
An Efficient Classifier Based on Hierarchical
Mixing Linear Support Vector Machines

Di Wang, Xiaoqin Zhang∗, Mingyu Fan, Xiuzi Ye
College of Mathematics & Information Science, Wenzhou University

Zhejiang, China
wangdi@amss.ac.cn, zhangxiaoqinnan@gmail.com, {fanmingyu, yexiuzi}@wzu.edu.cn

Abstract

Support vector machines (SVMs) play a very dom-
inant role in data classification due to their good
generalization performance. However, they suf-
fer from the high computational complexity in the
classification phase when there are a considerable
number of support vectors (SVs). Then it is de-
sirable to design efficient algorithms in the clas-
sification phase to deal with the datasets of real-
time pattern recognition systems. To this end, we
propose a novel classifier called HMLSVMs (Hier-
archical Mixing Linear Support Vector Machines)
in this paper, which has a hierarchical structure
with a mixing linear SVMs classifier at each node
and predicts the label of a sample using only a
few hyperplanes. We also give a generalization
error bound for the class of locally linear SVMs
(LLSVMs) based on the Rademacher theory, which
ensures that overfitting can be effectively avoided.
Experimental evaluations shows, while maintaining
a comparable classification performance to kernel
SVMs (KSVMs), the proposed classifier achieves
the high efficiency in the classification stage.

1 Introduction
Support vector machines (SVMs) have enjoyed excellent per-
formance in many areas due to their great flexibility and good
generalization performance. However, they still suffer from
a high computational complexity in the classification phase
if the number of SVs is large. We want the time for classifi-
cation to be as short as possible, especially in real-time pat-
tern recognition systems, whereas classification must be per-
formed in a few millionseconds to satisfy the needs of online
tasks. The methods for reducing the computational complex-
ity of SVM classification can be divided into following two
groups.

One group consists of algorithms to prune the SVs of
SVMs. Representative papers include [Schoelkopf et al.,
1999; Downs et al., 2001; Nguyen and Ho, 2006; Liang,
2010]. However, these methods need to obtain a standard

∗Corresponding author

SVM in advance, and this limits their applications to large-
scale problems. To address this issue, several methods for
selecting a set of basis vectors are proposed. They in-
clude sampling from the training set in the Nystrom method
[Williams and Seeger, 2001] and variants of the Incomplete
Cholesky factorization [Bach and Jordan, 2005], core vector
machine (CVM) [Tsang et al., 2005], relevance vector ma-
chine (RVM)[Tipping, 2001], and relevance units machine
(RUM)[Gao and Zhang, 2009]. Wu et al. [Wu et al., 2006]
add one constraint on the number of basis vectors to the stan-
dard SVM optimization problem, and then solve this modi-
fied nonconvex problem to build sparse kernel learning algo-
rithms (SKLA). Joachims and Yu [Joachims and Yu, 2009]
explore a new sparse kernel SVMs via cutting plane train-
ing, called cutting-plane subspace pursuit (CPSP).Although
the above methods prunes the SVs and reduces computational
complexity in classification phase, when a new test sample is
introduced, they still need to compare it with these pruned
SVs via kernel calculations to predict the label of the test
sample. In addition, these methods also have to cache sub-
stantial kernel values of the important samples in the training
process.

The second group of techniques, exploring the divide-and-
conquer strategy, are to construct the ensemble models of
linear decision functions in the original space, thus avoid-
ing the kernel calculations of the SVs. Classical ensemble
methods include bagging [Breiman, 1996], boosting [Pavlov
et al., 2000] and random forests [Breiman, 2001]. But these
methods tend to use a great amount of linear classifiers to
correctly predict the sample label for linearly inseparable
datasets, and thus are possibly to increase the computational
complexity in classification stage. Bennett and Blue [Bennett
and Blue, 1998] propose a primal and dual formulation for
SVM approaches to decision trees with three decisions, and
claim the method can be applied to trees of any size which
needs to be determined beforehand. Fei and Liu [Fei and Liu,
2006] present a binary tree of SVMs for multiclass problems.
Fornoni et al.[Fornoni et al., 2011] propose a multi class lo-
cal classifier based on a latent SVM formulation. Ladicky
and Torr [Ladicky and Torr, 2013] learn all the local mod-
els in a single optimization problem by using the inverse Eu-
clidean distances as a form manifold learning. In the spirit
of the mixture-of-expert framework, Fu et al.[Fu et al., 2010]
propose a mixing linear SVMs (MLSVM) model which par-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3897

titions the feature space into several linearly inseparable sub-
regions based on a probabilistic model of the joint data and
label distributions, and the testing samples are classified by
the weighted average over the mixture of classifiers. Chen
et al. [Cheng et al., 2010] divide the whole training set into
several clusters via MagKmeans algorithm, and then train the
LSVM classifier in each cluster. Li et al. [Li et al., 2011]
propose a piecewise linear classifier named “multiconlitron”,
which is based on the “convexly separable” concept. Qi et
al. [Qi et al., 2011] partition the whole training samples into
several local regions by applying the locality-sensitive hash-
ing (LSH) method, and construct the local classifier model in
each region.

