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Abstract
Science ultimately seeks to reliably predict aspects
of the future; but, how is this even possible in light
of the logical paradox that making a prediction may
cause the world to evolve in a manner that defeats
it? We show how learning can naturally resolve this
conundrum. The problem is studied within a causal
or temporal version of the Probably Approximately
Correct semantics, extended so that a learner’s pre-
dictions are first recorded in the states upon which
the learned hypothesis is later applied. On the nega-
tive side, we make concrete the intuitive impossibil-
ity of predicting reliably, even under very weak as-
sumptions. On the positive side, we identify condi-
tions under which a generic learning schema, akin
to randomized trials, supports agnostic learnability.

1 Introduction
Several scientific disciplines seek to reliably forecast a future
state of affairs. Often, utility is derived not simply by having
one’s predictions verified, but by acting upon the predictions
prior to their verification. Being able to predict the stock mar-
ket, for example, would be of little value if one were not to
invest based on that prediction, or get paid to share it. In cer-
tain cases, taking such actions is accompanied by the distinct
risk of altering the temporal evolution of the environment in
a way that would lead to a different, than anticipated, future.

The problem is modeled as a forecaster in a possibly adver-
sarial environment that becomes aware of the forecaster’s pre-
diction before the environment commits to the outcome that
the forecaster attempts to predict. In this context, a forecaster
is required to be introspective, and acknowledge the effect of
its predictions on their realizability. The contributions of this
work are four-fold: (i) it formalizes introspective forecast-
ing (cf. Definition 4) as an extension of the PAC semantics
[Valiant, 1984; Michael, 2011]; (ii) it identifies a realizability
quantity (cf. Definition 3) that measures the optimal correct-
ness that any introspective forecaster can achieve; (iii) it pro-
poses a general schema for constructing introspective fore-
casters and identifies conditions (cf. Theorem 1) under which
it applies; (iv) it establishes limitations on what can be intro-
spectively forecasted (cf. Theorem 2) and discusses situations
under which these limitations can be lifted (cf. Theorem 3).

Of course, introspective forecasting is not aimed to be used
to make “self-fulfilling” predictions, which are realized sim-
ply because they were acted upon. Instead, having the ability
to make such “self-fulfilling” predictions allows one to ratio-
nally choose whether it is warranted to act upon them, if this
indeed happens to lead to a future that is preferred over one
where no action is taken. We defer a discussion of the philo-
sophical issues that inevitably arise for an extended version
of this paper, and focus herein on the technical framework.

2 Overview
We start with an overview of certain key aspects of this work.

2.1 Causal Learnability
Causal learnability [Michael, 2011] extends the PAC learn-
ing semantics [Valiant, 1984] to a causal or temporal setting.
Below we present a simplified version of that framework.

Given as inputs T ,
⋃

n Tn, S ,
⋃

n Sn, ε, δ ∈ (0, 1],
where Sn is a set of states of size n, and Tn is a set of func-
tions that map Sn to Sn, the learning algorithm proceeds as
follows: During a training phase, the learner observes pairs of
states 〈s, t(s)〉, such that s is drawn independently at random
from some arbitrary but fixed probability distributionDn, and
such that t is a fixed target function in Tn. After time upper
bounded by a fixed polynomial in n, 1/ε, 1/δ, the learner re-
turns, with probability at least 1 − δ, a hypothesis function
h : Sn → Sn such that the probability that h(s) = t(s) on
a state s randomly drawn from Dn is at least 1 − ε. If the
learner can meet the stated requirements for every choice of
n, ε, δ ∈ (0, 1], Dn, and t ∈ Tn, then the class T is causally
learnable. Previous work [Michael, 2011] investigates which
classes are causally learnable, by establishing, among others,
connections to PAC concept learning [Valiant, 1984].

One may allow functions in Tn that map Sn to a set Ln,
when modeling scenarios where a learner seeks to predict not
the entire successor state t(s) of s ∈ Sn, but only some as-
pect, or label in Ln, of t(s). When |Ln| = 2, this resembles
PAC concept learning, but with a key conceptual difference:
the causal dependence of the label of t(s) on s. Even when s
is observed, the label of t(s) is not determined until the suc-
cessor state t(s) materializes; if we were to somehow affect s
after observing it, this would also affect the label of t(s).
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2.2 Recording Predictions
To make the aforementioned conceptual distinction between
PAC concept learning and causal learning explicit, let Tn be
as in the original causal learning framework, and introduce a
new set Fn of functions that map Sn to Ln. Like concepts
in PAC learning, each f ∈ Fn maps a state to a label of that
same state. Unlike PAC learning, however, class F ,

⋃
n Fn

does not aim to act as a hidden structure to be learned; the hid-
den structure is the temporal dynamics of the environment as
captured by class T . Instead, F is available for the learner to
choose to apply any f ∈ Fn on the successor state t(s) ∈ Sn
to produce a label (i.e., to extract a particular feature). For
any chosen function f ∈ Fn, then, the definition of causal
learnability applies mutatis mutandis as before, except that
the learner has access to Ln and f , and aims to return a hy-
pothesis function h : Sn → Ln such that h(s) = f(t(s)).
If the learner can meet the learning requirements for every
choice of n, ε, δ ∈ (0, 1], Dn, t ∈ Tn, and f ∈ Fn, then the
class T is extrospectively learnable through the class F .

