
Equivalence Results between Feedforward and
Recurrent Neural Networks for Sequences∗

Alessandro Sperduti
Department of Mathematics
University of Padova, Italy

Email: sperduti@math.unipd.it

Abstract
In the context of sequence processing, we study the
relationship between single-layer feedforward neu-
ral networks, that have simultaneous access to all
items composing a sequence, and single-layer re-
current neural networks which access information
one step at a time. We treat both linear and nonlin-
ear networks, describing a constructive procedure,
based on linear autoencoders for sequences, that
given a feedforward neural network shows how to
define a recurrent neural network that implements
the same function in time. Upper bounds on the
required number of hidden units for the recurrent
network as a function of some features of the feed-
forward network are given. By separating the func-
tional from the memory component, the proposed
procedure suggests new efficient learning as well as
interpretation procedures for recurrent neural net-
works.

1 Introduction
Learning on sequential data has always been a hot topic
since many are the application domains where this skill could
be applied, e.g. natural language processing, bioinformat-
ics, video surveillance, time series prediction, robotics, etc.
There are many different approaches that can be used to
perform learning on sequential data, ranging from deter-
ministic to probabilistic ones. In this paper, we focus on
Recurrent Neural Networks (RNN) (see for example [Kre-
mer, 2001]), which constitute a powerful computational tool
for sequences modelling and prediction, as recently demon-
strated in [Boulanger-Lewandowski et al., 2012], where
many different approaches for sequence learning have been
compared on a prediction task involving polyphonic music.
Training a RNN, however, is hard, the main problem being
the well known vanishing gradient problem which makes dif-
ficult to learn long-term dependencies [Bengio et al., 1994].
Partial solutions to this problem have been suggested in liter-
ature, such as the introduction of LSTM networks [Hochreiter
and Schmidhuber, 1996], more efficient training procedures,
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such as Hessian Free Optimization [Martens and Sutskever,
2011], and smart weight initialisation procedures, as stressed,
for example, in [Sutskever et al., 2013], and demonstrated for
RNN in [Pasa and Sperduti, 2014]. Notwithstanding these
progresses, efficient and effective training of RNNs is still an
open problem.

Our position about this state of the art is that current learn-
ing algorithms for general RNN architectures are not based
on a good understanding of how information is processed
by a RNN. Specifically, we believe that efficient and effec-
tive learning algorithms should address in different ways the
functional and the memory components of a RNN. Thus a
better understanding of how these two components interact
each other inside a RNN is needed. In this paper, we re-
port on some results that we believe, in part, elucidate the
interplay between these two components. The approach we
have pursued can be explained as follows. We consider a
set of bounded sequences for which a prediction task at each
time step should be carried on. We pretend to have enough
computational resources to be able to fully unroll these se-
quences and to exploit a feedforward neural network with
as many input units as the number of components belong-
ing to the longest sequence. We consider the set of func-
tions that such network can compute on the given set of se-
quences and show how it is possibile to design a RNN able
to reproduce the same set of functions. The feedforward net-
work does not need to have a memory component since the
(sub)sequences presented in input are fully unrolled. Thus,
the feedforward network can be understood as a system with a
pure functional component. However, when we construct the
“equivalent” RNN, we need to introduce a memory compo-
nent, since the RNN can only read one item of the sequence at
a time. The memory component we introduce is based on lin-
ear autoencoders for sequences, i.e., a special case of the au-
toencoders for structured data introduced in [Sperduti, 2006;
Micheli and Sperduti, 2007; Sperduti, 2007]. Specifically,
an autoencoder is used to keep memory of the temporary
results computed by the functional component of the feed-
forward network. Additional considerations of properties of
sigmoidal functions will also allow the substitution of linear
units with sigmoidal units, incurring into an arbitrarily small
error in reproducing the functions computed by the original
feedforward network. Overall, we get a practical procedure
that, given a feedforward neural network processing unrolled
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sequences, is able to return an “equivalent” RNN processing
the sequences one item at a time. Since we use autoencoders,
the procedure also returns RNNs with a number of hidden
units which is not extremely large. In fact, we try to give
upper bounds on the number of hidden units of the resulting
RNN.