Motivated by the low classification and training cost of lin-
ear SVMs, we continue the fruitful line of the second group
and aim to provide a model which generates nonlinear clas-
sification boundaries via the ensemble of locally linear SVM
(LLSVM). To this end, we propose a novel classifier called
HMLSVMs (Hierarchical Mixing Linear SVMs). Specifi-
cally, it has a hierarchical tree-like structure with a mixing
linear SVM classifier at each node. The main advantages of
the proposed classifier are as follows. Firstly, HMLSVMs
does not require a large memory to store kernel values be-
cause HMLSVMs is composed of LSVMs, and there are very
efficient algorithms for training LSVMs [Joachims, 2011;
Hsieh et al., 2008]. Secondly, the hierarchical structure
makes HMLSVMs predict the labels of new arrived sam-
ples via a few of LSVMs, and it is much faster than non-
linear SVMs. Thirdly, we quantify the generalization error
bound for the class of LLSVMs based on the Rademacher
complexity, and the stop criterion based on minimizing this
bound ensures that HMLSVMs can effectively avoid over-
fitting and have a good classification performance. Hence,
HMLSVMs has both the advantage of high speed in the clas-
sification stage, comparable to LSVMs, and the advantage of
good classification performance comparable to KSVMs.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the details of training and testing process of
HMLSVMs. In Section 3, we quantify the generalization er-
ror bound for HMLSVMs based on the Rademacher complex-
ity. Experimental results and related discussions are given in
Section 4. Some conclusions are given in Section 5.

2 Description of the HMLSVMs
Before describing the proposed method, we first introduce the
symbols used in the remaining parts of the paper.
• I: a row vector which represents a node in HMLSVMs.
I = [0] represents the root node; [I, 1] and [I,−1] are
respectively the left and right child nodes of I .

• f (t): The weighted LSVM (W-LSVM) classifer trained
in the t-th iteration of the training process of
HMLSVMs.
• fI : the classifier associated to the node I .
• SI : subset of training samples in the node I .
• Ft: HMLSVMs in the t-th iteration.
• V (t): the evaluations of all training samples in the t-th

iteration, and its i-th element is V (t)
i = Ft(xi).

2.1 Training Stage of HMLSVMs
Calculation of the weights
There are two major steps in the proposed strategy for calcu-
lating the training weights.
Step1: Training center selection Let the evaluation of sam-
ple xi be Vi in current iteration, then the “host” training center
is defined as:

xhc = arg max
xi∈Ŝ

∑
xj∈Nε(xi)

exp{−‖xj − xi‖2

σ2
}Ej (1)

where Ej=min{1,max{0, 1 − yjVj}}, Ŝ={xi|yiVi < 1},
and Nε(xi) is the set of xi’s ε- neighborhoods with the same
label as xi. From the definition of xhc in Eq. (1), we can
concluded that if a sample is selected as the “host” train-
ing center, it must meet two conditions: (1) the sample den-
sity of its ε-neighborhoods is high, (2) the samples in its ε-
neighborhoods have large “training errors”. Hence, the sam-
ples in local set Nε(xhc) are currently misclassified “most”.
To correctly classify these misclassified samples, we must re-
train a LSVM with them. Accordingly, we define the opposite
of the “host” training center, which is called as “guest” train-
ing center

xgc=argmax
xi∈N̄ε(xhc)

∑
xj∈Nε(xi)

exp

{
−‖xi − xj‖2+‖xj − xhc‖2

σ2

}
(2)

where N̄ε(xhc) is the set of xhc’s ε- neighborhoods with dif-
ferent labels from xhc. Generally speaking, the “guest” train-
ing center is xhc’s “nearest” sample with different labels from
xhc, and the structural information defined in (2) avoids se-
lecting isolated noisy samples.
Step2: Sample weights calculation The training weights of
samples in setsNε(xhc) andNε(xgc) are calculated according
to the sample similarities to the “host” and “guest” training
center:

vx = exp{−‖x− xhc‖2

σ2
}, for x ∈ Shε (3)

vx = exp{−
‖x− xgc‖2

σ2
}, for x ∈ Sgε (4)

We assign the largest weights to the samples which are cur-
rently misclassified “most”. This makes it more likely that
the next classifier will correctly classify these samples.

Training Algorithm
The training scheme of HMLSVMs is summarized in Algo-
rithm 1. In Step 7, we find the leaf node I which the “host”
training center belongs to. This implies that the samples in set
SI are misclassified “most” by current HMLSVMs. Ip is the
parent node of I . Il is the last element of I , and Il = 1 (Il=-
1) indicates that the samples in SI are all classified as “pos-
itive” samples (“negative samples”). However, there may be
some samples are misclassified by the current HMLSVMs.
To separate these misclassified samples from SI , we should
assign a classifier to the node I to further split SI . We de-
fine the classifier of node I by fI = min{f (t), fIp} if Il = 1
(separate the negative samples from the “positive” samples),

3898

Algorithm 1: Training of HMLSVMs
Input: The set of training samples S = {(xi, yi)}ni=1.

1: Train the standard LSVM classifier f (1) with sample
set S, and assign f (1) to the root node, i.e., f[0]=f

(1).
Initialize t = 1.