Extrospective learnability adopts an assumption that is im-
plicit in several supervised learning frameworks: the learner
operates outside the environment, in that the label of a learn-
ing instance is determined irrespectively of the learner’s pre-
diction. This is so even when the learning instances are cho-
sen adversarially with access to the learner’s current hypoth-
esis (e.g., in mistake-bounded learning [Littlestone, 1988]),
since even then the label of each (adversarially) chosen learn-
ing instance is still independent of the learner. Closer in spirit
to the causal nature of extrospective learnability, the stated
assumption is also followed by certain statistical and learning
approaches that are used to predict the temporal evolution of
a sequence of states [Murphy, 2002; Box et al., 2008].

To account for situations where the very act of making a
prediction may potentially affect the correct / expected pre-
diction, we introduce the notion of a recorder function / that
maps Sn × Ln to Sn; thus, a recorder function records into
a state s ∈ Sn a given label l ∈ Ln and produces a new
state s / l ∈ Sn. This new state belongs in the same set Sn of
states as state s, since the manner in which the environment is
represented is independent of whether predictions are made.

As in extrospective learnability, the goal is to make a pre-
diction h(s) on the label of the successor state when given
only s ∈ Sn. The successor state, however, is now t(s/h(s)).
Having observed s, the learner’s prediction h(s) is announced
and recorded in s, so that the initial state becomes s / h(s).
It is this affected initial state that brings about the succes-
sor state t(s / h(s)), whose label f(t(s / h(s))) is to be pre-
dicted. For any recorder /, then, the definition of extrospec-
tive learnability applies mutatis mutandis as before, except
that the learner has access to /, and aims to return a hypoth-
esis function h : Sn → Ln such that h(s) = f(t(s / h(s))).
If the learner can meet the learning requirements for every
choice of n, ε, δ ∈ (0, 1], Dn, t ∈ Tn, f ∈ Fn, and /, then
the class T is introspectively learnable through the class F .

2.3 Introspective Setting
In the extrospective case (and other typical supervised learn-
ing models), the hypothesis function h that is sought is guar-
anteed to exist; simply set h(·) = f(t(·)). In the introspective

case, however, the hypothesis function h appears in both sides
of the equality h(s) = f(t(s / h(s))) that it seeks to obey; it
is not necessarily possible to factor out h from the equation.
This leads to the consideration of an agnostic setting, where
h is required to obey the equality with probability 1− α− ε,
where 1−α is the optimal probability that any hypothesis can
achieve. As is typical in agnostic or noisy learning models,
the learner is allowed time polynomial in the usual learning
parameters, but also in 1/(1 − α), to compensate for the ad-
versarial environment it faces. These extensions give rise to
the final definition of introspective learnability that we adopt.

Under this final definition, we establish certain connections
between extrospective (and, in particular, causal) learnability
and introspective learnability. We first show that T is intro-
spectively learnable through F if T is causally learnable (cf.
Theorem 1), but causal learnability is not also a necessary
condition (cf. Theorem 2). We then introduce a metric of how
expressive set Fn is (cf. Definition 5) in terms of how many
functions in the set are needed to invert the mappings they
produce, and show that if running time polynomial in this in-
vertibility dimension ofFn is also allowed, then the necessity
of causal learnability can be established (cf. Theorem 3).

2.4 Randomized Trials
The sufficiency of causal learnability for introspective learn-
ability comes through a process analogous to randomized tri-
als, often used in clinical research and certain social sciences.
Roughly, a randomized trial examines the effects of compet-
ing intervention strategies by applying a randomly chosen one
on each instance of interest. In the case of clinical research,
for example, one administers a randomly chosen drug among
a certain set of such to each patient participating in the study.

The need for randomized trials arises from the fact that ad-
ministering a drug to cure / prevent a predicted illness in the
future may have inadvertent and unpredictable effects. What
is needed, then, is making predictions that are introspectively
accurate. Ideally, a doctor should administer drugs based not
on the extrospectively predicted illness of a patient (i.e., “take
this drug because without it you will remain / become sick”),
but on the introspectively predicted wellness of the patient
(i.e.,“take this drug because with it you will remain / become
well”). Randomized trials offer an empirical exploration of
the space of possible introspectively accurate solutions.