We believe that the main contribution of the paper is to start
a research path towards a better understanding of the weight
space of RNNs, so to allow, in a hopefully near future, the
design of more efficient and effective learning algorithms for
RNNs.

2 Background
In the following, we introduce background knowledge on lin-
ear autoencoders for sequences, and feedforward and recur-
rent neural networks with a single layer.

2.1 Linear Autoencoders for sequences
In [Sperduti, 2006; Micheli and Sperduti, 2007; Sper-
duti, 2007], a closed form solution for linear autoen-
coders for structured data has been proposed. Specifically,
given a set of temporal sequences of input vectors {sq ≡
(xq1,x

q
2, . . . ,x

q
lq
)|q = 1, . . . , n, xqj ∈ Ra}, a linear autoen-

coder can be defined by considering the coupled linear dy-
namical systems

yt = Axt + Byt−1 (1)[
xt
yt−1

]
= Cyt (2)

and looking for the smallest possibile matrices A, B, and C
able to satisfy eq. (1) and eq. (2).

The solution proposed in [Sperduti, 2006] hinges on the
factorisation of the matrix Y collecting as rows the state vec-
tors of the linear system described by eq. (1). In fact, as-
suming as initial state y0 = 0 (the null vector), and a single
sequence for the sake of presentation, Y can be factorized as

yT
1

yT
2

yT
3
...

yT
l


︸ ︷︷ ︸

Y

=


xT
1 0 0 · · · 0

xT
2 xT

1 0 · · · 0
xT
3 xT

2 xT
1 · · · 0

...
...

...
...

...
xT
l xT

l−1 · · · xT
2 xT

1


︸ ︷︷ ︸

Ξ


AT

ATBT

ATB2T

...
ATBl−1T


︸ ︷︷ ︸

Ω

where, given s = al, Ξ ∈ Rl×s is the data matrix collect-
ing all the (inverted) input subsequences (including the whole
sequence) as rows, and Ω is the parameter matrix of the dy-
namical system. By considering the thin svd decomposition
of Ξ = VΛUT, the state space can be confined into a sub-
space of dimension ρ = rank(Ξ) if matrices A and B are
chosen so to have UTΩ = I, i.e. the identity matrix. By
exploiting the fact that UUT = I, this condition turns into
Ω = U. Using matrices

Pa,s ≡
[

Ia×a

0(s−a)×a

]
, Ra,s ≡

[
0a×(s−a) 0a×a

I(s−a)×(s−a) 0(s−a)×a

]
,

where Pa,s is an operator that annihilates all except the first
a components of vectors multiplied to its left and Ra,s is an
operator that shifts down of a positions the components of
vectors multiplied to its right replacing the first a components
with zeros, it is not difficult to verify that A ≡ UTPa,s ∈
Rρ×a and B ≡ UTRa,sU ∈ Rρ×ρ satisfy equation Ω = U.
It is also not difficult to recognise that, since Y = VΛ, it is
possibile to fully reconstruct the original data Ξ by comput-
ing YUT = VΛUT = Ξ, which can be achieved by running
the dynamical system[

xt
yt−1

]
=

[
AT

BT

]
yt

starting from yl, i.e.
[

AT

BT

]
is the matrix C defined in

eq. (2).
Finally, when considering a set of sequences, the same re-

sult can be obtained by stacking the data matrix of each se-
quence and filling up with zeros where needed. E.g., given a
sequence s1 of length 3 and a sequence s2 of length 2, the full

data matrix can be defined as Ξ =

[
Ξs1

Ξs2 0a×a

]
.