2: Let F1 = {f[0]}, and S̃1 = {S[0,1], S[0,−1]}, where
S[0,1]={x|f[0](x) ≥ 0, (x, y) ∈ S} and
S[0,−1] = {x|f[0](x) < 0, (x, y) ∈ S}.

3: loop
4: Let t = t+1.
5: Find the “host” and “guest” training center via Eq.

(1) and (2), and calculate the training weights of
samples in the local sets Nε(xhc) and Nε(xgc) via
Eq. (3) and (4).

6: Train the W-LSVM f (t) with the weighted samples
in the sets Nε(xhc) and Nε(xgc).

7: Find the leaf node which the “host” training center
xhc belongs to, and denote by I . Let Il = I(|I|)
and Ip = I(1 : |I| − 1), where |I| is the number of
elements of I .

8: if Il == −1 then
9: Let fI = max{f (t), fIp}.

10: else
11: Let fI = min{f (t), fIp}.
12: end if
13: Let Ft = Ft−1 ∪ {fI}, S[I,1] = {x|fI(x) ≥ 0,

x ∈ SI}, S[I,−1] = {x|fI(x) < 0,x ∈ SI},
S̃t = (S̃t−1 ∪ {S[I,1], S[I,−1]}) \ {SI}.

14: Update the evaluations of training samples V (t)

by using current HMLSVMs.
15: end loop
Output: Ft, and S̃t.

and by fI = max{f (t), fIp} if Il = −1 (separate the posi-
tive samples from the “negative” samples), where f (t) is the
W-LSVM classifier trained in the current iteration and fIp is
the classifier associated to the parent node of I . This setting
method ensures that the classifier associated to node I con-
siders not only the current trained W-LSVM f (t), but also the
classifier associated to its parent node. Therefore, the classi-
fier at each node is a mixture of maximums and minimums of
LSVMs associated to its ancestor nodes. In Step 13, fI splits
SI into subsets S[I,1] and S[I,−1] to enhance the impurity of
current leaf nodes.

The outputs of the training process are Ft and S̃t. Ft is the
set of classifiers associated to the nodes of HMLSVMs. S̃t
includes all subsets in the leaf nodes, and it gives the classifi-
cation results of training samples. For any SI ∈ S̃t, if Il = 1,
the samples in set SI are classified as positive samples. Oth-
erwise, they are classified as negative samples.

Remark 1. The total number of classifiers at nodes of
HMLSVMs is a key parameter which determines the gener-
alization performance for HMLSVMs. We will give a proper
stop criterion in Section 3.

2.2 Classification Stage of HMLSVMs
In classification stage, we make the new arrived sample
go through from the root node to a terminal node of H-
MLSVMs. When the sample has arrived at a terminal node,
if its H-MLSVMs classifier value is positive, then it is classi-
fied as positive sample, otherwise, it is classified as negative
sample. Since only the terminal nodes have no classifier, then
f[I,1] ∈ Ft (or f[I,−1] ∈ Ft) implies that the testing sample
does not arrive at a terminal node of H-MLSVMs. We should
continue classifying the sample using the classifier f[I,1] (or
f[I,−1]). Otherwise, if f[I,1] /∈ Ft (f[I,−1] /∈ Ft), this implies
that x has arrived at a terminal node, then we output the result
fI(x).

2.3 Computational Complexity
Before giving the computational complexity, we first intro-
duce the symbols used below. n is the number of samples,
d is the dimension of samples, and p̄ and q̄ are the aver-
age number of elements of Ŝ and ε−neighborhoods Nε(·)
in (1)respectively. We assume the total number of classi-
fiers at nodes of HMLSVMs is L, and the average complexity
of computing a value of an exponential function exp(·) is a
constant. We use the dual coordinate descent (DCD) method
[Hsieh et al., 2008] to train LSVMs because it is simple and
reaches an ε−accurate solution with the computational com-
plexity O(log(1/ε)nd̄) for n training samples, where d̄ is the
average number of nonzero elements per sample.
Complexity of training: In Step 1, computing the LSVM of
the root node takes O(log(1/ε)nd̄) operations. In Step 2, the
complexity of the evaluations of training samples is O(nd).
In Step 5, selecting the ε-neighborhoods of the samples in
set Ŝ takes O(p̄nd) operations, and computing the “host”
and “guest” center take O(p̄q̄d) and O(q̄2d) operations re-
spectively. Then the complexity of Step 5 is O((p̄n + q̄2)d)
since q̄ < n. Training the classifier with the samples of
the local regions in Step 6 takes O(log(1/ε)q̄d̄) operations.
From Step 13-14, the complexity is at most O(nd) since
we only need to update the evaluations of the training sam-
ples in node I . Hence, the complexity of Algorithm 1 is
O(log(1/ε)nd̄ + L(p̄n + q̄2)d). Generally speaking, p̄ in-
creases with n. Thus the complexity becomes expensive
when n is very large. In our experiments, we use the prob-
abilistic speedup method. The idea is to randomly sample
a sufficiently large subset Ŝ′ from Ŝ, and select the sample
training center xhc in set Ŝ′ instead of Ŝ. This makes the
algorithm much faster as |Ŝ′| � |Ŝ|.
Complexity of classification: Since we classify a sample
by making it go through from the root node to a leaf node
of H-MLSVMs, and all classifiers associated to the nodes are
composed of LSVMs, then only a few hyperplanes need to
be evaluated in the classification step, no kernel computation
is required. If the tree depth of HMLSVMs is L̄, then the
complexity for classifying a sample is at most O(L̄d). This
guarantees the high speed in the classification phase.