Our setting differs non-trivially from that above. A predic-
tion in clinical research is effectively always that the patient
will not exhibit the illness specified by a certain study. Thus,
h(s) is thought to be a constant k, and one seeks to solve the
equation h(s) = f(t(s/h(s))), or k = f(t(s/k)), by choos-
ing an appropriate recorder / (i.e., how to act upon the predic-
tion) among a small set of such (e.g., administer a new drug,
an existing one, or a placebo). By contrast, our results apply
on all possible recorders, and our aim is not to identify one of
them, but rather for each of them to identify the hypothesis h
that solves the equation h(s) = f(t(s / h(s))). Further, the
hypothesis is a function, and one cannot simply exhaustively
consider its application on every state s ∈ Sn to empirically
determine the value for h(s). This last consideration neces-
sitates the use of learning techniques along with randomized
trials to efficiently and reliably solve the equation.
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2.5 Reinforcement Learning
Although introspective learnability descends from a super-
vised learning model [Valiant, 1984], it blurs the dividing
line between supervised (generalization and pattern recogni-
tion) and reinforcement (trial-and-error) learning [Sutton and
Barto, 1998]. In the latter case, an agent (partially) observes a
state of its environment, chooses an action, whose execution
(stochastically) transitions the environment to another state,
and presents the agent with an immediate reward. The agent’s
goal in this setting is to minimize its overall long-term regret.

The driving force behind the vast literature on reinforce-
ment learning is primarily the tension between exploration
to identify an optimal long-term strategy, and exploitation to
get rewarded. Locally-optimal actions may transition the en-
vironment to parts of the state space that defeat the agent’s
long-term prospects. By contrast, an introspective forecaster
observes only an initial and a successor state, and can opt for
the locally-optimal prediction, ignoring long-term effects.

Because of the central concern for identifying a long-term
policy, reinforcement learning remains interesting even under
the assumption that the immediate reward for each available
action in each state is known to the agent. In this case, re-
inforcement learning effectively reduces to a planning prob-
lem in a known environment, with the agent’s goal being to
find an optimal sequence of actions from an initial state. In
a sense, then, introspective forecasting is the dual problem to
planning, since it focuses exactly on the learning aspect of re-
inforcement learning, ignoring any planning considerations.

Among the related literature on multi-armed bandits [Rob-
bins, 1952], most relevant is the study of the contextual bandit
problem [Li et al., 2010], where an agent observes a context,
takes an action, and is then rewarded accordingly. As in intro-
spective forecasting, the problem becomes rather interesting
when running time is allowed to grow only polynomially in
the description size of the contexts (or states, in our case).

Even considering only the obvious difference that an intro-
spective forecaster does not get rewarded, suffices to see that
we assume the availability of a richer feedback mechanism
for the agent. Attempting, for instance, to use binary rewards
/ bandits to simulate prediction fulfillment, would result in not
seeing the label of the resulting state in case the prediction is
not fulfilled. More to the point, in our setting we assume, in
fact, that the agent gets to see the entire successor state itself.

Most importantly, the contextual bandit problem is viewed
through the reinforcement learning paradigm, seeking to min-
imize regret by balancing exploration and exploitation. Our
work approaches the problem through the supervised learning
paradigm, seeking to provide guarantees on predictive accu-
racy after an initial training phase. At the end of the day, con-
textual bandits and our work could be seen as complementary
attempts — moving towards the same point, but from oppos-
ing directions — to unify the two learning paradigms, by in-
vestigating learning algorithms that identify and exploit both
the intra-state and inter-state structure of their environment.

3 Framework
The making of highly-accurate predictions can be viewed as a
game between Nature and the Predictor. The game’s parame-

ters are determined by an environment E , 〈L,S,F , T ,H〉,
which defines for each positive integer n: a set Ln ⊂ L of
label representations; a set Sn ⊂ S of state representations;
a set Fn ⊂ F of functions from Sn to Ln; a set Tn ⊂ T of
functions from Sn to Sn; a setHn ⊂ H of all functions from
Sn to Ln. We assume that Ln, Sn, Fn, Tn,Hn are finite (but
unbounded, as n grows), and that functions in Fn, Tn can be
evaluated on their inputs in time polynomial on the input size.