2.2 Feedforward and Recurrent Neural Networks
In this paper, we mainly work with feedforward and recurrent
neural networks with a single hidden layer. Specifically, with
no loss in generalisation, we consider feedforward neural net-
works Nf with a single output described by the following
equation

oNf
(x) = σ

 H∑
h=0

woh σ(w
T
hx)︸ ︷︷ ︸

hh(x)

 ,

where x is the input vector with a component set to 1 to ac-
count for the bias term, σ(·) is the hyperbolic tangent func-
tion, H is the number of hidden units of the network, wh are
the weight vectors of the hidden units, and woh are the com-
ponents of the output weight vector, where wo0 is associated
to the constant 1 (i.e., here we assume that h0(x) = 1) to
account for the bias term.

Here we also consider a linear version of the feedforward
network (which, because of linearity, reduces to a single lin-
ear unit), i.e. NL whose output is described by

oNL
(x) = wTx. (3)

The output of the recurrent neural network Nrec consid-
ered here is a nonlinear version of eq. (1) and eq. (2), i.e.

oNrec
(xt) = σ(cTyt) (4)

yt = σσσ(Axt + Byt−1) (5)

where we assume y0 = 0, σσσ(·) is the function which ap-
plies component-wise the hyperbolic tangent to the input
vector, A ∈ RH×(a+1) is the input-to-hidden weight ma-
trix (we assume a constant input to 1 to account for the
bias), B ∈ RH×H is the hidden-to-hidden weight matrix,
c ∈ RH+1 is the hidden-to-output weight vector (again, we
assume a constant input to 1 to account for the bias).
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As a final remark, we observe that the hyperbolic tangent
function σ(z) is almost linear around 0. In fact, if we consider
the function βσ( zβ ), given z ∈ [−b, b] and an error value ε,
there exists a value β? such that |β?σ( zβ? )− z| < ε. This fact
can be understood recalling that the first terms of the Taylor
expansion of the hyperbolic tangent function are z − z3

3 +
2z5

15 − · · · , which for βσ( zβ ) becomes z − z3

3β2 + 2z5

15β4 − · · · .

We will use this fact for some of our results on nonlinear
networks.

3 Theoretical Results

We start by considering the task to learn a function F(·)
from multivariate input sequences of bounded length to de-
sired output values, in the following sense: given a train-
ing set T = {(sq,dq)|q = 1, . . . , n, sq ≡ (xq1,x

q
2, . . . ,x

q
lq
),

dq ≡ (dq1, d
q
2, . . . , d

q
lq
), xqt ∈ Ra, dqt ∈ R}, we expect to

learn a function F(·) such that ∀q, t F(sq[1, t]) = dqt , where
sq[1, t] ≡ (xq1,x

q
2, . . . ,x

q
t ). Actually, here we are not inter-

ested into generalisation issues, but into computational issues,
i.e., we would like to seek an answer to the following ques-
tion: what is the relationship between an implementation of
F(·) by a feedforward neural network able to directly access
the sequence items read up to time t and an implementation
of F(·) by a recurrent neural network that can directly access
only the current item at time t (after having read all the previ-
ous items of the sequence). An answer to this question would
allow to gain a better understanding of how a recurrent neural
network is able to manage the memory component which is
needed to store the (relevant features of the) sequence items
which are read one at a time, jointly with the functional com-
ponent needed to reproduce the desired output value. This im-
proved understanding could be a good starting point to device
more efficient and effective learning algorithms for recurrent
neural networks.

We start our investigation by first considering linear func-
tions. After that, we discuss how the findings obtained with
linear functions can be extended to nonlinear functions.

3.1 Linear Functions

Here we consider linear functions Fw(·) which can be im-
plemented by a linear network NL with weight vector w,
as described by eq. (3). Starting from NL we show how
to build a linear dynamical system (a special case of the
one described by eq. (1) and eq. (2)) which computes the
very same function. Specifically, let l = maxi∈{1,...,q} li,
m = argmaxi∈{1,...,q} li. We consider NL to have an in-
put of size al, i.e. w ∈ Ral. Given an input sequence
sq ≡ (xq1,x

q
2, · · · ,x

q
lq−1,x

q
lq
), the linear network NL takes

as input the vectors obtained by concatenating (in reverse or-
der) the first i items of the sequence, padding the obtained
vector with zeros, so to obtain a vector in Ral. By collecting