3 Generalization Error Bound for HMLSVMs
For classification problems, we are interested in bounding the
difference between empirical and expected risk over some

3899

function class. Because HMLSVMs can be consider as an
ensemble method of LLSVMs, we will quantify the gener-
alization error bound for the class of LLSVMs based on the
Rademacher complexity in this section.

The empirical Rademacher complexity of a class of func-
tion F defined on domain Z is

R̂n(F) = Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif(zi)

)∣∣∣∣∣T
]

(5)

where the elements of T = {z1, · · · , zn} are generated
by a distribution D on Z , and σ1, · · · , σn are independent
Rademacher variables such that P (σi = 1) = P (σi =
−1) = 0.5 for i = 1, · · · , n.

The following theorem states that the difference between
the empirical and the true expected value of a function is up-
per bounded by the empirical Rademacher complexity of the
function class.

Theorem 1. (Rademacher theorem) [Bousquet et al., 2004]
Let F be a class of functions with domain Z , which map from
Z to [0, 1], and {z1, · · · , zn} be generated independently ac-
cording to a probability distribution D. Then for any fixed
real value δ ∈ (0, 1), the following equation is satisfactory
with probability at least 1− δ for every f ∈ F

ED[f(z)] ≤ 1

n

n∑
i=1

[f(zi)] + 2R̂n(F) + 3

√
ln(2/δ)

2n
(6)

Assume a LLSVM f defined on the domainZ is composed
of κ LSVMs, denoted by

f = {〈wt,x〉+ bt,x ∈ Zt}κt=1. (7)

Zt is the subregion to which the LSVM ft(x) = 〈wt,x〉+ bt
should be applied, such thatZ = ∪κt=1Zt andZi∩Zj = ∅ for
i 6= j. Let FB,κ,Zt be the function class of LLSVM defined
by

FB,κ,Zt=

{
f

∣∣∣∣f={〈wt,x〉+bt,x∈Zt}κt=1, sup
t
‖w̃t‖≤B

}
(8)

where w̃t = [w>t bt]
>. If we use the soft loss function

`s(y, f(x)) = min (1,max (0, 1− yf(x)/r)) (9)

then the following theorem gives an generalization error
bound for LLSVMs.

Theorem 2. Let FB,κ,Zt be a function class defined by (8),
and suppose the training samples xt1, · · · ,xtnt are in the
subregion Zt for t = 1, · · · , κ. Then for any fixed real value
δ ∈ (0, 1), the expected risk of LLSVM f ∈ FB,κ,Zt with
probability at least 1− δ can be bounded by

L(f)≤Lemp(f)+
2B

nr

κ∑
t=1

(
nt∑
i=1

x̃>tix̃ti

) 1
2

+ 3

√
ln(2/δ)

2n
(10)

where L(f) is the expected risk based on the 0/1 loss,
Lemp(f) is the empirical risk based on the soft loss (9), and
x̃ti = [x>ti 1]> for i = 1, · · · , nt and t = 1, · · · , κ.

Proof. Define the function class LB,κ,Zt as

{`s |`s = min (1,max (0, 1− yf(x)/r)) , f ∈ FB,κ,Zt} .

Since |`s(f1(x), y) − `s(f2(x), y)| ≤ 1
r |f1(x) − f2(x)| for

∀ f1, f2 ∈ FB,κ,Zt , i.e., `s satisfies Lipschitz condition with
constant 1/r, then from Lemma 7 of [Meir and Zhang, 2003],
we have

R̂n(LB,κ,Zt) ≤ R̂n(FB,κ,Zt)/r (11)
Let σti be the Rademacher variable corresponding to the sam-
ple xti, and let σt = [σt1, . . . , σtnt], then the empirical
Rademacher complexity of FB,κ,Zt satisfies

R̂n(FB,κ,Zt)

= Eσ

[
sup

f∈FB,κ,Zt

1

n

κ∑
t=1

nt∑
i=1

σti(w
>
t xti + bt)

]

≤ 1

n
Eσ

[
sup

f∈FB,κ,Zt

κ∑
t=1

∣∣∣∣∣
nt∑
i=1

〈w̃t, σtix̃ti〉

∣∣∣∣∣
]

≤ B

n
Eσ

[
κ∑
t=1

∥∥∥∥∥
nt∑
i=1

σtix̃ti

∥∥∥∥∥
]

≤ B

n

κ∑
t=1

Eσt

 nt∑
i,j=1

σtiσtjx̃
>
tix̃tj

 1
2

=
B

n

κ∑
t=1

(
nt∑
i=1

x̃>tix̃ti

) 1
2

(12)

The disappearance of the mixed terms σtiσtjx̃>tix̃tj for i 6= j
in Eq. (12) follows from the fact that the four possible com-
binations of −1 and 1 have equal probability with two of the
four having the opposite signs and hence cancelling out. On
the other hand,

L(f) = ED[`0/1(f(x), y)] ≤ ED[`s(f(x), y)]

According to Eq. (11), (12) and (6), the proof is complete.

