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Abstract
Multimodal hashing is essential to cross-media
similarity search for its low storage cost and fast
query speed. Most existing multimodal hashing
methods embedded heterogeneous data into a com-
mon low-dimensional Hamming space, and then
rounded the continuous embeddings to obtain the
binary codes. Yet they usually neglect the inher-
ent discrete nature of hashing for relaxing the dis-
crete constraints, which will cause degraded re-
trieval performance especially for long codes. For
this purpose, a novel Semantic Topic Multimodal
Hashing (STMH) is developed by considering la-
tent semantic information in coding procedure. It
first discovers clustering patterns of texts and ro-
bust factorizes the matrix of images to obtain multi-
ple semantic topics of texts and concepts of images.
Then the learned multimodal semantic features are
transformed into a common subspace by their cor-
relations. Finally, each bit of unified hash code
can be generated directly by figuring out whether a
topic or concept is contained in a text or an image.
Therefore, the obtained model by STMH is more
suitable for hashing scheme as it directly learns dis-
crete hash codes in the coding process. Experimen-
tal results demonstrate that the proposed method
outperforms several state-of-the-art methods.

1 Introduction
With the rapid development of the Internet and multimedia
devices such as smart phone, tablet computer, and digital
camera, tremendous amounts of multimedia data including
texts, images, and videos have been easily obtained. It is
common that relevant multimedia data from different media
types may have semantic correlations. For example, a mi-
croblog in Facebook often consists of a short text and some
correlative images; a video in YouTube is always associated
with some related descriptions or tags. As semantic informa-
tion inherently consists of data with different modalities, it
gives rise to an emerging demand to study and explore the in-
teractions between multimodal data for the applications like
cross-media retrieval [Zhai et al., 2013], image annotation
[Weston et al., 2011], and recommendation system [Bedi et

al., 2007]. Multimodal hashing methods, which map hetero-
geneous data points into a common low-dimensional Ham-
ming space, have recently received considerable attentions
to address cross-modality similarity search problem. The
core problem of multimodal hash codes learning is how to
construct the underlying correlations between the multiple
modalities and preserve the similarity relationships in each
individual modality. Generally, multimodal hashing methods
can be divided into two categories: graph based methods and
matrix decomposition based ones.

Graph based multimodal hashing methods construct sim-
ilarity graph for each individual modality to preserve the
intra-modal similarities and simultaneous concatenate multi-
ple modality-specific binary codes to preserve the inter-modal
similarities for the final hash codes. The learning problems
often can be converted into eigen-decomposition problems
by means of relaxation. Cross-view hashing (CVH) [Ku-
mar and Udupa, 2011] extends spectral hashing (SH) [Weiss
et al., 2009] to the multimodal setting by maximizing the
weighted average correlations between data pairs through
solving a generalized eigenvalue problem. However, CVH
treats the correlations between inter-classes and intra-classes
in the same way and such strategy often results in poor perfor-
mance as the differences between the modalities are ignored.
Inter-media hashing (IMH) [Song et al., 2013] takes the dif-
ferences between multiple modalities into consideration. It
first explores the correlations within each single modality ac-
cording to similarity graph and then keeps the binary codes
of the paired data points with different modalities consistent.
However, IMH needs to construct the similarity matrix for
all the data points, which will lead to a large computational
complexity for large-scale data set. Linear cross-modal hash-
ing (LCMH) [Zhu et al., 2013] avoids the large-scale graph
construction by representing training data with a small num-
ber of cluster centers. Nevertheless, how to choose appropri-
ate cluster centers of massive data set is a difficult problem
as the performance of LCMH is sensitive to the number of
clusters. Generally, those graph based multimodal hashing
methods have two drawbacks. Firstly, considerable compu-
tational complexity for computing similarity graph leads to
long training time. Secondly, eigen-decomposition process
decreases the mapping quality substantially when increasing
the number of bits, since most of the information is contained
in the top few eigenvectors.
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Matrix decomposition based multimodal hashing methods
seek latent low dimensional spaces to well reconstruct mul-
timodal data and quantify the reconstruction coefficients to
obtain the binary codes. Such kinds of methods can avoid
the large scale graph construction and eigen-decomposition.
Collective matrix factorization hashing (CMFH) [Ding et
al., 2014] learns the unified hash codes by collective matrix
factorization with latent factor model from different modali-
ties of one instance. However, it assumes that each view of
one instance generates identical hash codes. This identical
constraint is too restrictive which only guarantees the consis-
tence of pairwise data points but ignores the cross correlation-
ship between different pairwise data points. Latent semantic
sparse hashing (LSSH) [Zhou et al., 2014] uses sparse cod-
ing and matrix factorization to learn the latent spaces and then
merges the learned latent features to generate binary codes.
As sparse coding results in long training time consuming,
LSSH cannot fully utilize all the training data to learn the
model, thus will deteriorate the accuracy.

