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Abstract
We introduce a novel framework for option dis-
covery and learning transfer in complex domains
that are represented as object-oriented Markov de-
cision processes (OO-MDPs) [Diuk et al., 2008].
Our framework, Portable Option Discovery (POD),
extends existing option discovery methods, and en-
ables transfer across related but different domains
by providing an unsupervised method for finding
a mapping between object-oriented domains with
different state spaces. The framework also includes
heuristic approaches for increasing the efficiency of
the mapping process. We present the results of ap-
plying POD to Pickett and Barto’s [2002] Policy-
Blocks and MacGlashan’s [2013] Option-Based
Policy Transfer in two application domains. We
show that our approach can discover options ef-
fectively, transfer options among different domains,
and improve learning performance with low com-
putational overhead.

1 Introduction

Reinforcement learning (RL) typically studies learning al-
gorithms applied to single, well-defined environments. RL
agents seek to find an optimal policy for their environment,
where a policy, π(s), is a mapping of states to actions that de-
scribes how an agent should behave, given its perceived state.
Ideally, however, we would like to create agents that can learn
how to accomplish more general tasks in a range of environ-
ments. One approach to enable this kind of learning transfer
is to provide the agent with a set of high-level actions that
guide the agent to useful parts of the state space. The options
framework [Sutton et al., 1999] provides a way to formulate
high-level actions in a Markov decision process (MDP) that
can be easily incorporated into a variety of different RL al-
gorithms. An option describes a sequence of actions that an
agent can take to achieve a subgoal in an MDP domain. For
instance, three options in a building navigation domain could
describe the actions needed to move to a door, unlock it, and
open it, respectively. In the original options work, each option
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was provided to the agent by a domain expert. Later work has
focused on agents autonomously discovering useful options
from a set of previously learned policies, then using these op-
tions to accelerate learning to accomplish future goals (see
Section 6). However, much of the existing work either as-
sumes that all policies use identical state spaces, or requires
manual mapping across different state spaces. These limita-
tions restrict the applicability of the learned options.

We introduce a framework called Portable Option Discov-
ery (POD) that provides the first techniques for fully au-
tomated option discovery and learning transfer across re-
lated domains with different state spaces, modeled as object-
oriented Markov decision processes (OO-MDPs) [Diuk et al.,
2008]. We use the term domain to refer to an environment
described by an OO-MDP, which is composed of a set of ob-
jects with assigned attributes, a transition model, start state(s),
goal state(s), and an associated reward function. OO-MDPs
provide a structured representation that enables state space
abstraction by focusing on the objects and attributes that are
relevant for a specific task. POD performs learning transfer
by identifying options that achieve subgoals in source do-
mains, scoring candidate mappings for abstracting the source
options, and grounding the abstracted options in new, target
domains. POD is a general framework that can be applied to
a range of existing option transfer algorithms.

We implement POD on two existing methods: Policy-
Blocks [Pickett and Barto, 2002] and Transfer Options
(TOPs) [MacGlashan, 2013]. PolicyBlocks is an automated
method for identifying options in non-structured state spaces
by finding common behaviors among different policies. By
contrast, TOPs enable options to work in object-oriented state
spaces, but requires an expert to specify a small set of use-
ful source policies from which TOPs will be created. POD
addresses the limitations of both of these methods by pro-
viding novel techniques for abstracting state spaces and scor-
ing different possible mappings, enhancing PolicyBlocks to
operate over object-oriented state spaces, and replacing the
hand-crafted expert mappings required for TOPs with effi-
cient, automatically generated ones. We refer to the new al-
gorithms, respectively, as Portable PolicyBlocks (PPB) and
Portable Transfer Options (PTOPs). We evaluate these meth-
ods experimentally in two application domains (Taxi World
and Block Dude), showing that the POD-enhanced methods
consistently improve performance.
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Figure 1: Conceptual diagram of PolicyBlocks’ merge.

The main contributions of our work are (1) a process for ab-
stracting an object-oriented domain and then grounding these
abstractions to a target domain, (2) the scoring process for
selecting the best mapping for these abstractions, (3) the ap-
plication of these techniques to create the PPB and PTOPs
learning transfer methods, (4) experimental results showing
that the learning transfer methods improve performance sig-
nificantly over a non-transfer baseline, and (5) an open-source
implementation of POD.