Theorem 2 gives us an upper bound on the generalization
error in terms of the empirical risk and the complexity of the
function class FB,κ,Zt , where we measure the complexity of
FB,κ,Zt by the minimal “margin” of all LSVMs (2/‖w̃t‖ is
the margin of the t-th LSVM in the extended feature space
X̃ = {x̃|x̃ = [x>1]>}) and the partition of the training space.
Note that if a LLSVMs partitions the training sample set into
a small number of parts (i.e.,κ is small), then the second term
in the right hand of Eq. (10) (the complexity of FB,κ,Zt) is
likely small, however, the empirical risk are likely large espe-
cially for datasets which are far from being linearly separable.
Hence, there is a need to trade off the empirical error with the
class complexity. To this end, we use the minimization of

κ∑
t=1

nt∑
i=1

min (1,max (0, 1− ytif(xti)/r))

+λ

(
sup
t
‖w̃t‖

)
·
κ∑
t=1

[
tr
(
Z>t X̃

>X̃Zt

)] 1
2

(13)

3900

Figure 1: Decision boundaries of Ada-LR, CART, MLSVM, LIBSVM and HMLSVMs on the two synthetic datasets.

Table 1: Overall description of the datasets and parameters used in experiments.
Datasets TR# Cl CLIB γLIB CCVM γCVM CNYS γNYS γMLSVM σ2 λ
Spiral 2000 10 10 1 10 1 10 0.1 0.5 0.5 0.001

Fourclass 862 10 1 10 10 0.1 1000 1 1 0.02 0.01
Monks1 556 0.1 10 1 10 1 10 1 0.05 0.01 0.1

Pokerhand 6028 1 1 0.1 10 0.025 100 0.01 0.005 10 0.001
Letter 1536 10 10 1 10 2.5 10 10 0.1 0.6 0.001
EMG 80044 0.1 10 10 10 0.1 1000 10 0.1 0.3 0.001

Statlog 1410 10 10 0.1 10 0.5 100 1 10 1 0.001
Segment 660 10 10 1 10 5 10 10 0.1 0.1 0.001
Iris 150 10 10 0.05 0.1 1 0.01 1 0.1 4 0.001

Pendigit 2198 10 10 1 10 1 10 10 0.1 0.6 0.05
Chess 6179 10 10 0.1 10 0.1 100 0.1 1 4 0.001

SVMguide 7089 10 10 0.0001 10 0.0005 10 0.0001 0.001 1000 0.001
Building 1800 0.01 10 0.001 10 0.0003 1000 0.001 0.0001 1000 2

Face 8977 0.1 10 0.05 10 0.025 100 0.1 0.01 15 0.01

as the stop criterion, where λ is a tunable parameter and the
second term in Eq. (13) can be seen as a regularization for the
complexity of FB,κ,Zt . In the algorithm of HMLSVMs, we
train a series of LSVMs with the total number of classifiers at
nodes of HMLSVMs in the increasing order, and the repeti-
tion is not stopped until the minimization of the value in (13)
is achieved. The regularization term ensures that overfitting
can be effectively avoided.

4 Experiments
In this section, HMLSVMs is compared with the ensemble
methods of combining linear classifiers, (1) adaboost with
decision stump as weak learners (Ada-Stump), (2) adaboost
with linear regression as weak learners (Ada-Percep), (3) ad-
aBoost with linear regression as weak learners (Ada-LR),
(4) mixing linear SVMs (MLSVM) [Fu et al., 2010], as
well as the kernel methods (with RBF kernel k(xi,xj) =

e−γ‖xi−xj‖
2

), (5) LIBSVM [Fan et al., 2005], (6) CVM
[Tsang et al., 2005], (7) Nystrom method [Williams and
Seeger, 2001], and decision tree method (8) CART [Breiman
et al., 2004]. The parameters are obtained by using 5-fold

cross validation. For Nystrom method, the basis vectors size
is set to 200 (except for CBCL Face and EMG database, which
is set to 500). For adaboost methods, we fix the number of
boosting iterations to 1000 and 200 for synthetic and real-
world datasets (except for EMG database, which is set to 1000)
respectively, and select the classifier number which has the
highest classification accuracy for testing samples. A list of
the datasets and the optimal parameters is given in Table 1.
We decompose each dataset into two parts: training samples
and testing samples, which are independent from each other.
20 independent sets of training and testing samples are gener-
ated by running 20 random divisions on data samples in each
set with a fixed proportion 8 : 2.