Although the above multimodal hashing methods have
achieved promising results in multimodal applications, these
methods often discard the discrete constraints of hashing to
solve a relaxed problem and afterwards round the continuous
solutions to get the binary codes. Whereas, such continuous
relaxation scheme will cause large quantization error conse-
quently deteriorate search performance especially for long
codes length. To this end, we design a novel multimodal
hashing model, namely semantic topic multimodal hashing
(STMH), which focuses on the binary nature of hashing, to
facilitate the large-scale cross-media retrieval for multimedia
data sources with texts and images. As illustrated in Figure 1,
STMH represents text in (a) as multiple semantic topics in (c)
and image in (b) as multiple semantic concepts in (d). After
represented both texts and images in latent semantic spaces,
STMH transforms the learned multimodal semantic features
to a common subspace by their semantic correlations. Finally,
it generates the unified hash codes directly by figuring out
whether a topic or concept is contained in a text or an image.
The contributions of the proposed model are summarized as
below:
• The proposed method explicitly considers the implica-

tion and preserves the discrete nature of the hash code.
Each bit of hash code represents whether a text or an
image contains the corresponding topic or concept. By
focusing on the binary nature, STMH is more suitable
for hashing learning scheme and achieves better search
performance.
• We develop a fast and efficient method which learns la-

tent topics from texts and the unified hash codes simul-
taneously.
• By using `2,1-norm to learn the robust salient concepts

of images, the proposed method can achieve better ro-
bustness against noisy and unreliable image data.

The rest of this paper is organized as follows. Section 2 in-
troduces the proposed STMH model and its multiple modali-
ties extension. Experimental results and comparisons on two
benchmark data sets are presented in Section 3. Finally, the
conclusions are given in Section 4.

 

(a) Text 

 

 

(b) Image 
Topic 1 

(natural landscape) 

sky, rocks, hills, sea 

 

Concept 1 
(mountain)

 

 

Concept 2 
(sea and sky)

 

 

Concept 3 
(architecture)
 

 

Topic 2 
(cultural landscape) 

houses, groves, 
churches, people 

 

(c) Latent Topics of Text (d) Latent Concepts of Image 

 

The landscape here - the blue sky, the little 
white houses perched on gigantic rocks on 
hills that plummet to the sea, the lemon and 
orange groves, the pink and white churches 
that look like pastry cakes, the faces and 
warmth and expressiveness of the Greek 
people - little wonder this may be the most 
photographed scenery in the world. 

Figure 1: An illustration of topics and concepts for text and
image about scenery of Santorini from Wikipedia.

2 Semantic Topic Multimodal Hashing
This section details the proposed STMH model. We firstly
introduce STMH to bimodal instance consisting of images
and texts as they are the most common-used and important
modalities in multimedia. Without loss of generality, it can
be easily extended to cases with more modalities.

2.1 Problem Formulation
Suppose thatO={oi}ni=1, oi=(xi,yi) is a set of multimodal
objects, where xi ∈ Rm is a m-dimensional image feature,
and yi ∈Rd is a d-dimensional text feature (usually, m 6= d).
Given the bits length k, the purpose of STMH is to learn an
integrated binary code hi ∈ {0, 1}k for oi, i = 1, 2, · · · , n,
such that hi and hj preserve the semantic similarity between
oi and oj with high probability. More specifically, if oi and
oj are two objects have similar semantic, hi and hj should
have a small Hamming distance, and vice versa.

2.2 Semantic Modeling
Semantic information usually can be extracted from a large
data set by the topic model [Blei, 2012]. The basic idea of
the topic model [Blei et al., 2003; Blei, 2012] is that data
are represented as random mixtures over an underlying set
of topics, where each topic is characterized by a distribution
over words. There are at least two advantages of modeling
data as a set of topics for retrieval. Firstly, it offers a high-
level abstraction which can remove redundant information or
noise and highlight the important information for complex
data. Secondly, the data can be described by a small num-
ber of semantic topics which make the computation of the
semantic similarity between a data-pair fast and accurately.
Motivated by topic models, STMH discovers latent semantic
topics in texts and explores latent semantic concepts in im-
ages.