2 Background
MDPs and Policies A Markov decision process (MDP) is
a stochastic model that describes the effects of an agent’s
actions on its environment. An MDP can be represented as
a four-tuple, {S,A,P (·, ·) ,R (·, ·)}, consisting respectively
of a set of states, a set of actions, a transition probability func-
tion, and a reward function. An agent makes decisions in an
MDP environment by using a policy that provides a mapping
from states to actions. In general, an agent’s policy can be de-
terministic or stochastic. In our work, we make the simplify-
ing assumption that a policy is a deterministic mapping from
states to individual best actions; however, the methods could
readily be applied in the context of probabilistic policies, as
we will discuss. Learning an optimal policy is often achieved
through value iteration methods to compute an action-value
function Q : S × A → R. The Q-value Qπ(s, a) represents
the expected return (cumulative reward) of taking action a in
state s under policy π.

Options An option for an MDP is a conditional sequence of
primitive actions defined as a three-tuple, {π, I, β}, consist-
ing of a policy (π : S → A), a set of initiation states (I ⊆ S),
and termination conditions (β : S → [0, 1]) [Sutton et al.,
1999]. The initiation set I is the subset of states in which the
option can begin to be executed. If an option’s initiation con-
dition is satisfied and the agent selects it, the option’s policy
is followed until a termination condition is met. The termi-
nation condition β is a probability function over states that
defines the likelihood that the agent ends the execution of an
option when it is in that state. Options are typically used as
high-level actions that achieve subgoals in MDPs, terminat-
ing deterministically when a goal state is reached. The states
in an option’s initiation set do not need to be contiguous (e.g.,
a door-opening option might only apply locally in the regions
immediately adjacent to the doors in a building).

PolicyBlocks The PolicyBlocks option discovery method
[Pickett and Barto, 2002] finds options from a set of previ-

Algorithm 1 PolicyBlocks Power Merge

P ← set of source policies
O ← empty option set
c← null
while |P | > 0 do

for all M ← subsets(P ) do
M ′ ← merge(M)
if score(M ′) > score(c) then

c←M ′

subtract(P, c)
O ← O + c

return O

ously solved source MDPs for a set of target MDPs that share
the same tabular (unstructured) state space. PolicyBlocks cre-
ates options by identifying common subpolicies in the set
of source policies for the source MDPs. The source poli-
cies may have been hand-crafted by a designer or learned
by the agent with a reinforcement learning algorithm like Q-
learning [Watkins and Dayan, 1992]. Algorithm 1 shows the
pseudocode for the main operation of PolicyBlocks.

The PolicyBlocks algorithm first generates a set of option
candidates by merging subsets of the initial policy set P . In
principle, all possible subset merges could be created; in prac-
tice, Pickett and Barto claim that merging all possible pair and
triplet subsets is sufficient to obtain good option candidates.
A merge is defined as the collection of state-action pairs that
exist in each of a set of source policies. The result of each
merge is a partial policy, a policy that maps a subset of the
full state space to actions and maps the remaining states to a
special “empty” action. A visualization of the merging pro-
cedure given two source policies is shown in Figure 1. An
inherent limitation of PolicyBlocks (and motivation for POD)
is that the merge operator cannot be applied to source policies
from domains with different state spaces.

Each option candidate is assigned a score, defined as the
product of the number of states defined in the candidate and
the number of policies in the original source policy set that
contain the same state-action pairs. All policies are consid-
ered when calculating the score, even those that were not
source policies for the merge. The highest-scoring option is
placed in an option set O, and the states associated with that
option are subtracted, or removed, from each source policy
that maps that state to the same action as the new option.

Figure 2: A Block Dude domain with labeled objects.
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Object-Oriented MDPs Diuk et al. [2008] introduced
object-oriented Markov decision processes (OO-MDPs) to
facilitate learning in environments with large state spaces.
OO-MDPs represent environments by a set of n objects,
O = {o1, . . . , on}, where every object belongs to an object
class and has a value assignment to a set of attributes that
are associated with the object class. We will refer to n as
the OO-MDP’s domain size. The status of an object at any
given time is the current set of values for each attribute of
its class. Likewise, state s of an environment is defined as
the union of the attribute values of all objects in the domain,
s = ∪Oi=1status(oi).