these vectors as rows of a matrix we obtain

Ξq =



xqT

1 0 0 0 · · · 0 0 · · · 0

xqT

2 xqT

1 0 0 · · · 0 0 · · · 0

xqT

3 xqT

2 xqT

1 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

xqT

lq
xqT

lq−1 xqT

lq−2 · · · xqT

2 xqT

1 0 · · · 0︸ ︷︷ ︸
l−lq


where 0 ∈ Ra is a row vector of zeros. The reason to have the
sequence items in reverse order is just to maintain the same
convention adopted for the autoencoder described at the be-
ginning of the paper. It is like assuming that new information
is always arriving from the left side. If we consider all the se-
quences in T , we can describe the output vector d collecting
all the outputs by NL as



Ξ1

Ξ2

...
...

Ξl

...
Ξn


︸ ︷︷ ︸

Ξ



w1

w2

...
wm

...
wl


︸ ︷︷ ︸

w

=



d11
d12
...
d21
d22
...

dnln−1

dnln


︸ ︷︷ ︸

d

where we have made explicit that the weight vector w can be
decomposed into l subvectors wi of size a, i.e. ∀i wi ∈ Ra:
w1 is used to process the last read item of the sequence,
w2 to process the second-last read item, and so on. Thus,
the tth read item of the jth sequence can be computed as
Fw(sj [1, t]) = djt =

∑t
k=1 xj

T

k wt−k+1. We start from this
equation to show how to define a linear dynamical system
able to reproduce the same output. In addition, we require the
linear dynamical system to have the smallest state space as
possibile.

Let consider the vectors belonging to the canonical basis
of Rl, i.e. eeei ∈ Rl, where eeeij = δi,j and δi,j is the Kro-
necker delta function. We can use these vectors to rewrite djt
as follows

djt =
t∑

k=1

xj
T

k [w1w2 · · ·wl]︸ ︷︷ ︸
W

eeet−k+1 =
t∑

k=1

xj
T

k Weeet−k+1

=
t∑

k=1

xj
T

k B︸ ︷︷ ︸
ξξξj

T

k

Γeeet−k+1 =
t∑

k=1

ξξξj
T

k Γt−k+1,

where B ∈ Ra×r, r = rank(W) ≤ a, is a matrix whose
columns constitute a basis for the subspace spanned by the
columns of W, and Γ ∈ Rr×l is such that W = BΓ. By
defining zzzjt = [ξξξj

T

t , ξξξ
jT

t−1, · · · , ξξξ
jT

1 ], we can introduce, for
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j ∈ {1, .., n}, matrices

Zj =


zzzj1 01×(l−1)a
zzzj2 01×(l−2)a
...

...
zzzjlj 01×(l−lj)a

 , and Z =


Z1

Z2

...
Zn

 ,
such that d = Z vec(Γ), where vec(·) is the vectoriza-
tion function which, given a matrix in input, returns a col-
umn vector obtained by stacking the columns of the ma-
trix on top of one another. We can now observe that Z has
the same structure of Ξ, so given the thin svd decomposi-
tion Z = VΛUT we can exploit the encoding part of the
linear autoencoder given by A ≡ UTPr,rl ∈ Rρ×r and
B ≡ UTRr,rlU ∈ Rρ×ρ, where ρ = rank(Z), to define
the following equivalent (over T ) linear dynamical system
NLrec

:
yt = ABTxt + Byt−1

oNLrec
(xt) = vec(Γ)TUyt

where y0 = 0, i.e. the zero vector of dimension ρ. It is not
difficult to verify that, by construction, ∀j, t

oNLrec
(xjt ) = djt = Fw(sj [1, t]) = oNL

([xjt , . . . ,x
j
1, . . . ,0]).