Semantic Topic Modeling for Text
To extract the semantic topics, the paper discovers latent topic
patterns via a way like cluster analysis. And texts are pro-
jected to the latent topic space formed by cluster centers.
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Then a text can be described as the topic distribution which
can be easily represented by hash codes. When a topic is
contained in a text, the corresponding hash code is 1, and
otherwise 0.

Let Y be a set of d-dimensional text features, i.e., Y =
[y1,y2, · · · ,yn] ∈ Rd×n, H be the corresponding unified
hash codes for O, i.e., H = [h1,h2, · · · ,hn] ∈ Rk×n, and
F be a set of d-dimensional latent semantic topics, i.e., F=
[f1, f2, · · · , fk]∈Rd×k. The semantic topic modeling for text
is

min
F,H

n∑
j=1

k∑
i=1

hij ‖yj − fi‖22

s.t. hij ∈ {0, 1} ,
k∑
i=1

hij = c ,

(1)

where hij is the i-th element of hj and c is a positive integer
less than k which denotes how many “1” lies in hj . In this
paper, c is set to k/2 to balance partition binary codes in order
to maximize the information of each bit. Eq. (1) is used to
simultaneously learn the latent semantic topics and determine
the closely related topics for a text adaptively.

Note that when each fi in Eq. (1) has equal value, which
means all the topics are the same, then the corresponding hash
codes will randomly distribute. Therefore, the semantic sim-
ilarities between texts will cannot be reflected by hash codes.
To avoid this case, we consider to add the diversity regulariza-
tion term of topics. Let hi denotes the i-th row of hash codes
H, then it represents the distribution of the i-th topic fi on the
text set Y. If hi is in close proximity to hj , i, j∈1, 2, · · · , k,
i 6=j, the value of hi

(
hj
)T

will be large, and fi and fj will be
similar to each other with high probability. To avoid fi and fj
equal to each other, we add the diversity regularization term
of topics as follows.

min
F

k∑
i,j=1

wijfi
T fj = Tr

(
FWFT

)
, (2)

where

wij =

{
hi
(
hj
)T
, i 6= j

0, i = j.
(3)

fi
T fj is the dot-product similarity metric which has been

widely used in text analysis [Cai et al., 2011]. Therefore,
it is quite natural to use dot-product similarity metric for top-
ics. When wij has a relatively large value, it means that the
distributions of topics fi and fj are similar to each other. To
minimize Eq. (2), fiT fj should be small, then topics fi and fj
should be different from each other. Therefore, the diversity
of topics is increased.

Accordingly, the overall objective function for text seman-
tic modeling can be obtained by combining Eqs. (1) and (2)

min
F,H
LT =

n∑
j=1

k∑
i=1

hij ‖yj − fi‖22 + Tr
(
FWFT

)
s.t. hij ∈ {0, 1} ,

k∑
i=1

hij = c .

(4)

By minimizing Eq. (4), the latent semantic topics for text and
the corresponding hash codes will be learned simultaneously.

Semantic Concept Modeling for Image
Compared with text, the high-level semantic concepts hidden
in the image are more difficult to extract. Here, we use matrix
factorization to discover semantic concepts in image. Ma-
trix factorization which learns a latent low dimensional space
to well reconstruct the original data, is one of the most use-
ful tools for learning latent concepts from image [Lee and
Seung, 1999; Zhou and Tao, 2011]. However, the standard
matrix factorization often uses the least square error function
which is well known to be unstable w.r.t. noise and outliers
[Kong et al., 2011]. Meanwhile, large scale multimedia data
sets collected from the Internet often inevitably contain noise
and outliers. Therefore a robust version of matrix factoriza-
tion is demanded to learn salient concepts of images. For this
reason, `2,1-norm loss function [Ding et al., 2006] is intro-
duced to design a robust matrix factorization. `2,1-norm is
defined for a matrix A=[a1,a2, · · · ,an]∈Rp×n as

‖A‖2,1 =
n∑
i=1

‖ai‖2. (5)

Compared with `2-norm, `2,1-norm does not square the re-
construction error of each sample ai. Therefore, the objec-
tive function in Eq. (5) is expected to be robust to noise and
outliers.