Two synthetic datasets, Spiral and Fourclass datasets, are
used to test the above algorithms. These two datasets are of-
ten considered to be highly nonlinear datasets. In Fig. 1,
from left to right, we show the decision boundaries produced
by Ada-LR, CART, MLSVM, LIBSVM, and HMLSVMs
respectively. The decision boundaries of HMLSVMs are
smoother than that of the ensemble methods and nearly ap-
proach that of the kernel methods. The mean number of sup-
port vectors used by LIBSVM, CVM and Nystrom, and the

3901

Table 2: Testing accuracy of the ten methods. The mean rate together with standard deviation is reported.
Datasets LSVM LIBSVM CVM Nystrom Ada-Stu Ada-Per Ada-LR MLSVM CART HMLSVMs
Spiral 55.1±2.1 100±0 99.9±0.1 99.2±0.6 70.4±1.7 67.3±2.0 70.8±1.8 99.4±0.2 73.5±1.9 99.7±0.3
Fourclass 76.9±2.9 100±0 100±0 99.5±0.3 82.6±3.2 82.6±3.8 98.7±0.4 97.5±0.9 96.2±1.6 99.5±0.6
Monks1 66.3±3.7 99.5±0.8 99.6±0.8 98.4±1.8 75.1±3.4 76.7±5.8 77.8±3.5 97.5±1.9 74.1±4.6 99.8±0.5
Pokerhand 66.5±1.4 99.3±0.2 99.6±0.2 98.5±0.3 66.5±1.4 81.3±2.5 75.6±3.3 97.3±0.4 77.5±2.7 96.4±1.1
Letter 97.7±0.6 99.9±0.1 99.9±0.1 99.4±0.7 99.4±0.3 98.3±0.7 98.3±0.5 99.2±0.7 87.9±2.0 99.7±0.2
EMG 59.6±1.9 97.3±0.4 97.1±0.3 95.5±0.7 73.6±1.8 71.2±2.4 69.7±1.9 93.4±2.7 89.3±2.5 94.2±1.3

Statlog 95.8±1.2 98.3±0.7 98.6±0.7 98.4±0.4 93.6±1.9 96.0±1.3 95.8±1.4 96.5±2.6 89.0±2.5 97.2±1.2
Segment 89.7±2.3 94.7±1.6 95.3±1.6 94.3±2.8 93.5±2.1 93.1±1.4 93.0±1.8 93.2±2.7 85.2±1.3 94.0±3.6
Iris 70.2±9.1 96.9±1.9 96.7±2.8 96.0±3.4 90.0±6.4 92.4±3.9 92.1±5.2 92.7±2.8 89.3±5.8 96.7±2.5

Pendigit 97.1±1.0 99.8±0.2 99.8±0.2 99.5±0.4 97.5±0.9 98.5±0.8 97.7±0.8 99.6±0.1 91.8±3.2 99.4±0.3
Chess 75.6±1.1 96.6±0.3 96.9±0.3 92.5±0.6 84.2±1.8 77.7±1.7 77.0±1.1 92.3±3.9 71.3±2.0 92.8±0.9

SVMguide 95.3±0.5 96.8±0.5 96.9±0.4 96.7±0.4 96.2±0.2 94.7±0.8 93.8±0.6 95.9±0.5 85.1±0.7 96.5±0.3
Building 94.7±0.8 99.6±0.6 99.0±0.6 98.9±0.6 97.3±0.9 95.2±0.9 95.1±0.7 98.0±0.9 84.5±2.2 98.3±0.4
Face 98.0±0.3 99.6±0.1 99.7±0.1 99.3±0.2 98.4±0.3 97.9±0.3 97.5±0.4 99.0±0.3 85.2±1.4 99.2±0.1

Table 3: Testing complexity in the classification stage. The mean number together with standard deviation is reported.
Datasets LIBSVM CVM Nystrom Ada-Stu Ada-Per Ada-LR MLSVM CART HMLSVMs
Spiral 616.0±10.3 1600±0 195.7±3.5 143.1±29.7 161.2±21.4 169.7±36.5 50±0 6.6±0.2 8.3±0.3
Fourclass 468±2.0 99.8±3.5 40.3±1.8 292.3±252.3 627.4±321.3 743.6±154.6 20±0 6.3±0.2 4.5±0.3
Monks1 290.2±5.3 367.3±3.8 186.1±1.7 40.8±20.0 157.3±39.6 160.2±33.2 20±0 4.9±1.3 4.1±0.4
Pokerhand 2068.5±14.5 775.1±25.2 200±0 22.1±26.0 188.8±13.3 166.7±35.1 40±0 8.8±0.1 10.4±2.2
Letter 98.5±5.6 332.5±6.1 198.4±1.2 79.5±47.1 114.4±65.1 133.0±42.9 20±0 9.5±0.2 4.3±1.5
EMG 4962±35 11922±731 499±0.7 723±95 889±24 785± 54 100±0 13.3±0.1 5.6±0.7

Statlog 108.1±3.9 168.0±5.9 200±0 52.3±48.9 112.9±62.3 98.7±74.1 40±0 7.7±0.4 4.9±1.2
Segment 146.7±4.2 270.5±7.6 98.6±1.3 106±48.8 97.3±66.0 137.3±53.1 20±0 8.4±0.2 4.5±1.4
Iris 26.2±1.6 120.0±0 35.1±0.3 66.6±63.8 60.9±38.0 123.7±53.4 5±0 5.6±0.4 3.8±0.8