The game is played in three rounds. First, the Predictor
chooses a function f ∈ Fn, encoding the feature of states to
be predicted. Second, Nature chooses: (i) a function t ∈ Tn,
encoding the laws governing the temporal evolution of states;
(ii) a probability distribution Dn over Sn, encoding the pro-
cess of choosing states. Third, the Predictor chooses a func-
tion h ∈ Hn, encoding the process that it uses to make a pre-
diction. Once both players make their choices, the predictive
ability of h is evaluated thus: A state s ∈ Sn is chosen at ran-
dom fromDn, and the prediction h(s) is computed. State s is
mapped to its temporal successor t(s), and the label f(t(s))
of this latter state is computed. Function h is said to be extro-
spectively (1− ε)-accurate w.r.t. 〈f, t,Dn〉 if h(s) = f(t(s))
except with probability ε over the choice of state s from Dn.

Next, we extend the framework to account for recordings.

Definition 1 (Recorder). A recorder of labels Ln in states
Sn is a function / : Sn × Ln → Sn that can be evaluated on
its inputs in time polynomial on the input size. The recorder
/ is degenerate for a pair of labels l1, l2 ∈ Ln if for every
state s ∈ Sn, it holds that s / l1 = s / l2; i.e., the recording
of the two labels is not distinguishable. The recorder / is
degenerate if it is degenerate for every pair of labels in Ln.

Our notion of a recorder is the broadest possible given the
requirement of efficiency. It may fully or only partially record
a label, so that distinct labels affect a state in distinct or sim-
ilar ways. A recorder is degenerate if it records only the fact
that some prediction is announced, but ignores the prediction
itself. Among the degenerate recorders, the trivial recorder
maps each state to itself, so predictions are not announced at
all. Unless stated otherwise, we deal with arbitrary recorders.

The game is played in three rounds, as before, with an extra
choice for the Predictor during the first round: the Predictor
chooses a recorder / of Ln in Sn. Once both players make
their choices, the predictive ability of h is evaluated thus: A
state s ∈ Sn is chosen at random from Dn, the prediction
h(s) is computed and recorded in state s, giving rise to s /
h(s). The resulting state s / h(s) is mapped to its temporal
successor t(s/h(s)), and the label f(t(s/h(s))) of this latter
state is computed. Function h is said to be introspectively
(1 − ε)-accurate w.r.t. 〈/, f, t,Dn〉 if h(s) = f(t(s / h(s)))
except with probability ε over the choice of state s from Dn.

Unlike in the extrospective setting, a highly-accurate hy-
pothesis h may not (and typically does not) necessarily exist.

Proposition 1 (Non-Predictability Scenarios). Assume that
the Predictor chooses during the first round (i) any non-
degenerate recorder / of Ln in Sn, and (ii) any non-constant
function f ∈ Fn, such that the recorder / is non-degenerate
for a pair of labels l1, l2 ∈ Ln in the image of f . Then, Na-
ture can always choose during the second round (i) a function
t ∈ Tn, and (ii) a probability distribution Dn over Sn, such
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that for every function h ∈ Hn that is introspectively (1− ε)-
accurate w.r.t. 〈/, f, t,Dn〉, it holds that ε = 1.

Proof. Since / is a non-degenerate recorder for the pair of
(distinct) labels l1, l2, then by Definition 1 there exists a state
s0 ∈ Sn such that s0 / l1 6= s0 / l2. Since l1, l2 are in the
image of f , there exist states s1, s2 ∈ Sn such that f(s1) = l1
and f(s2) = l2. Define the probability distribution Dn to
assign non-zero probability only to state s0. For every state
s ∈ Sn, define t(s) to equal s1 if s = s0 /l2 and to equal s2 if
s 6= s0 / l2. The result follows by case analysis on h(s).

The very weak conditions of Proposition 1 corroborate and
explain the strong intuition that an announced prediction can
be easily defeated. This ability derives from the possibility
that the temporal dynamics t ∈ Tn may invariably respond to
the recorded prediction itself in an adversarial manner. We
seek conditions that quantify such an adversarial behavior
— which presumably is limited in those real-world scenar-
ios where announced predictions are not usually falsified.

Definition 2 (Response Function). Consider a recorder / of
Ln in Sn, a function f ∈ Fn, a function t ∈ Tn, and a state
s ∈ Sn. The response function for s under 〈/, f, t〉 is the
function rs : Ln → Ln such that for every label l ∈ Ln,
rs(l) = f(t(s / l)).

Definition 3 (Realizability Degree). Consider a recorder /
of Ln in Sn, a function f ∈ Fn, a function t ∈ Tn, and a
probability distribution Dn over Sn. Nature’s choice 〈t,Dn〉
is (1−α)-realizable for 〈/, f〉 if the response function rs for
a randomly chosen state s under 〈/, f, t〉 has a fixed-point
except with probability α over the choice of state s from Dn.