Let X be a set of m-dimensional image features, i.e.,
X = [x1,x2, · · · ,xn] ∈ Rm×n, the proposed robust matrix
factorization can be formulated as

min
U,V
‖X−UV‖2,1 =

n∑
j=1

‖xj −Uvj‖2 , (6)

where U=[u1,u2, · · · ,uk]∈Rm×k, V=[v1,v2, · · · ,vn]∈
Rk×n, and k is the length of the hash codes. By robust ma-
trix factorization, each image feature xj is approximated by
a linear combination of the columns of U, weighted by the
components of vj . Then, U can be regarded as containing
some semantic concepts and each image can be regarded as
the linear combination of those concepts.

Note that in general, the cost function of `2,1-norm form in
Eq. (6) is harder to solve than the `2-norm form. Then we
rewrite Eq. (6) as

min
U,V
‖X−UV‖2,1 = Tr

{
(X−UV)DX(X−UV)

T
}
,

(7)
where DX is a diagonal matrix with the j-th diagonal element
given by

(DX)jj = 1/‖xj −Uvj‖2. (8)

Therefore, the overall objective function for image concept
modeling is

min
U,V
LI = Tr

{
(X−UV)DX(X−UV)

T
}
. (9)

By minimizing Eq. (9), the latent semantic concepts and the
corresponding coefficients for images will be learned simul-
taneously.
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2.3 Semantic Correlation Matching
If multimodal data points have the same semantics, they are
expected to have a certain common latent space. For example,
there are two semantic topics of text in Figure 1 (a) which
are the natural landscape and cultural landscape as shown in
Figure 1 (c). The relevant image in Figure 1 (b) also has some
semantic concepts such as architectures, mountains, sky and
sea as shown in Figure 1 (d). The topics of text actually have
correlativity with the concepts of the image. For instance,
natural landscape topic of text is related to the image concepts
mountains, sky and sea. Therefore a topic in a text can be
described by several concepts in an image. Accordingly, the
cross-correlation for image and text can be formulated as

min
P
LC = ‖H−PV‖2F , (10)

where P ∈ Rk×k is the correlation matrix between images
and texts. By Eq. (10), the coefficients of image can be trans-
formed into hash codes. Then, a text and image pair has the
identical hash code which facilities the cross-media retrieval.

2.4 Overall Objective Function
The overall objective function, combining the semantic topic
modeling for text given in Eq. (4), the robust matrix factor-
ization for image given in Eq. (9), and the cross-correlation
between the latent semantic spaces of image and text given in
Eq. (10), is written as below.

min
F,H,U,V,P

L=λLT+(1−λ)LI+µLC+γR(F,U,V,P)

s.t. hij ∈ {0, 1} ,
k∑
i=1

hij = c ,

(11)
where λ, µ and γ are tradeoff parameters, and R(·)=‖·‖2F is
the regularization term to avoid overfitting.

2.5 Optimization Algorithm
The optimization problem in Eq. (11) can be solved by up-
dating the following steps iteratively until convergency or the
preset maximum number of iterations is reached.

1. Fix H, U, V, and P, let the derivative of L with respect
to F equals to zero, then we obtain

F = YHT
(
HHT + γ/λI

)−1
, (12)

where I is the identity matrix.
2. Fix F, H, V, and P, let the derivative of L with respect

to U equals to zero, then we obtain

U = XDXVT
(
VDXVT + γ/ (1− λ) I

)−1
. (13)

3. Fix F, H, U, and V, let the derivative of L with respect
to P equals to zero, then we obtain

P = HVT
(
VVT + γ/µI

)−1
. (14)

4. Fix F, H, U, and P, let the derivative of L with respect
to V equals to zero, then we obtain

vj =
[
(1− λ) (DX)jjU

TU+ µPTP+ γI
]−1

qj , (15)

where qj is the j-th column of (1− λ)UTXDX + µPTH.
5. Fix F, U, V, and P, we have the following equation to

calculate H

min
H

n∑
j=1

(
k∑
i=1

hij ‖yj − fi‖22 +
µ
λ ‖hj −Pvj‖22

)
s.t. hij ∈ {0, 1} ,

k∑
i=1

hij = c .

