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Abstract

In predicate invention (PI), new predicates are in-
troduced into a logical theory, usually by rewriting
a group of closely-related rules to use a common
invented predicate as a “subroutine”. PI is difficult,
since a poorly-chosen invented predicate may lead
to error cascades. Here we suggest a “soft” version
of predicate invention: instead of explicitly creating
new predicates, we implicitly group closely-related
rules by using structured sparsity to regularize their
parameters together. We show that soft PI, unlike
hard PI, consistently improves over previous strong
baselines for structure-learning on two large-scale
tasks.

1

In relational learning, predicate invention (PI) is a method
in which new predicates are introduced into a logical theory.
Most PI techniques simplify a logical theory by allowing a
group of closely-related rules to be combined somehow, using
the invented predicate.

Although not often, but practically PI may be viewed
from a sparse structure learning perspective: early PI algo-
rithms from the inductive logic programming community of-
ten leverage similar patterns from first-order logic represen-
tations, and then invent new predicates to compress the first-
order formulas to form compact theories. For example, in
learning logical rules for the domain of family relations, one
might have learned the following clauses:

daughter(X,Z), father(Z,Y) = sister(X,Y)
daughter(X,Z), mother(Z,Y) = sister(X,Y)

A PI system like CHAMP [Kijsirikul ef al., 1992] would cre-
ate a new predicate by combining these similar rules: e.g., it
might invent a predicate “parent”’, along with an appropriate
definition (as the disjunction of father and mother), and then
compress the above clauses into!:

daughter(X,Z), parent(Z,Y) = sister(X,Y)

Introduction

'We use the predicate symbol “parent” for clarity—a real invented
predicate would have a meaningless name, like inventedi6.
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The difficulty with applying such PI invention methods
is that they are somewhat prone to errors when data is
noisy. Past approaches to PI have avoided these problems
by some combination of clean data and computationally-
intensive search? over structure space [Kemp et al., 2006;
Kok and Domingos, 2007].

Intuitively, PI is motivated by the principle that parsimo-
nious explanations of the data are likely generalize well. A
similar bias towards parsimonious theories is made by meth-
ods such as Lasso [Tibshirani, 1996], which “sparsify” a
model by pushing the weights for some features to zero.
Sparsity-encouraging regularization methods are a common
tool in analyzing complex, high-dimensional datasets, and
have been useful in domains including text classification For-
man [2003] and vision [Olshausen and Field, 1997; Wright et
al., 2010]. Sparsity-encouraging regularization methods are
often viewed as ““softer”” substitutes for feature selection.

It is natural to conjecture that sparse regularization might
make PI more robust, by effectively removing “noisy” in-
vented predicates. Notice, however, that an invented pred-
icate P couples the performance of all rules that use P:
in the example above, for instance, the performance of the
parent rules are coupled to the performance of the sis-
ter rule that calls it. This suggests that structured sparsity
methods such as the group Lasso [Friedman et al., 2010;
Yuan and Lin, 2006] might be more useful for PL.

Further reflection suggests another connection between
structured sparsity and PI. Consider the set of rules that would
be simplified by an invented predicate. PI compresses a the-
ory by replacing this set with a smaller one, thus reducing the
number of parameters to learn. A structured sparsity regular-
izer that regularizes together the parameters for this set also
reduces the number of parameters to learn, in a very analo-
gous way. We call this soft version of predicate invention soft
PI. Soft PI does not explicitly creating new symbols to com-
press the existing theory: instead, soft PI relies on modifying
the learner, via a regularizer, to exploit the same commonali-
ties.

In this paper, we explore the connections between PI and
sparsity-encouraging regularizers. More specifically, we use
the iterated structural gradient (ISG) approach [Wang et al.,

“We note that structure search is especially expensive in proba-
bilistic logics, where inference is generally non-trivial.



about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-
hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.
linkedBy(X,Y,W) :- true # by(W).

Table 1: A simple program in ProPPR. See text for explana-
tion.