Definition 3 captures precisely the likelihood α for Nature
to present the Predictor with a state s that, under Nature’s
chosen temporal dynamics t, makes every prediction made by
the Predictor (using any hypothesis) in state s self-defeating.

Proposition 2 (Condition for Predicting Introspectively).
Consider a recorder / of Ln in Sn, a function f ∈ Fn, a
function t ∈ Tn, and a probability distribution Dn over Sn.
Then, there exists a function h ∈ Hn that is introspectively
(1 − α)-accurate w.r.t. 〈/, f, t,Dn〉 if and only if Nature’s
choice 〈t,Dn〉 is (1− α)-realizable for 〈/, f〉.

Proof. The claim follows directly from Definitions 2–3.

The Predictor’s goal is, then, to find a function h ∈ Hn that
is close to being introspectively (1 − α)-accurate (i.e., to the
optimal value that any possible hypothesis could achieve).

4 Learnability
The learning model formalized in this section operates under
the following premises / principles: (P1) The Predictor pas-
sively observes the current state of affairs that is drawn from
some distribution. (P2) A label is recorded exactly once and
only according to the Predictor’s chosen recorder, but record-
ings can also be simulated without affecting the actual state of
affairs. (P3) The Predictor observes the entire state of affairs
that results according to Nature’s temporal dynamics, irre-
spectively of the prediction task that it undertakes. (P4) The

Predictor seeks introspectively accurate predictions to the ex-
tent that they exist by the choices of Nature, with no a priori
assumptions. (P5) The Predictor has direct access to all of its
choices (predicted feature and recorder), but not to those of
Nature. (P6) Learning is computationally efficient.
Definition 4 (Introspective Learnability). The environment
E , 〈L,S,F , T ,H〉 is information-theoretically introspec-
tively learnable if there exists an algorithm A such that for
every positive integer n, every real number ε ∈ (0, 1], every
real number δ ∈ (0, 1], every recorder / of Ln in Sn, every
function f ∈ Fn, every function t ∈ Tn, every probability
distribution Dn over Sn, if 〈t,Dn〉 is (1 − α)-realizable for
〈/, f〉 then there exists a function h ∈ Hn such that:

(i) given E, n, /, f , ε, δ as inputs, A enters a training phase
at the end of which it returns h, and then terminates;

(ii) during the training phase the following are repeated: a
state s ∈ Sn is drawn from Dn and given to A; a label
l ∈ Ln is chosen by A; the state t(s / l) is given to A;

(iii) h is introspectively (1 − α − ε)-accurate w.r.t.
〈/, f, t,Dn〉, except with probability δ over the random-
ness employed by A and Dn during the training phase.

If, in addition, algorithm A runs in time polynomial in |Ln|,
log |Sn|, log |Fn|, log |Tn|, log |Hn|, 1/ε, 1/δ, 1/(1 − α),
then environment E is (efficiently) introspectively learnable.

Condition (i) follows the typical Learning Theory require-
ment of having certain problem parameters available as inputs
(cf. Principle (P5)). Condition (ii) follows passive supervised
learning (cf. Principles (P1) and (P3)), while embracing as-
pects of active learning by having the algorithm partly affect,
through recording, the input state (cf. Principle (P2)). Condi-
tion (iii) follows the typical PAC learning semantics in insist-
ing on predictive guarantees, while also incorporating aspects
of agnostic learning by acknowledging that the optimal accu-
racy might be exogenously restricted (cf. Principle (P4)).

Efficiency (cf. Principle (P6)) adopts the usual polynomial
dependence of the running time on the problem parameters.
Time linear in log |Sn|, log |Fn|, log |Tn|, log |Hn| is needed
even to read or write an element of Sn, Fn, Tn,Hn. Time lin-
ear in 1/ε and logarithmic in 1/δ is needed to compensate for
the arduous requirement to achieve arbitrarily high accuracy
and confidence in the returned hypothesis [Ehrenfeucht et al.,
1989]. Time linear in 1/(1− α) is needed to compensate for
the (possibly small) probability 1 − α of drawing states for
which a correct prediction exists; an analogous treatment ap-
plies for noisy instances [Angluin and Laird, 1988]. To sup-
port a general, task-independent formulation, the introspec-
tive learning algorithm is a priori oblivious to the actual value
of α (as determined by Nature’s choices), even if its running
time may depend on it. Lastly, time linear in |Ln| (as opposed
to log |Ln|) is needed even to enumerate the labels in Ln dur-
ing the training phase, which is shown next to be necessary.
In effect, the following result shows the necessity of employ-
ing some form of randomized trials for introspective learning,
at least when the labels lack any usable internal structure.
Proposition 3 (Linear Dependence on Number of Labels).
Any algorithm that information-theoretically introspectively
learns an environment 〈L,S,F , T ,H〉 runs in time Ω(|Ln|).
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Proof. Consider a presumed counterexample algorithm to the
claim. LetDn assign probability 1 to a state s, so the response
function rs under 〈/, f, t〉 has one fixed-point. For ε, δ < 1,
the algorithm identifies a fixed-point of rs, except with prob-
ability δ over its randomness. For large n, however, the algo-
rithm’s running time is less than (1 − δ) · |Ln|, and probing
rs for its fixed-point fails with probability more than δ.