Thus, we have demonstrated that, given a specific T and w,
it is possibile to build an equivalent (over T ) linear dynami-
cal system with state space dimension equal to ρ = rank(Z).
Notice that, since vec(Γ)TU ∈ Rρ, the total number of pa-
rameters of the dynamical system is ρ(r + ρ+ 1), instead of
the al parameters compounding w. Of course, it is trivial to
state that ρ ≤ min{

∑n
i=1 li, rl}, i.e. the minimum between

the number of rows and the number of columns of Z. To ease
future discussion, let N =

∑n
i=1 li.

In the following, we argue that, looking at properties of
w and/or to structural features of the proposed construction,
it may be possible to define an equivalent linear dynamical
system with state space dimension smaller than ρ. In order to
discuss this issue, we need to define two specific properties
of w:
Definition 3.1 (rank and timespan of w over T ). We say
that w has rank r? if r? = rank(W) and timespan t? if
wt? 6= 0 and ∀t > t?,wt = 0.

We start by observing that if t? < l, then

djt =
t∑

k=max{1,t−t?+1}

ξξξj
T

k Γt−k+1.

Thus we can define new vectors

zzzjt,t? = [ξξξj
T

t , ξξξ
jT

t−1, · · · , ξξξ
jT

max{1,t−t?+1}]

to use for the construction of matrices Zt
?

j and Zt
?

, with the
feature that the number of nonzero columns of Zt

?

is less or
equal to r?t?, and in general ρt

?

= rank(Zt
?

) ≤ ρ, since by
construction the columns of Zt

?

are also in Z. In this case,
the trivial bound to ρt

?

is min{N, r?t?}.
Another important observation is that it is not difficult to

define a dynamical system that can selectively forget some

of the information stored into the state space. In fact, we
can exploit the same idea underpinning a linear autoencoder
and make a small modification. We can notice that matrix
Ra,s corresponds to a linear function that pushes down the
components of the input vector of a positions, i.e. given in
input a vector x ∈ Rs, it returns a vector x↓ ∈ Rs with x↓i =
0 for i = 1, . . . , a, and x↓i = xi−a+1 for i = a+ 1, . . . , s. If
we now consider the matrix Ra,s/p = Ra,s − 1p+a,ps , where
1i,js is a s × s matrix of all zeros except for entry i, j, which
is equal to 1, then Ra,s/p, in addition to shifting down of a
positions the components of x, also annihilates the (p+ a)th
component of the resulting vector. Thus, if we consider the
following linear dynamical system

yt = Pa,sxt + Ra,s/pyt−1

and feed it with all the sequences in T , the matrix Ξ/p ob-
tained by collecting all the state vectors y1

1,y
1
2, . . . ,y

n
ln

as
rows, will be equal to Ξ, except for columns p + a, p +
2a, p + 3a, . . . which will have zero entries. If we now con-
sider the thin svd decomposition of Ξ/p = V/pΛ/pU

T
/p, we

can project the state space vectors into the subspace spanned
by the columns of Ξ/p, obtaining ỹt = U/p

Tyt. Exploiting
the fact that U/pỹt = yt, we can write

ỹt = U/p
T(Pa,sxt + Ra,s/pyt−1)

= U/p
TPa,s︸ ︷︷ ︸

A/p

xt + U/p
TRa,s/pU/p︸ ︷︷ ︸

B/p

ỹt−1

i.e., we get a very similar solution as in the case of the linear
autoencoder where instead of using the thin svd decomposi-
tion of Ξ and Ra,s, we use the thin svd decomposition of Ξ/p

and Ra,s/p. Notice that ρ/p = rank(Ξ/p) ≤ ρ. Exploiting
this observation, we can state the following theorem
Theorem 3.1. Given a vector w with rank r? and timespan
t? over T , then there exists a linear dynamical system with
space dimension ρ/π ≤ min{N, 12 [(1 + 2t?)r? − r?2]} im-
plementing Fw(·) over T .