Pendigit 89.3±4.1 510.3±9.2 200±0 69.9±60.9 171.6±27.5 154.5±28.9 20±0 10.4±0.7 3.8±0.4
Chess 879.9±11.0 1398.0±16.1 200±0 174.7±25.5 149.5±55.3 115.5±65.5 50±0 6.9±0.2 8.0±0.6

SVMguide 510.5±13.8 1152.2±38.3 87.8±11.5 34.1±41.5 21.2±18.6 116.3±73.1 20±0 6.1±0.7 2.2±0.9
Building 647.6±11.4 340.8±14.2 200±0 131.6±44.2 160.4±43.8 144.9±46.6 40±0 10.5±0.1 4.1±0.9
Face 397.1±7.7 661.1±12.9 499.6±0.7 168.5±17.7 128.1±35.4 101.7±41.3 50±0 9.0±0.0 2.9±0.7

mean number of linear classifiers employed by Ada-Stump,
Ada-Perceptron, Ada-LR and MLSVM, and the mean num-
ber of linear classifiers for CART and HMLSVMs encoun-
tered per testing sample are shown in Table 31. Although the
number of linear classifiers employed by HMLSVMs for the
two synthetic datasets in our experiments are respectively 66
and 25, the mean number of linear classifiers encountered per
testing sample are respectively 8.3 and 4.5. This is due to
the hierarchical structure of HMLSVMs, which predicts the
label of a testing sample by making the sample go through
from the root node to a leaf node of HMLSVMs. From the
average numbers of SVs or linear classifiers in Table 3, it can
be seen that HMLSVMs is orders of magnitude faster than
the kernel and ensemble methods. CART achieves the classi-
fication cost comparable to that of HMLSVMs, but its testing
accuracy is very poor, even lower than that of LSVM on some

1The codes of LIBSVM, CVM and Nystrom are implemented
in C++ and the codes of Ada-Stump, Ada-Perceptron, Ada-LR,
MLSVM, CART and HMLSVMs are implemented in MATLAB,
hence we prefer the number of SVs or linear classifiers to the classi-
fication time in fairness. Note that the complexity of MLSVM scales
with twice the number of linear classifiers, including gate function
and classifier evaluations

datasets.

To further demonstrate the power of HMLSVMs, we also
conducted experiments on 12 real-world datasets obtained
from sources [Frank and Asuncion, 2010; Chang and Lin,
2001]. From Table 2, it can be seen clearly that CVM and
LIBSVM outperform all other methods, however, they are at
the cost of generating the largest number of SVs (as shown in
Table 3), and this makes them have the highest computational
complexity in classification stage. The methods of Nystrom
and MLSVM report considerable reductions of the number
of SVs or LSVMs, but the numbers are still much higher
than that of HMLSVMs. HMLSVMs achieves good clas-
sification performance comparable to KSVMs (CVM, LIB-
SVM, Nystrom). More importantly, it classifies a testing sam-
ple only via several (at most 10.4) LSVMs, so the time cost
of HMLSVMs in the classification stage is significantly re-
duced. This is the main focus of HMLSVMs, which is not
having the best testing accuracy but provide a method capable
of classifying a pattern in a few milliseconds while obtaining
a competitive performance. Thanks to the regularization term
in (13), this ensures that the HMLSVMs do not fall into over-
fitting and have the good generalization ability comparable to
KSVMs. The hierarchical structure of HMLSVMs makes it

3902

achieve the high efficiency in the classification stage.

5 Conclusions
In this paper, we proposed a novel classifier called
HMLSVMs by using a greedy strategy, which has a hierar-
chical structure with a mixture of LSVMs at each node. The
hierarchical structure of HMLSVMs and the regularization
term in (13) make it have the high speed in the classification
stage and the good classification performance comparable to
KSVMs. Experiments on both synthetic and real datasets are
presented to show the effectiveness of our method. In the fu-
ture, we will focus on the online learning of HMLSVMs.

Acknowledgement
This work is partly supported by NSFC under Grants
61472285, 6141101224, 61473212, 61100147, 61203241
and 61305035, and partly by the NSF of Zhejiang
Province under Grants LY12F03016, LY15F030011 and
LQ13F030009, and partly by Project of Science and Technol-
ogy Plans of Zhejiang Province under Grants 2014C31062.

References
[Bach and Jordan, 2005] F. Bach and M. Jordan. Predictive low-

rank decomposition for kernel methods. In Proceedings of the
22th International Conference on Machine Learning, Bonn, Ger-
many, 2005.

[Bennett and Blue, 1998] K. P. Bennett and J. A. Blue. A support
vector machine approach to decision trees. In IEEE International
Joint Conference on Neural Networks, pages 2396–2401, 1998.

[Bousquet et al., 2004] O. Bousquet, S. Boucheron, and G. Lugosi.
Introduction to statistical learning Theory. Springer, Berlin,
2004.

[Breiman et al., 2004] L. Breiman, J. H. Friedman, R. A. Olshen,
and C. J. Stone. Classification and regression trees. Wadsworth,
2004.