Given the allowed computational resources, then, an intro-
spective learner A seeks to find a fixed-point of the response
function rs for s under 〈/, f, t〉, for states s of sufficient prob-
ability mass under Dn. To appreciate the central aspects of
the learning model, we next consider a possible training strat-
egy for algorithm A. Following Condition (ii) of Definition 4,
algorithm A first obtains a state s0 ∈ Sn drawn from Dn.
Having no indication as of yet on what the sought function
h might look like, the algorithm may choose an arbitrary la-
bel l ∈ Ln, and compute the state s1 , s0 / l0 that results
from recording l0 in s0. After the label is recorded, the al-
gorithm receives the state s2 , t(s1), and may compute the
label l2 , f(s2). At this point the algorithm may seek to
exploit the information that has been made available so far.

We examine the algorithm’s behavior by case analysis. As-
sume first that l0 = l2, so that the algorithm predicts correctly.
It can, then, safely set h(s0) := l0. Assume now that l0 6= l2,
so that the algorithm predicts incorrectly. Note that, unlike in
typical supervised learning models, the correct prediction is
not revealed to the algorithm. Indeed, label l2 is not necessar-
ily the appropriate value to assign to h(s0); for the same state
s0, Nature may have responded to a prediction of l2 with l′2,
to a prediction of l′2 with l′′2 , and so on, without any of these
labels corresponding to a fixed-point of the response function
rs0 for s0 under 〈/, f, t〉. Thus, algorithm A can safely infer
in this case only that h(s0) 6= l0, but not that h(s0) = l2.

In either case, the algorithm has access to a pair 〈s1, s2〉
comprising the initial / successor states of the environment
according to the temporal dynamics t. The algorithm may
seek, then, to solve the auxiliary learning problem of approx-
imating t by an auxiliary hypothesis g (that agrees with t on
“sufficiently many” inputs) [Michael, 2011]. If algorithm A
obtains such a hypothesis g, it can compute a highly-accurate
h: consider the response function r̃s(l) = f(g(s / l)) ≈
f(t(s / l)) for s under 〈/, f, g〉; systematically test it on each
label in Ln to identify the least fixed-point l; if l exists, set
h(s) := l. Since the algorithm has access to recorder / and
function f , it can compute f(g(s/l)). Note that the computa-
tion of h in this manner cannot be done explicitly during the
training phase, but it is done lazily when hypothesis h is ap-
plied during the testing phase to make a prediction on state s.

Why is the problem not solved by learning t and computing
h? Although, the algorithm obtains a pair 〈s1, s2〉 of initial /
successor states even when l0 6= l2, in that case state s1 is not
drawn from the “right” probability distribution (in which only
correct predictions are recorded)! Thus, while 〈s1, s2〉 can be
used to learn t, it might offer little in ensuring that g approxi-
mates t on those states that are important (for computing h).

The “right” probability distribution is not Dn from which
Nature draws states, but a probability distribution D+

n over
states s / l induced by drawing a state s ∈ Sn from Dn, and

then recording the least (or any other prescribed tie-breaking
function) fixed-point l of the response function rs for s under
〈/, f, t〉, if one exists. It is on states of sufficiently high prob-
ability mass under probability distribution D+

n that g should
approximate t. However, sampling from D+

n seems to pre-
suppose a highly-accurate h to identify an appropriate label l
for state s. Are we back to square one? Fortunately not quite,
since it suffices to sample from D+

n only sufficiently often.

Theorem 1 (Sufficient Learnability Condition w.r.t. T ).
The environment 〈L,S,F , T ,H〉 is introspectively learnable
if the class T is causally learnable.

Proof. Let B be a causal learning algorithm for class T . Con-
sider an environment E , 〈L,S,F , T ,H〉 and algorithm A:

Given inputs E, n, /, f , ε, δ, algorithm A starts by sim-
ulating the execution of algorithm B on inputs Sn, Tn,
ε(1−α)/|Ln|, δ/2; we assume for now that α is known,
and deal with the task of identifying it later. Whenever al-
gorithm B requests a training instance, algorithm A sam-
ples a state s ∈ Sn from the probability distribution Dn,
selects a label l ∈ Ln uniformly at random, computes
s1 , s / l, receives s2 , t(s1), and passes 〈s1, s2〉
to algorithm B. Once algorithm B returns a hypothesis
g and terminates, algorithm A constructs the hypothe-
sis h ∈ Hn defined so that on any input s ∈ Sn, h(s)
equals the lexicographically first fixed-point of the re-
sponse function r̃s(l) = f(g(s/ l)) for s under 〈/, f, g〉;
if no such fixed-point exists, then h(s) equals ⊥ (or any
arbitrary label). Algorithm A returns h, and terminates.