Proof. From the above discussion it is clear that there exists
a linear dynamical system with space dimension less or equal
to r?t? able to implement Fw(·). However, it is possibile
to further reduce such dimension by an appropriate choice of
the basis B. In fact, if we create B incrementally by set-
ting B1 = wt? and then trying to add new columns to B
by proceeding backward to vectors wt?−1, wt?−2, . . ., the
memory of the dynamical system can discard one by one the
contribution of the columns of B while approaching t?. The
worst case is given by the scenario where B is constituted by
the linearly independent vectors wt?−r?+1, . . . ,wt? , since in
that case the dynamical system must keep in memory the full
contributions of B for the first t? − r? time steps; after that,
the contributions of columns of B can be discarded one by
one at each time step, starting form the last column backward
to the first column. This can be obtained by using Ra,s/π ,
where π is the sequence of indexes that need to be annihi-
lated. Thus, in the worst case the dimension of the state vec-
tor is given by (t?−r?)r? coordinates for storing information
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Figure 1: Feedforward network with the 1-time-step property.

for the first t? − r? time steps, plus 1
2 (r

? + 1)r? coordinates
for storing information for the last time steps before reaching
t?.

It should be remarked that, by definition, r? ≤ a. More-
over, the rank of the matrix collecting all the state vectors of
the resulting dynamical system can in practice be far less than
the bound given above.

3.2 Nonlinear Functions
In this section, we discuss how to exploit the results obtained
for linear functions in the case in which F(·) can be im-
plemented by feedforward neural networks. Specifically, we
show how to build a recurrent neural network able to imple-
ment F(·) over T with a number of hidden units which is
bounded by a function of two quantities that are generalisa-
tions of the rank and timespan already discussed for the case
of linear functions.

We start by considering a specific class of feedforward neu-
ral networks, and then we move to the general class of feed-
forward neural networks.

Definition 3.2. A single hidden layer feedforward neural net-
workNf is said to have the 1-time-step property if any hidden
unit only connects to input units belonging to the same time
step.

An example of feedforward network with this property is
shown in Figure 1. If a network has the 1-time-step prop-
erty, then it is possibile to write the output oNf

of Nf to the
(unrolled) input (sub)sequence s ≡ (x1,x2, · · · ,xl) as

oNf
(s) = σ

 l∑
t=1

Ht∑
h=1

woht σ(w
T
htxt)︸ ︷︷ ︸

hht(xt)

 ,

where Ht is the number of hidden units associated with the
input at time step t. Notice that Ht can be 0 for some values
of t. Moreover, woht are the weights from the hidden units to
the output unit, thus they are the components of a vector that
we denote as wo. Let H =

∑l
t=1Ht, i.e. the number of

hidden units of Nf , and

h(xi) = [h11(xi), h21(xi), .., hH11(xi), h12(xi), .., hHll(xi)]

be the row vector that collects the output of all hidden units
to the same input xi. This vector can be understood as the set
of contributions that xi can give at time steps from 1 to l. The
idea is to replace the original sequence s ≡ (x1,x2, · · · ,xl)
with sequence (h(x1), h(x2), · · · , h(xl)) and then apply a
construction similar to the one described for linear functions.
Specifically, we can define H as

Hq =


h(xq

1) 0 0 · · · 0
h(xq

2) h(xq
1) 0 · · · 0

h(xq
3) h(xq

2) h(xq
1) · · · 0

...
...

...
...

...
h(xq

lq
) h(xq

lq−1) h(xq
lq−2) · · · h(xq

1)

, H=


H1

H2

...
Hn


Notice that H contains all the information needed to compute
the desired function over T . In fact, by defining the weight
row vector w̃ ∈ RHl as

w̃ = [wo1l, .., w
o
Hll
, 0, .., 0︸ ︷︷ ︸

H

, wo1(l−1), .., w
o
Hl−1(l−1), 0, .., 0︸ ︷︷ ︸

H

,

.., 0, wo11, .., w
o
H11]

we can write, ∀j, t
oNf

(sj [1, t]) = σ
(
w̃hTj,t

)
,

where hj,t = row(ι(j, t),H), i.e. the row of matrix H of
index ι(j, t) =

∑j−1
k=1Hk + t.