Figure 2 shows the Block Dude OO-MDP domain, with
object classes wall, block, agent, and exit. Each class has x
and y position attributes; the agent class has an orientation
attribute (left or right); and the block class has a “being car-
ried” attribute. The agent can move left, move right, pick up
an adjacent block in the direction it is facing (if the cell above
the block is empty), drop a block in the direction it is facing
(if that cell is empty), or climb up a single block or wall (if
the cell over and up one in the direction it is facing is empty).
Any agent or moved block always falls to the lowest unoc-
cupied cell. The agent must stack blocks in a configuration
that grants access to the exit, its goal. Figure 2 shows three
numbered block objects. Note that if the position attributes
of these objects were swapped so that each object was now
in the location previously occupied by another of the same
class, the state would be functionally identical. This property
facilitates an agent’s ability to generalize across a variety of
arrangements, given a set of interchangeable objects.

The object-oriented representation of an environment sim-
plifies the representation of policies and transition models by
permitting abstraction over states that are identical for the
purposes of an agent’s action choice. If state spaces from two
different RL domains share a common set of objects, then
knowledge can potentially be transferred between these do-
mains.

Transfer Options Transfer Options (TOPs) [MacGlashan,
2013] are designed to be transferred from one or more source
domains to a target domain with a different state space.
Whereas traditional options are designed to represent local
subgoals and leverage often-visited states, TOPs are used to
transfer contiguous state-action pairs from a source policy.
Rather than identifying noteworthy portions of previous poli-
cies, TOPs apply an entire source policy to a new domain
through a user-supplied mapping. The TOP creation method
takes a state space mapping (from the source domain to the
target domain), an initiation set, and the termination condition
as input. If multiple mappings exist, each mapping will pro-
duce a unique TOP. The primary limitation of TOPs is that the
approach does not provide guidance about which policies are
most appropriate for transfer, or which state space mappings
are most likely to be useful.

3 Approach
The POD framework encompasses several procedures that al-
low existing option transfer methods to perform automated

Figure 3: Conceptual diagram of abstraction and grounding.

option discovery in richer, more complex domains. Applied
to PolicyBlocks, POD enables learning transfer across OO-
MDPs; applied to TOPs, POD provides a means of identify-
ing the most useful source policies and mappings from a large
set of source policies and possible mappings.

We define an application as a set of OO-MDP object
classes, their associated attributes, and a set of actions. A
domain, as defined previously, is a specific OO-MDP envi-
ronment that is an instance of an application. Domains that
belong to the same application differ in the number of objects
for each object class in the domain’s state space. A key chal-
lenge in learning transfer across such domains is to identify
the best mapping between corresponding objects. POD ac-
complishes this mapping through an abstraction process that
uses novel scoring and mapping search techniques. Integrat-
ing POD into PolicyBlocks also requires modifying the sub-
traction and merging procedures of PolicyBlocks.

POD learns abstract options from a set of source domains
in which policies have been provided or learned. These ab-
stract options can be applied to many different target domains
of the same application to help learn new policies in these do-
mains as efficiently as possible. Figure 3 shows a high-level
diagram of this process, where each domain is abstracted to
the same level.

Abstraction To transfer knowledge between domains, we
abstract policies from previously learned (source) domains
so they can be used in new (target) domains that share some
commonalities. Consider policy π in source domainD, which
provides a mapping from the state space S to the action set
A. To abstract π, we create an abstract domain D′ in abstract
state space S′. The abstract state space is defined as a subset
of the OO-MDP objects present in the source domain; there-
fore, S′ ⊆ S. In order to provide a mapping between S and
S′ when there are multiple objects of the same type in S, we
must associate each object in S with an object of the same
type in S′. This correspondence will induce a mapping func-
tion f : S → S′.

Note that some objects in S will not correspond to any ob-
ject in S′ – they are effectively irrelevant to the abstracted
policy. The process of determining the relevant objects in S
and their roles in the abstract domain is at the heart of POD’s
abstraction process and the ensuing learning transfer.

For any source domain that contains multiple objects of any
class ci, there will be multiple possible mappings to the target
domain. Specifically, given ki objects of class ci in the source
domain and k′i objects of that class in the abstract domain,
there are ki!

(
ki
k′i

)
possible mappings. If there are |C ′| object

classes in the abstract domain, then the number of possible
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mappings is the product of these terms for each object class:

M =

|C′|∏
i=1

ki

(
ki
k′i

)
. (1)

Clearly, for complex domains, exhaustive consideration of all
Mmappings is infeasible. Therefore, we select the best map-
ping by first defining a scoring metric (see “Scoring”) and
then applying a heuristic search method to discover a high-
scoring mapping (see “Mapping Search”).