(16)

Eq. (16) can be solved by calculating hj one by one indepen-
dently. That is, we need to solve the following problem for
hj

min
hj

k∑
i=1

hij‖yj−fi‖22+
µ
λ ‖hj −Pvj‖22

=
k∑
i=1

hij‖yj−fi‖22+
µ
λ

(
hTj hj−2hTj Pvj+vTj P

TPvj
)

=
k∑
i=1

hij

[
‖yj − fi‖22 −

2µ
λ (Pvj)i

]
+ C

s.t. hij ∈ {0, 1} ,
k∑
i=1

hij = c ,

(17)
where (Pvj)i is the i-th element of vector Pvj and C is a
constant. To minimize Eq. (17), we first rank ‖yj − fi‖22−
2µ/λ(Pvj)i, i = 1, 2, · · · , k, with the order small to large.
Then let hij =1 if ‖yj − fi‖22 − 2µ/λ(Pvj)i belongs to the
top c minimum values in the ranking list and otherwise hij=
0.

2.6 Out-of-Sample Extension
Text
Let yt∈Rd×1 be the query text feature, then its hash code ht
can be obtained by

min
ht

k∑
i=1

hti ‖yt − fi‖
2
2

s.t. hti ∈ {0, 1} ,
k∑
i=1

hti = c ,

(18)

where hti is the i-th element of vector ht. It can be solved
by ranking ‖yt − fi‖

2
2, i=1, 2, · · · , k, with the order small to

large. And then let hti =1 if ‖yt − fi‖
2
2 belongs to the top c

minimum values in the ranking list and otherwise hti=0.

Image
Let xt∈m×1 be the image query feature, then its hash code ht
can be obtained by first embedding it to the semantic concept
space U by

vt =
[
UTU+ γ/ (1− λ) I

]−1
UTxt. (19)

Then transform vt to the hash space by

ht = sign
[
Pvt −median(Pvt)

]
, (20)

where sign(·) denotes the sign function and median(·) de-
notes the median function.

We summarize the procedures for STMH in Algorithm 1.
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Algorithm 1 Semantic Topic Multimodal Hashing
Training:

Input: Images X, texts Y, parameters λ, µ, and γ,
bit length k.

Output: Hash codes H, matrices F, U, and P.
Procedure:
1. Initialize F, H, U, V, and P;
2. Repeat

2.1 Compute DX with Eq. (8);
2.2 Fix H, U, V, and P, update F with Eq. (12);
2.3 Fix F, H, V, and P, update U with Eq. (13);
2.4 Fix F, H, U, and V, update P with Eq. (14);
2.5 Fix F, H, U, and P, update V with Eq. (15);
2.6 Fix F, U, V, and P, update H by solving Eq. (17).
until convergency.

3. Return H, F, U, and P.
Testing:

Input: Image xt or text yt, matrices F, U, and P.
Output: Hash code ht.
Procedure:

Text: Get the hash code ht by solving Eq. (18).
Image: Get the hash code ht with Eqs. (19) and (20).

2.7 Computational Complexity Analysis
The computational complexity for training STMH is
O
((
k3 + dk +mk

)
nt
)
, where t is the number of iterations.

As k, d, m and t�n, the training complexity is linear to the
training data size. In the search phase, the complexity is con-
stant with O (dk) for a text query and O (mk) for an image
query. In a word, the time complexity for training STMH is
linear to n and is constant for testing, which is really scalable
for large-scale data sets.

2.8 Multiple Modalities Extension
The extension for STMH in Eq. (11) from bimodal to multi-
ple modalities is quite easy and direct by using semantic topic
modeling for one chosen modality and robust matrix factor-
ization for others.

min
F,H,Ut,Vt,Pt

L=
(
1−
∑
t
λt

)[
n∑
j=1

k∑
i=1

hij‖yj−fi‖22+Tr
(
FWFT

)]
+
∑
t
λt‖Xt −UtVt‖2,1 + µ

∑
t
‖H−PtVt‖2F

+γ

[∑
t
R(Pt,Ut,Vt) +R(F)

]
s.t. hij ∈ {0, 1} ,

k∑
i=1

hij = c .

(21)
It is straightforward to adapt Algorithm 1 presented above to
solve Eq. (21).

3 Experiments
To evaluate the performance of the proposed STMH, we con-
duct comparison experiments with several state-of-art meth-
ods including CMSSH [Bronstein et al., 2010], CVH [Ku-
mar and Udupa, 2011], LCMH [Zhu et al., 2013], IMH
[Song et al., 2013], CMFH [Ding et al., 2014], and LSSH

[Zhou et al., 2014], on two real-world datasets, i.e., Wiki1
and NUS-WIDE2 for cross-media similarity search. The re-
trieval performance is evaluated by mean of average precision
(mAP), recall-precision, and topN-precision. Details about
data sets processing and evaluation metrics can be referred to
[Zhou et al., 2014].