A recurrent neural network Nrec with vector states given
by rows of H can be obtained as follows. Let H/[1,H] be
H without the first H columns and H[1,H] be the first H
columns of H. Nrec will have a input units, i.e. what is
needed to read input vector xt ∈ Ra at time t. Moreover,
Nrec will have a hidden layer composed of H hidden units
with hyperbolic tangent function, which are the same as the
hidden units of Nf , all connected to the input units. In addi-
tion to these hidden units, the hidden layer of Nrec will have
ρH/[1,H] = rank(H/[1,H]) linear hidden units implementing
the encoding part of an autoencoder defined on the sequences
generated by the first H hidden units. Notice that items of
these sequences are rows of H[1,H] and that H/[1,H] corre-
sponds to the Ξ matrix of the state space matrix factorisation.
In summary, while the first H sigmoidal hidden units take
as input only the input vector xt at time t, the linear hidden
units at time t take as input the output of the full hidden layer
at time t− 1.

Mathematically, the obtained network, with H + ρH/[1,H]

hidden units, can be described as

oNrec(xt) = σ(w̃

[
I 0
0 U

]
yt)

yt =

[
h(xt)
ỹt−1

]
ỹt = [ A B ]yt−1

where matrices U, A, and B are obtained by H/[1,H]. More-
over, we assume y0 = 0 and ỹ0 = 0. A pictorial representa-
tion of the network is shown in Figure 2.

Notice that linear hidden units can be substituted by sig-
moidal units by incurring into a predefined error ε. In fact, we
can observe that, by construction, the linear hidden units get
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Figure 2: Topology of the recurrent network derived from the
feedforward network holding the 1-time-step property.

a bounded input, since they process the output of sigmoidal
units, which is bounded between−1 and 1. Moreover, we are
considering bounded sequences. Thus, by using sigmoidal
units βσ( zβ ) in place of linear units, we can always find suit-
able values of βs so to keep an approximation error for the
output within the desired tolerance ε.

As in the linear case, we can further reduce the size of the
hidden space. In fact, we can define the timespan of Nf over
T as follows
Definition 3.3 ( timespan of Nf over T ). We say that Nf
has timespan t? if Ht? 6= 0 and ∀t > t?, Ht = 0.

We can observe that the dynamical system derived from
H/[1,H] can forget the first tH state components after t time
steps. This leads to a bound on the number of hidden units
which is min{N, 12Ht?(Ht? + 1)}, where Ht? =

∑t?

i=1Hi.
Let now consider a feedforward neural network with no

restriction, i.e. a feedforward neural network where hidden
units take input from all time slots. In this case, for each hid-
den node, we can apply what we have seen for linear func-
tions when considering its net input. Thus, each hidden unit
h generates a corresponding matrix of states Y(h). All these
matrices can be concatenated to form a single large matrix
Ỹ ≡ [Y(1), . . . ,Y(H)] that can again be decomposed by
thin svd Ỹ = ṼΛ̃ŨT. Ũ can now be used to compress this
component of the state vector and Ũ to expand it back when it
is needed to use it for the net input of the hidden units. Since
all operations are linear, the size of the resulting component
of the state vector will be ρ̃ = rank(Ỹ). Upper bounds on ρ̃
can trivially be derived by using the upper bound we already
derived for a single linear unit when considering its rank and
timespan. Thus, overall, the resulting Nrec will have H + ρ̃
hidden units. Again, linear units can be substituted by sig-
moidal units incurring into a predefined error.