Since f is necessarily many-to-one, with this mapping,
there will exist a one-to-many inverse mapping from the ab-
stracted domain to the source domain, f−1 : S′ → P(S)
(where P denotes the power set). Once the mapping is deter-
mined, an abstract policy for S′ can be created by associating
each abstract state s′ ∈ S′ with an action from the source
domain a ∈ A, using the function f−1(s′) to identify the set
of source states that map to the abstract state s′. Because the
source policy may recommend different actions for different
source states in f−1(s′), a consensus action must be com-
puted. In our experimental setup, the learned policies are all
derived from Q-values, so we define this consensus function
by taking the action with the highest average Q-value among
the source states f−1(s′):

π′(s′) = arg max
a∈A

1

|f−1(s′)|
∑

s∈f−1(s′)

Q(a, s) (2)

Note that if the source policy indicates that the same action
is optimal for all of the source states (i.e., when ∀s1, s2 ∈
f−1(s′), π(s1) = π(s2)), then Equation 2 will select that ac-
tion as the optimal action for the abstract state. Our method
can easily be applied to other policy representations (in-
cluding stochastic policies) by defining a different consensus
function (e.g., using a voting method to select the most fre-
quently recommended action).

Scoring If there are many possible source options and map-
pings, providing the agent with an option for each possible
option/mapping combination may counteract the benefits of
knowledge transfer, due to an increase in the branching factor
of the action space. Therefore, we introduce a scoring sys-
tem for ranking the amount of knowledge transfer that each
mapping could provide, and we select only the best mapping
for use. The score of a mapping is based on the proportion
of the state-action pairs that are preserved between the source
policy and the abstract policy.

Given an input source domain D and output abstract do-
main D′, consider π, a partial policy for the input domain, f ,
a mapping from the input state space to the output state space,
and π′, the abstract policy (Equation 2). We can then use f to
reconstruct a policy π′′ in the input domain that takes the ac-
tion associated with each corresponding state in the output
domain:

π′′(s) = π′(f(s)).

(Essentially, π′′ is the grounded version of the abstract pol-
icy in the original source domain.) Due to the information
loss from abstraction, there will be differences between π

Algorithm 2 PPB Power Merge

n← number of options
P ← set of source policies
O ← empty option set
c, c′ ← null
while |P | > 0 and |O| < n do

for all M ← subsets(P ) do
g ← gcg(M)
M ′ ← merge(abstract(g,M))
M ′′ ← ground(M ′)
if score(M ′′) > score(c′) then

c←M ′

c′ ←M ′′

subtract(P, c)
O ← O + c

return O

and π′′. Minimizing this information loss means maximizing
the number of actions that π and π′′ recommend in common.
Therefore, we wish to maximize the ratio of the number of
common actions in π and π′′ to the total number of state-
action pairs in π:

Score =
|π ∩ π′′|
|π|

. (3)

Mapping Search Greedy search is used to avoid scoring
allM mappings by identifying a subset of relevant possible
mappings. To find a useful mapping from a source domain to
a target domain, first the source domain is abstracted relative
to the greatest common generalization (GCG), defined as the
maximal subset of objects in each class that appear in both
the source domain(s) and the target domain. In other words,
given a set of objects in the source domain, Os, and a set
of objects in the target domain, Ot, the GCG is defined as
Os ∩ Ot, regardless of the values of the attributes associated
with the objects. The GCG is computed only once per policy
to be transferred.

Once the GCG has been computed, an abstract domain rep-
resentation is produced from the source domain by selecting
one of theM possible mappings (Equation 1). We use a step-
wise greedy search method, which performs this abstraction
in b steps, where b is the number of objects in the source do-
main that are not in the GCG. We denote the source domain
asD′b and the final abstracted domain asD′0. At each step, the
least relevant object is eliminated. That is, for step m, D′m−1
is obtained by using the highest-scoring mapping in the set of
all mappings from D′m to a domain with one fewer object.