Let D+
n be the probability distribution defined as in our

discussion above. Since a fixed-point exists with probability
1 − α, and since algorithm A records a uniformly at random
label in s, it follows that with probability (1 − α)/|Ln| the
chosen label is the least fixed-point of rs. Overall, then, algo-
rithm A obtains a pair 〈s1, s2〉 satisfying s2 = t(s1), so that
state s1 is sampled from D+

n with probability (1 − α)/|Ln|,
and from some other probability distribution, say D−n , with
the remaining probability. It follows that if g(s1) = t(s1)
except with probability ε(1 − α)/|Ln| on states s1 sampled
from the probability distribution induced byD+

n andD−n , then
g(s1) = t(s1) except with probability ε on states s1 sampled
from D+

n . The correctness of algorithm A follows.
The running time is as required by Definition 4 even if α

is replaced with any upper-bound ᾱ of α such that 1 − ᾱ is
polynomially related to 1 − α. Such an ᾱ can be efficiently
computed iteratively as done when learning with an unknown
noise rate [Laird, 1988; Angluin and Laird, 1988].

Although algorithm A’s inputs resemble a causal learner’s,
the condition of introspective learnability is not necessary.

Theorem 2 (Counterexample to Necessity w.r.t. T ). There
exists an environment 〈L,S,F , T ,H〉 that is introspectively
learnable, but the class T is not causally learnable. (The re-
sult holds even if classesF andF◦T are causally learnable.)

Proof. Consider an environment E , 〈L,S,F , T ,H〉 such
that F comprises constant functions only, and the class T is
not causally learnable (see, e.g., [Michael, 2011] for such a
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class). Observe, however, that the environment E is (trivially)
introspectively learnable: given f ∈ Fn as input, the learning
algorithm can return the hypothesis h(·) := f(·), for which
it holds that h(s) = f(s) = f(t(s / h(s))) for every state
s ∈ Sn. With regards to the parenthetical constraint, Fn ◦
Tn = Fn, and F is causally learnable.

Theorem 2 illustrates a scenario where the temporal dy-
namics T are unlearnable, but the features F of the successor
states are simple enough to nullify this unlearnability. Similar
in spirit results can be established for more expressive classes
F , all attesting to the following point: If the features F that
the Predictor can reliably predict are “insufficiently expres-
sive”, then it does not follow that the Predictor is able to learn
the temporal dynamics T of Nature. We formalize this below.
Definition 5 (Invertibility Dimension). Consider a set Cn of
functions with domain Xn and codomain Yn. The invertibil-
ity dimension of Cn equals the minimum non-negative inte-
ger d for which there exist functions c1, c2, . . . , cd ∈ Cn and
a function u : Yd

n → Xn such that (i) all of the d + 1 func-
tions can be evaluated on their inputs in time polynomial on
the input size, and (ii) for every element x ∈ Xn, it holds
that u(c1(x), c2(x), . . . , cd(x)) = x. If no such d exists, the
invertibility dimension of Cn is∞.

Recall that each f ∈ Fn captures a feature of some state of
affairs. d is the minimum number of such features that would
be required to get full information for a given state of affairs.
Theorem 3 (Necessary Learnability Condition w.r.t. T ).
The environment 〈L,S,F , T ,H〉 is introspectively learnable
only if the class T is causally learnable in non-uniform time
polynomial in the usual learning parameters and also in the
invertibility dimension d of Fn. For uniform time, the neces-
sary condition needs to account also for the time required to
identify d, u, c1, c2, . . . , cd as given in Definition 5.

Proof. Let A be an introspective learning algorithm for envi-
ronment E , 〈L,S,F , T ,H〉. Consider algorithm B:

Given inputs Ln, Sn, Fn, Tn, n, ε, δ, algorithm B starts
by simulating the execution of d independent copies of
algorithm A, so that the i-th copy is simulated on inputs
E, n, /, ci, ε/d, δ/2d, where / is the trivial recorder, d
is the invertibility dimension of Fn, and u, c1, c2, . . . , cd
are as in Definition 5 for Cn = Fn, Xn = Sn, Yn = Ln.
Whenever algorithm A requests a training instance, algo-
rithm B samples a state s ∈ Sn and t(s) from the prob-
ability distribution Dn, passes s to algorithm A and re-
ceives a label l ∈ Ln, sets s1 , s/ l and s2 , t(s1), and
passes s2 to algorithm A. Once each copy of algorithm
A returns a hypothesis hi and terminates, algorithm B
constructs the hypothesis h ∈ Hn defined so that on any
input s ∈ Sn, h(s) equals u(h1(s), h2(s), . . . , hd(s)).
Algorithm B returns h, and terminates.