4 Empirical assesment
In this section, we empirically evaluate on a real dataset the
size of the state space of a recurrent neural network derived
by a feed-forward network with hidden units. This consti-
tutes the worst case scenario among the ones described in the
previous sections. As dataset we have selected 71 DNA se-
quences1 of up to 159 amino-acids. Each of the 20 occurring

1The dataset can be retrieved at the following URL:
http://www.math.unipd.it/ s̃perduti/DNAdataset.zip.
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Figure 3: Distribution of the length of the sequences compris-
ing the DNA dataset.
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Figure 4: Weight values for hidden unit 4. Weights with in-
dex from 1 to 12 correspond to the last presented input. From
13 to 24 to the input presented 1 time step before, and so on.
Thus, moving to higher indices corresponds to moving back
in time. All other hidden units have similar weight distri-
bution. It is clear that the timespan of the weight vectors is
maximum, i.e. 159.

amino-acid is encoded by a vector of size 12 with±1 compo-
nents. For these sequences we have defined a binary classi-
fication task at each position (amino-acid). The task consists
in predicting whether the considered amino-acid is part of a
specific secondary structure, i.e. a helix, or not. In the first
case, the target for that amino-acid is set to +1 (2, 282 cases),
otherwise to −1 (4, 925 cases). The length distribution of the
sequences is reported in Figure 3. Overall, 7207 predictions
have to be performed.

A feed-forward network with 10 hidden units and 12×159
inputs, able to access all the amino-acids read till a given posi-
tion, has been trained on the classification task, obtaining an
accuracy of almost 0.99 (73 errors over 7, 207 predictions).
The resulting timespan of the hidden weight vectors is maxi-
mum (159), as can be verified in Figure 4 for one hidden unit.
This feed-forward network has then been transformed into a
recurrent neural network, as explained in Subsection 3.2. Ex-
act reconstruction of the output of the feed-forward network
is obtained with a state space of size 1, 655. However, by
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Figure 5: Discrepancy between the output of the feed-forward
network with 10 hidden units and the output of the recon-
structed recurrent neural network as a function of the size of
its state space. Normalised discrepancy is computed as the
fraction of the number of predictions where the feed-forward
network and the recurrent network disagree, divided by the
total number of predictions (7207).

only considering the first k singular values of the SVD de-
composition (thin SVD), it is also possibile to construct re-
current neural networks with different degrees of approxima-
tion. The very same prediction of the feed-forward network is
preserved for k ≥ 1, 108. For smaller values of k the predic-
tions of the obtained recurrent neural network disagree with
the predictions of the feed-forward network at different lev-
els. In Figure 5 we have reported the normalised discrepancy
ndD(Nf ,Nreck) between the recurrent network Nreck with
state space of size k and the feed-forward network Nf , over
the dataset D, as a function of k. Normalised discrepancy is
computed as

ndD(Nf ,Nreck) =
∑
x∈D |Nf (x)−Nreck(x)|

2|D|
where with x we refer to the input for a single predic-
tion, i.e. in our case the amino-acid (and amino-acid al-
ready read for the considered sequence) for which a predic-
tion should be performed. The factor 2 takes into account
that predictions are ±1 values, i.e. in case of disagreement
|Nf (x)−Nreck(x)| = 2.

For this dataset and task, it is clear that the need to imple-
ment a memory (which is external in the case of the feed-
forward network) within the recurrent neural network costs
very many additional parameters (weights).

5 Conclusions
The results we have described in this paper should be con-
sidered into the right perspective. They do not constitute a
complete basis for the design of new efficient and effective
learning algorithms for RNN. However, they suggest many
research directions, both concerning learning and interpreta-
tion of a RNN. When considering learning, one trivial sugges-
tion is to design a learning algorithm that learns feedforward

components in separation and then merges them as shown in
the paper, or an approach that starts by learning shorter se-
quences using feedforward networks which are then turned
into RNNs to be further combined with additional feedfor-
ward networks. Another line of research could be to make an
explicit separation, inside a RNN, of the functional compo-
nent from the memory component, and to interleave learning
on the functional component with learning on the memory
component. When considering interpretation of a RNN, a
trivial observation seems to be that hidden units with high
gain are probably mainly involved into the functional compo-
nent of the RNN, while hidden units with low gain are proba-
bly mainly involved into the memory component of the RNN.
More sophisticated interpretation approaches could try to de-
vise a decoding function for the hidden units in analogy to
what happens with linear autoencoders.
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