1.272 0.482±0.018 6.415±0.090 0.117±0.011 6.437±0.086

LLC-SAPLlcc 0.009±0.002 0.187±0.004 0.075±0.020 0.014±0.005 0.076±0.011 57.728±1.063 0.012±0.006 0.067±0.008 0.027±0.006 0.063±0.009
SVM-KNN 9.57 5044.99 6857.23 94.05 3124.58 - 212.60 8758.74 34.54 -

CSVM 0.069±0.017 4.327±0.295 1.581±0.033 0.402±0.041 21.771±0.098 264.195±2.642 3.658±0.018 60.813±0.551 1.641±0.013 61.522±0.461
LDKL 0.010±0.004 0.391±0.032 0.275±0.027 0.026±0.004 0.900±0.029 68.097±0.925 0.098±0.008 1.731±0.080 0.082±0.004 1.958±0.074
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Figure 2: Comparison of classification accuracy for LLSVM and LLC-SAPL with respect to the number of anchor points

binary IJCNN dataset and the multi-class USPS dataset, in
Figures 3(a) and (b). Similar observations can be made for
both LLC-SAPL and LLC-SAPLlcc on other datasets. It can
be seen clearly that the objective function values are mono-
tonically decreasing over the epochs. Classification accura-
cies are closely correlated with objective function values, and
lower objective function values usually lead to higher accu-
racies. The trend is especially obvious for the first 5 epochs.
For the real datasets in our experiments, our algorithm gen-
erally converges within 10 epochs. Therefore, our model can
be efficiently trained. These results clearly demonstrate the
effectiveness of supervised anchor point learning.

5 Conclusion
In this paper, we have proposed the LLC-SAPL model, a local
coding based locally linear classifier model with supervised
anchor point learning for nonlinear classification problems.
Unlike previous methods that learn anchor points in an unsu-
pervised fashion separately from supervised classifier learn-
ing, LLC-SAPL is a fully supervised method and learns the
anchor points and classifier together by solving a single op-
timization problem with both variables. Consequently, LLC-
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Figure 3: Epoch-wise demonstration of the proposed super-
vised anchor point learning approach

SAPL is able to refine the initial anchor points to optimize
classification performance.

In the future, we will look into the model selection prob-
lem and explore potential techniques [Zhu et al., 2011;
Fu et al., 2010] for automatically selecting the optimal num-
ber of anchor points for the underlying problem.
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