Applying the Transferred Policy An abstract policy can
be used in a target state space by grounding it to that domain.
This grounding step requires the same type of mapping as was
necessary for the source-to-abstract step, and is done using
the same mapping scoring method (Equation 3). Again, the
score is based on the number of matching state-action pairs
between the abstract policy and the grounded (target) policy.
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3.1 Portable PolicyBlocks

Portable PolicyBlocks (PPB) creates its option candidates
from OO-MDP policies, allowing it to work in richer and
more complex domains than PolicyBlocks. PPB uses a mod-
ified Power Merge process (Algorithm 2) that creates sets
of initial source policies, identifies the GCG for each set,
abstracts each policy using the relevant GCG, merges each
set, grounds each result, scores each result, and subtracts the
highest-scoring option candidate. Thus, PPB follows Policy-
Blocks with the addition of the GCG identification, abstrac-
tion, and grounding procedures.

We assume that source policies are optimal partial poli-
cies for a set of source domains within an application. Source
policies are assumed to be defined for all of the states that
are reachable from all initial states in the applicable source
domain. An initial state of a domain is a state in which the
agent would begin to accomplish a specific task; therefore, a
policy for a specific task or set of tasks includes at least one
such state. PPB Power Merge generates a set of option can-
didates by applying the modified merge operator to all pairs
and triples of the source policies.1

Merging The merge operator accepts any number of source
policies and produces an option candidate. As in Policy-
Blocks, a merge is simply the collection of state-action pairs
shared among source policies. Obtaining a non-empty merge
from source policies learned on domains with different sets
of objects requires identifying a single abstract domain (i.e.,
a state space defined by some shared set of objects). Source
policies must be mapped to that abstract state space; this pro-
cess is accomplished by the abstract operator. In order to
abstract everything to the same GCG, we implement greedy
merge, abstracting one step at a time and merging at the ear-
liest possible step. For example, given four source domain
policies π1, π2, π3, and π4 with number of objects k, such
that kπ1

< kπ2
< kπ3

< kπ4
, merging proceeds in this order:

π4 is abstracted relative to π3, π′4 and π3 merge to form π4,3,
π4,3 is abstracted relative to π2, π′4,3 and π2 merge to form
π4,3,2, and so on.

Subtraction Mapping several source states to a single ab-
stracted state also changes the way that the subtract opera-
tor of the original PolicyBlocks algorithm is applied to the
source policies. In PolicyBlocks, subtraction is done by iterat-
ing over the state-action pairs in the option candidate, remov-
ing all instances of matching state-action pairs from all initial
policies, and replacing them with an “undefined” action for
those states. Using POD, the source policies are typically in
a different domain from the option candidate, but grounding
the abstracted option to the domain of each of the source poli-
cies (as described previously) allows the use of subtraction as
described in PolicyBlocks.

1We verified experimentally that increasing sets of merged
source policies beyond triples does not improve performance, as was
suggested by Pickett and Barto [2002].

Applying Options An option candidate is used by ground-
ing its abstract states to a target domain as the state space
of that target domain is explored. When a previously unex-
plored state in the target domain is found, the set of states
in the abstract domain that could map to that target domain
state are identified. Then, the mapping for these specific states
is applied in the same way as is done for subtraction. This
method provides the desired grounding procedure, and avoids
performing computations for unreachable states. All states
for which the partial policy is defined are treated as initia-
tion states and any state for which the option is undefined is
treated as a termination state.

3.2 Portable Transfer Options
Normal TOPs require expert knowledge in the form of a
mapping from target states to source states, and source ac-
tions to target actions. We implement PTOPs by using POD’s
mapping and scoring procedures to perform learning transfer
across analogous OO-MDPs. When presented with multiple
source policies, generic TOPs have no efficient method to de-
termine which options would be best to improve learning in
a target domain. Therefore, all option candidates generated
using PTOPs are transferred, using the highest-scoring map-
ping. Applying these option candidates to a target domain is
performed in the same way as PPB.

3.3 Complexity
The computational complexity of POD varies depending on
which option discovery method is used as its basis, but is
dominated by the mapping procedure, which encompasses
finding the GCG, abstracting policies, scoring each of the
mappings considered, and grounding to the target domain.
For this analysis, we use nmin to denote the size of the GCG,
nmax to denote the largest domain size in a set of source and
target policies being abstracted, and ∆ = nmax − nmin to
denote the number of objects that need to be eliminated from
the largest domain when performing abstraction.