3.1 Experimental Settings
CMSSH, IMH and LSSH require too much computational
costs that are quite difficult to learn hash functions on NUS-
WIDE with all data. Thus, we randomly select 5000 instances
from data set for these methods to train hash functions and
then apply the trained hash functions to the other instances
in data set to generate hash codes for them as [Song et al.,
2013] did.

For all the comparison algorithms except LCMH, the codes
are kindly provided by the authors. We implemented LCMH
as the code is not publicly available. The parameters for
all the comparison methods are tuned according to the cor-
responding literatures. When comparing with the baseline
methods, we use the parameter settings, λ= 0.5, µ= 0.001,
and γ=10−4 for STMH.

3.2 Results and Discussions
The mAP values for STMH and six baseline methods are re-
ported in Figure 2. The recall-precision and topN-precision
curves are plotted in Figure 3 and Figure 4 respectively.

Results on Wiki
The Wiki data set is separated into two parts, with 2173 pairs
for training and 693 pairs for testing. It can be observed that
STMH achieves the best performance than baseline methods
on text-query-image similarity search task. And the perfor-
mance for STMH on image-query-text task although does not
always achieve the best performance, it achieves compara-
ble performance to the best. As shown in Figure 4, we can
find that STMH achieves better performance on the top 400
retrieved instances. In retrieval system, the top retrieved in-
stances often need high accuracy as users care more about the
front instance in the retrieved list. From this point of view,
STMH can achieve relatively good performance on image-
query-text task.

Results on NUS-WIDE
We randomly choose 1K images with their tags to serve as the
test set and the rest images and tags are serving as the training
set in NUS-WIDE data set. As the results show, STMH out-
performs baseline methods significantly which verifies that it
can better model the complex structure of large-scale data set
by their latent semantic topics and reduce the semantic gap
between heterogeneous data compared with state-of-the-art
methods. Furthermore, STMH achieves higher mAP values
with longer codes. This is reasonable as longer hash codes
can encode more semantic information and therefore can im-
prove the retrieval accuracy. As NUS-WIDE data set is quite
similar to real-world scenario, experimental results show that
STMH can handle large-scale multimodal similarity search
problem.

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Figure 2: mAP on Wiki and NUS-WIDE with different code lengths. 
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Figure 3: Recall-Precision curves on Wiki and NUS-WIDE with 32 bits code length. 
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Figure 4: topN-Precision curves on Wiki and NUS-WIDE with 64 bits code length. 
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Figure 5: Parameter sensitivity analysis 
 

3.3 Parameter Sensitivity Analysis

The empirical analysis on parameter sensitivity is given in
this section. The analysis is conducted for one parameter by
varying its value while fixing the other parameters.

The parameter µ controls the connection of latent se-
mantic spaces between image and text. If it is too large, the
strong connection will affect the learning of latent semantic
topics of texts and images. However, if it is too small, the con-
nection between different modalities is weak which will result
in poor performance for cross-modality similarity search. It
is reasonable to choose proper value of µ from the range of
[0.0001, 0.01].

The parameter γ controls the complexity of the model. The
model is over-fitted with too small value while under-fitted
with too large value. It can be observed from Figure 5 that

STMH can achieve stable performance under a wide range of
γ. Usually, it can be chosen from the range of [0.0001, 0.1].

From the above analysis, we can reach the conclusion that
STMH can achieve stable performance under a wide range of
parameter values.

4 Conclusions
In this paper, we presented a novel multimodal hashing
method, referred to as semantic topic multimodal hash-
ing (STMH), for large-scale cross-media similarity search.
Specifically, STMH models text as multiple semantic topics
and image as latent semantic concepts and learns the relation-
ship of text and image in their latent semantic spaces. Then,
each bit of unified hash code can be generated directly by fig-
uring out whether a topic or concept is contained in a text
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or an image. By maintaining the discrete nature of hashing,
STMH is more suitable for hashing learning scheme and can
obtain better retrieval performance. Comparative studies on
two bench-mark datasets show that STMH outperforms the
state-of-the-art multimodal hashing methods. In future work,
we will explore more efficient semantic information to further
improve the performance of STMH.
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