Correctness follows by observing that algorithm A is simu-
lated given the trivial recorder /, which, in particular, implies
α = 0. The computational complexity is non-uniform, since
given Fn we assume access to d and u, c1, c2, . . . , cd.

Analogous results to Theorems 1-2 can be obtained w.r.t.
the class F ◦T (the composition of functions from F and T ).

5 Conclusions
Understanding how the realizability of predictions is affected
by the actions effected by the predictions themselves, is key in
designing intelligent and autonomous machines. We have put
forward a learning-theoretic model within which the problem
can be formally investigated. Further connections to the gen-
eral issue of usefully accommodating predictions in the pro-
cess of learning [Michael, 2008; 2014] remain to be studied.

Future work can extend the model to settings where: state
sensing is noisy [Angluin and Laird, 1988; Shackelford and
Volper, 1988] or partial [Michael, 2010]; only statistical in-
formation is available [Kearns, 1998]; the successor state is
not always available [Balcan and Blum, 2010]; temporal dy-
namics are stochastic [Kearns and Schapire, 1994]; the initial
state is partially chosen / fixed by the learner [Angluin, 1988;
Michael, 2011] or a teacher [Goldman and Mathias, 1996];
the labels exhibit learnable internal structure that allows in-
trospective learnability with sub-linear (and even logarithmic)
time-dependence on the number of labels (cf. Proposition 3).
Further work can be done on developing unbiased introspec-
tive learners that return a uniformly at random chosen hypoth-
esis among all highly-accurate ones, addressing, thus, con-
cerns of manipulation by a forecaster [Simon, 1954, p. 251].

On a second front, future work can seek to approach as spe-
cial instances of introspective forecasting, tasks whose under-
standing would prima facie benefit from such a treatment: (i)
accommodating for the side-effects of announcing poll results
[Simon, 1954]; (ii) personalizing the education of students
without risking to overwhelm and discourage them [Michael,
2012]; (iii) anticipating how spam senders adapt to the spam
filtering tools in use [Fawcett, 2003]1; and (iv) playing in gen-
eral game competitions [Genesereth et al., 2005], where a
technique known as Monte Carlo Tree Search [Browne et al.,
2012], which effectively reacts to a randomly predicted strat-
egy for an agent’s opponent, was found to be very effective.
Approaching randomized trials in clinical research as special
instances of introspective forecasting could conceivably yield
optimal interventions more efficiently and less intrusively.

A third front relates to investigating the deeper connection
of this work to fixed-points. We have sought to identify fixed-
points to the extent they happen to exist (as given by α), side-
stepping concerns on the conditions under which they exist
[Brouwer, 1911], and without a need to make multiple queries
to anyone of Nature’s response functions [Sperner, 1928]. We
have considered the identification of exact fixed-points for a
set of nominal-valued response functions, and sought to effi-
ciently ε-approximate the subset of functions for which this
was possible. One could examine the case of identifying ap-
proximately the fixed-points themselves [Etessami and Yan-
nakakis, 2010], either by introducing a distance metric be-
tween labels, or by clustering them in equivalence classes.
Investigating learnability in such coarser settings could be in-
formed by work on learning to approximate real-valued func-
tions [Balcan and Harvey, 2012], while also accommodating

1Offered as a challenge to Knowledge Discovery and Data Min-
ing: “[this perspective is] foreign to most data mining researchers:
the data are mined and the results are deployed, but the data environ-
ment is not considered to be an active entity that will react in turn”.
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environments with sets Ln, Sn, Fn, Tn,Hn of infinite size.
Much work remains to be done in exploring the intricacies

of introspective forecasting and its utilization in various set-
tings. Yet, its demonstrable amenability to a task-independent
formalization already offers a glimpse into its possible role as
a convergence point across disciplines, contra to arguments
offered against the unity of science [Fodor, 1974]. The gist
of an oft-cited argument is that prediction “tend[s] to change
the initial course of developments” in the social sciences,
whereas “[t]his is not true of prediction in fields which do not
pertain to human conduct” [Merton, 1936, p. 903]. Our work
responds by demonstrating that to the extent that prediction is
possible in any given setting and discipline, the same method-
ology can yield optimal, in a defined sense, predictions.
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