In PTOPs, a mapping is found independently for each
source policy, π ∈ P , relative to the target domain. Com-
puting the GCG is O(nmin), since we only need to consider
that many objects to construct the GCG. The greedy mapping
search for the abstraction step has ∆ iterations, and must con-
sider as many as nmax objects on each iteration. To evaluate
each of these objects requires scoring the resulting mapping,
which entails iterating over all |Sπ| states. Since the GCG
term is dominated by mapping search, this process yields the
following worst case complexity for PTOPs:

O

(∑
π∈P

∆nmax |Sπ|

)
.

In PPB (Algorithm 2), for each π to be added to an option
candidate, we find the GCG, abstract, and merge. As with
PTOPs, abstraction consists of dropping up to ∆ objects, and
considering up to nmax objects each time (but this time, for
each policy in sequence during the merging process). Scoring
the mapping at each iteration again entails iterating over the
states in the source policy. Therefore, for a single merge step,
the complexity is:

O(∆nmax |Sπ|).
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Once the source policies are merged, the option candidate
must be scored. Because this candidate score is based on the
states in all of the initial policies that contain the same state-
action pairs as the candidate (not just the merged policies),
the option candidate must be grounded to each of the initial
policies, with the same complexity as a single merge step.

The highest-scoring option candidate is then subtracted
from the initial policies, but this only requires one iteration
over the initial policies, and its complexity is therefore domi-
nated by that of the scoring step.

An inherent drawback of PolicyBlocks (and thus PPB) is
that it is intractable to use the full power set of source poli-
cies to create option candidates. We use the heuristic sug-
gested by the PolicyBlocks description and consider only all
pairs and triples. There areO(|P |3) such combinations. Since
each option candidate is created sequentially using the pro-
cess outlined above, these combinations are re-examined k
times, where k is the number of options to be created. Ther-
fore, the overall complexity of PPB is:

O

(
k |P |3

∑
π∈P

(∆nmax |Sπ|)

)

4 Experimental Methodology
4.1 Experimental Settings
We have implemented POD in Java and integrated it into an
existing open-source library.2 We applied POD to two ap-
plication domains, using several different domain sizes to
demonstrate its generalizability. In the experiments reported
here, we measure performance using the average cumulative
reward over a series of episodes in which the agent is learn-
ing the domain. The rate of change of this value reflects the
learning speed of the agent.

Two key contributions of our work are (1) the process for
abstracting an object-oriented domain that can be grounded
to a target domain, and (2) the scoring process for select-
ing the best mapping for these abstractions. Therefore, our
experimental design uses a set of methods that let us sep-
arate the effect of abstraction and transfer from the heuris-
tic for selecting the best mapping. PPB and PTOPs are the
“POD-enabled” versions of PolicyBlocks and TOPs, as pre-
sented earlier. PPB and PTOPs are not directly comparable
to their counterparts, since PolicyBlocks will produce empty
options when merging policies consisting of different objects
and both PolicyBlocks and TOPs require a mapping to apply
options in a target of different objects. To accommodate this
inability, we also include randomized versions of both meth-
ods that use the domain abstractions and transfer, but use ran-
dom mappings in the abstraction and grounding steps, instead
of the highest-scoring mapping. These randomized versions
are referred to as RPB and RTOPs. The difference between
PPB/RPB and PTOPs/RTOPs gives information about how
effective the scoring metric is.

As an upper bound on performance, we include the perfor-
mance of a “Perfect” policy option, which transfers the option

2The source code for our implementation is available at
https://github.com/maple-robot-subgoaling/BURLAP.

(a) a Taxi World domain (b) a Taxi World domain

(c) a Block Dude domain (d) a Block Dude domain

Figure 4: Example domains. In Taxi, the agent is yellow; pas-
sengers are red; and floors are black. In Block Dude, the agent
is blue; blocks are yellow; and the exit is green.

whose policy represents the optimal solution for the target do-
main (i.e., it is the policy found by Q-learning after conver-
gence in the target domain.) This method, which is basically
an “oracle,” provides the best possible learning transfer per-
formance that could be provided by an ideal expert. (Note that
the agent will still need to learn that it should use the perfect
option, since this option is provided alongside the primitive
actions for the domain.)

For the transfer methods PPB and RPB, the top-scoring sin-
gle option candidate is transferred (i.e., k = 1). However, in
RTOPs/PTOPs, all source policies are transferred, as it would
be inefficient to determine the best performing option candi-
date. Experimentally, the difference between transferring all
source policies as options performs only slightly worse than
transferring the single best candidate (as determined post-
transfer) for the RTOPs/PTOPs methods.