[Breiman, 1996] L. Breiman. Bagging predictors. Machine Learn-
ing, 24(2):123–140, 1996.

[Breiman, 2001] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[Chang and Lin, 2001] C. C. Chang and C. J. Lin. Libsvm: a library
for support vector machine, 2001.

[Cheng et al., 2010] H. B. Cheng, P. N. Tan, and R. Jin. Efficient al-
gorithm for localized support vector machine. IEEE Transactions
on Knowledge and Data Engineering, 22(4):537–549, 2010.

[Downs et al., 2001] T. Downs, K. Gates, and A. Masters1. Exact
simplification of support vector solutions. Journal of Machine
Learning Research, 2:293–297, 2001.

[Fan et al., 2005] R. E. Fan, P. H. Chen, and C. J. Lin. Working set
selection using second order information for training support vec-
tor machines. Journal of Machine Learning Research, 6:1889–
1918, 2005.

[Fei and Liu, 2006] B. Fei and J. Liu. Binary tree of svm: A new
fast multiclass training and classification algorithm. IEEE Trans-
actions on Neural Networks, 17(3):696–704, 2006.

[Fornoni et al., 2011] M. Fornoni, B. Caputo, and F. Orabona. Lo-
cally linear support vector machines. In Proceedings of Interna-
tional Conference of Machine Learning, pages 985–992, 2011.

[Frank and Asuncion, 2010] A. Frank and A. Asuncion. UCI ma-
chine learning repository, 2010.

[Fu et al., 2010] Z. Fu, A. Robles-Kelly, and J. Zhou. Mixing linear
svms for nonlinear classification. IEEE Transactions on Neural
Networks, 21(12):1963–1975, 2010.

[Gao and Zhang, 2009] J. B. Gao and J. Zhang. Sparse kernel learn-
ing and the relevance units machine. 5476:612–619, 2009.

[Hsieh et al., 2008] C. J. Hsieh, K. W. Chang, C. J. Lin, S. S.
Keerthi, and S. Sundararajan. A dual coordinate descent method
for large-scale linear svm. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, Helsinki, Finland, 2008.

[Joachims and Yu, 2009] T. Joachims and C. N. Yu. Sparse ker-
nel svms via cutting-plane training. Machine Learning, 76(2–
3):179–193, 2009.

[Joachims, 2011] T. Joachims. Training linear svms in linear
time. In PProceedings of the 12th ACM International Confer-
ence on Knowledge Discovery and Data Mining, pages 217–226,
Philadelphia, PA, 2011.

[Ladicky and Torr, 2013] L. Ladicky and P. H. S. Torr. Multiclass
latent locally linear support vector machines. In JMLR: Workshop
and Conference Proceedings, volume 29, pages 229–244, 2013.

[Li et al., 2011] Y. J. Li, B. Liu, X. W. Yang, Y. Z. Fu, and H. J.
Li. Multiconlitron: A general piecewise linear classifier. IEEE
Transactions on Neural Networks, 22(2):276–289, 2011.

[Liang, 2010] X. Liang. An effective method of pruning support
vector machine classifiers. IEEE Transactions on Neural Net-
works, 21(1):26–38, 2010.

[Meir and Zhang, 2003] R. Meir and T. Zhang. Generalization er-
ror bounds for bayesian mixture algorithms. Journal of Machine
Learning Research, 4:839–860, 2003.

[Nguyen and Ho, 2006] D. D. Nguyen and T. B. Ho. A bottom-up
method for simplifying support vector solutions. IEEE Transac-
tions on Neural Networks, 17(3):792–796, 2006.

[Pavlov et al., 2000] D. Pavlov, J. Mao, and B. Dom. Scaling-up
support vector machines using boosting algorithm. In Proceed-
ings of 15th International Conference on Pattern Recognition,
volume 2, pages 219–222, 2000.

[Qi et al., 2011] G. J. Qi, T. Qi, and T. Huang. Locality-sensitive
support vector machine by exploring local correlation and global
regularization. In Proceedings of 24th IEEE Conference on Com-
puter Vision and Pattern Recognition, Colorado Springs, CO,
USA, 2011.

[Schoelkopf et al., 1999] B. Schoelkopf, S. Mika, C. J. C. Burges,
P. Knirsch, K. Muller, G. Ratsch, and A. J. mola. Input space
versus feature space in kernel-based methods. IEEE Transactions
on Neural Networks, 10(5):1000–1017, 1999.

[Tipping, 2001] M. E. Tipping. Sparse bayesian learning and the
relevance vector machine. 1:211–244, 2001.

[Tsang et al., 2005] I. W. Tsang, J. T. Kwok, and P. M. Cheung.
Core vector machines: fast svm training on very large datasets.
Journal of Machine Learning Research, 6:363–392, 2005.

[Williams and Seeger, 2001] C. Williams and M. Seeger. Using the
nystrom method to speed up kernel machines. In Advances in
Neural Information Processing Systems, volume 13, pages 682–
688. MIT Press, 2001.

[Wu et al., 2006] M. R. Wu, B. Schoelkopf, and G. Bakir. A direct
method for building sparse kernel learning algorithms. Journal
of Machine Learning Research, 7:603–624, 2006.

3903