All experiments were performed using intra-option
ε-greedy Q-learning (ε = 0.025) as the base learning al-
gorithm. Intra-option ε-greedy Q-learning is a variant of ε-
greedy Q-learning that, when updating the Q-value for a state
following the execution of a primitive action, also updates
the Q-value of every other option defined in that state for
which the current action of the options are the primitive action
taken. The parameter ε in intra-option ε-greedy Q-learning is
the probability of the agent taking a random action. All op-
tions used in the experiments have a termination probabil-
ity of 0.025 in states for which the option is defined. That
is, while the agent is following the option’s trajectory, there
is a 0.025 chance of early termination. Results presented are
the average of at least 20 trials, with 20 randomly generated
source domains, and one randomly generated target domain
for each trial. All experiments were run with pessimistic Q-
value initialization, with a uniform cost reward function (-1
for each step taken).3 All performance differences noted in
the text are statistically significant, using a paired Wilcoxon

3We calibrated Q-values by running experiments ranging from
fully optimistic to fully pessimistic. A nearly pessimistic initializa-
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Figure 5: Taxi World Cumulative Reward (6 to 4 passengers)

signed-rank test (p < 0.05) after convergence (episode 5000).

4.2 Application Domains
Taxi World The Taxi World application is a grid world con-
sisting of the object classes passenger and agent (taxi driver),
with static walls. All objects have x and y position attributes.
Passenger and agent classes possess similar attributes, indi-
cating whether a passenger is currently being transported by
the agent. The agent’s goal is to transport every passenger
onto a specified location. The agent can move north, south,
east, or west. If the agent is occupying a cell containing a
passenger, it may pick up the passenger. If the agent is carry-
ing a passenger, it may drop off the passenger at the current
cell. Two examples of Taxi World can be seen in Figure 4.

Block Dude The Block Dude application, based on the
game of the same name, is a grid world composed of the
following object classes: agent, block, static floors, and exit
(goal). The domain is viewed in a classic side-scrolling per-
spective; examples are visualized in Figure 4. A detailed de-
scription was given in Section 2. In our experiments, all trials
have a step cap of 1000 per episode before forced termination,
preventing the agent from getting permanently stuck.

5 Results
Taxi World Learning transfer in the Taxi World application
can be beneficial because the agent is able to reuse knowl-
edge about static elements in the application domain, specif-
ically the location of the walls and goal. Here we show re-
sults for learning transfer from a larger domain to a smaller
domain (source domain with 6 passengers and target domain
with 4 passengers, Figure 5) and from a smaller domain to
a larger domain (4 passengers to 6 passengers, Figure 6; 2
passengers to 7 passengers, Figure 7). In the large-to-small
transfer, PTOPs perform better than any of the other meth-
ods, and in fact, PPB, RPB, RTOPs, and Q-learning are sta-
tistically indistinguishable. This result tells us that transfer-
ring options directly (as PTOPs do) is more useful than the

tion was ideal in each case, including the Q-learning baseline.

Figure 6: Taxi World Cumulative Reward (4 to 6 passengers)

PolicyBlocks method of discovering new options, and that the
mapping heuristic used in PTOPs provides a learning ben-
efit over choosing random mappings. In the small-to-large
transfer of 4 passengers to 6 passengers, however, PTOPs,
PPB, and RTOPs are all statistically indistinguishable, and
all outperform RPB, which in turn outperforms Q-learning.
In the small-to-large transfer of 2 passengers to 7 passen-
gers, PTOPs performs best, PPB second best, with RTOPs
and RPB indistinguishable from each other, but outperform-
ing Q-learning. Here, the random mappings seem to perform
well with respect to Q-learning, even as good as the heuristic
mapping for PTOPs in the 4 passenger to 6 passenger trans-
fer, which is interesting and reflects potential symmetry in the
domain (i.e., some mappings may be equally good).

Block Dude Learning transfer in Block Dude is useful be-
cause the agent is able to reuse knowledge of overcom-
ing obstacles in the application domain, regardless of where
the blocks may be initially placed. PTOPs outperform PPB,
which in turn outperforms both of the randomized meth-
ods. In fact, the randomized methods are statistically indistin-
guishable from Q-learning. This poor performance of random
methods occurs because, in the Block Dude domain, many of
the possible mappings do not facilitate meaningful reuse of
the options. PTOPs perform better than PPB in this domain,
because there are some instances where noise in the source
policies will cause loss of information during the merge pro-
cess in PPB, whereas this information is retained in PTOPs.

The POD-enhanced learning transfer methods (PPB and
PTOPs) clearly outperform non-transfer learning, demon-
strating the effectiveness of our methods for abstraction and
mapping across object-oriented source and target domains.
Although PPB sometimes reaches the learning performance
of PTOPs, it never outperformed PTOPs in our experiments.
PPB does, however, have the advantage that it can iden-
tify common subtasks across multiple source domains, which
may be useful for larger or more heterogeneous domains.
Therefore, PPB does warrant further exploration.

The heuristic mapping search provides some benefit in cer-
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Figure 7: Taxi World Cumulative Reward (2 to 7 passengers)

tain cases, but not others. Although it never hurts performance
(and therefore there is no reason not to use the heuristic scor-
ing method), it seems likely that the current scoring method
does not always find the best mapping. Therefore, more ex-
ploration of alternative scoring metrics is warranted.

6 Related Work
Prior work in option discovery typically utilizes cuts and
clustering in the state space to discover policies that lead
through critical paths. Local graph partitioning [Şimşek et al.,
2005], clustering [Mannor et al., 2004], bottleneck state dis-
covery [McGovern and Barto, 2001; Menache et al., 2002],
and betweenness centrality [Simsek and Barto, 2007] all pro-
vide graph-theoretic approaches to generating options au-
tonomously. However, each of these methods requires direct
analysis of the state space, unlike POD, meaning they pro-
duce policies that are not transferable to domains of differing
state spaces or reward functions.

Several authors have attempted to create options with sub-
goal discovery [Şimşek and Barto, 2004] or landmarks [Butz
et al., 2004]. These methods may allow for transfer if two do-
mains share subgoals. However, in domains where there is no
clear subgoal or landmark, it is preferable to find common-
alities with merging instead. Stolle and Precup [2002] find
interesting states (which can be used as subgoals) in standard
domains with several different heuristics, and automatically
construct options for reaching those states. Brunskill and Li
[2014] provide the first theoretical analysis of sample com-
plexity for option discovery in MDPs, and propose a PAC-
inspired algorithm capable of working in analogous domains
with a performance approaching that of handcrafted options.

Other work considers reframing the domain into a new
state space that is simpler to transfer [Konidaris and Barto,
2007; Konidaris et al., 2012]. These methods perform au-
tonomous option generation by learning in an agent-space
representation of the domain, where agent spaces use deic-
tic features that are defined relative to the agent’s position or
state (allowing the agent to refer to “the nearest wall” or “the
key I am holding”). Agent-space learning allows the agent

Figure 8: Block Dude Cumulative Reward

to develop skills that can be easily transferred, but require
special design considerations and more additional learning
time than traditional option learning. Therefore, while agent
spaces may be a beneficial addition to learning, they do not
solve the problem of discovering new options.

7 Future Work
As mentioned earlier, further exploration of heuristic scoring
methods, and studying these methods in larger, more hetero-
geneous domains are promising avenues of future work. An-
other major improvement to POD would be to expand beyond
tabular learning. Techniques such as Q-learning and SARSA
require a table of state-action pairs mapped to rewards, which
is a significant limitation for domains that are extremely large
or continuous. In many of these cases, value function approx-
imation (VFA) can be used, allowing the agent to estimate
a state’s value from similar states. Extending POD to sup-
port domains that require VFA would also entail modifying
the abstraction and scoring steps to use a sampling-based ap-
proach, rather than iterating over the entire state space. These
extensions would provide increased scalability for complex
applications.

8 Conclusion
We have introduced the POD framework to perform auto-
mated option discovery in OO-MDP domains. We extended
two existing algorithms to create the Portable PolicyBlocks
(PPB) and Portable Transfer Options (PTOPs) methods. The
source code for our implementation of POD is available on-
line as part of an open source library. We have demonstrated
that POD’s heuristic mapping selection permits these meth-
ods to be applied automatically in object-oriented domains,
significantly outperforming standard Q-learning, and outper-
forming random mapping selection in most cases. These
methods represent the first fully automated techniques for
learning transfer in object-oriented domains and offer promis-
ing avenues for future improvement.
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