2014a] to identify potentially useful rules. We then apply
CHAMP-like heuristics to identify groups of clauses that
could be compressed with invented predicates. We compare
“hard PI” methods, in which the invented predicates are actu-
ally introduced, with “soft PI”, in which we impose a group
Lasso penalty regularization term to learn parameters for a fi-
nal set of clauses, with structured sparsity. We compare these
approaches with non-structured sparse and non-sparse regu-
larizers, as well as an alternative structured sparsity regular-
izer, namely a sparse graph Laplacian regularization exploits
pair-wise relationships between rules.

Our approach is built on top of ProPPR [Wang et al.,
2013], a new, scalable first-order probabilistic logic, which is
fast enough to support probabilistic inference on large prob-
lems [Wang er al., 2014b]. The methods we explore here
are highly scalable: when using a parallel stochastic gradi-
ent descent learner with lazy proximal structured sparsity up-
dates, learning takes only a few minutes to process 20,000
examples against a 10,000-tuple database. We also scale the
group Lasso approach to a version of the NELL [Carlson et
al., 2010] KB with 100K facts, while achieving good perfor-
mances on the “long tail” of inferences in the KB.

To summarize, our contributions are as follows. (1) We
present a new freely available family relation dataset with
more than 30,000 of facts for SRL research. This is analo-
gous to a much smaller dataset introduced by Hinton [Hin-
ton, 1986]. (2) We introduce an overlapping proximal group
Lasso algorithm to regularize together related clauses. (3) We
show that this soft version of PI can outperform strong PI-free
baselines in the NELL KB completion task, and the family-
relation learning task.

2 Background on ProPPR

Below we will give an informal description of ProPPR, based
on a small example. More formal descriptions can be found
elsewhere [Wang et al., 2013].

ProPPR (for Programming with Personalized PageRank)
is a stochastic extension of the logic programming language
Prolog. A simple program in ProPPR is shown in Table 1.
Roughly speaking, the upper-case tokens are variables, and
the “:-” symbol means that the left-hand side (the head of a
rule) is implied by the conjunction of conditions on the right-
hand size (the body). In addition to the rules shown, a ProPPR
program would include a database of facts: in this exam-
ple, facts would take the form handLabeled(page,label), has-
Word(page,word), or linkedBy(pagel,page2), representing la-
beled training data, a document-term matrix, and hyperlinks,
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respectively. The condition “true” in the last rule is “syntactic
sugar” for an empty body.

In ProPPR, a user issues a query, such as “about(a,X)?”,
and the answer is a set of possible bindings for the free vari-
ables in the query (here there is just one such varable, “X”).
To answer the query, ProPPR builds a proof graph. Each node
in the graph is a list of conditions Ry, ..., Ry that remain to
prove, interpreted as a conjunction. To find the children of a
node R1,..., Rk, you look for either

1. database facts that match R;, in which case the appro-
priate variables are bound, and R; is removed from the
list, or;

arule A « By,..., B, with ahead A that matches R,
in which case again the appropriate variables are bound,
and R; is replaced with the body of the rule, resulting in
the new list By, ..., By, R, ..., Rg.

In Prolog, this proof graph is constructed on-the-fly in
a depth-first, left-to-right way, returning the first solution
found, and backtracking, if requested, to find additional so-
lutions. In ProPPR, however, we will define a stochastic pro-
cess on the graph, which will generate a score for each node,
and hence a score for each answer to the query. The stochas-
tic process used in ProPPR is personalized PageRank [Page
et al., 1998; Csalogny et al., 2005], also known as random-
walk-with-restart. Intuitively, this process upweights solution
nodes that are reachable by many short proofs (i.e., short
paths from the query node.) Formally, personalized PageR-
ank is the fixed point of the iteration

P = axy, + (1 — a)Wp' (1)

where plu] is the weight assigned to u, vy is the seed (i.e.,
query) node, X, is a vector with ., [vo] = 1 and X, [u] =
0 for u # v, and the parameter « is the reset probability.
W is a matrix of transition probabilities, i.e., W v, u] is the
probability of transitioning from node u to a child node v:

1
W[U,U,} = Ef(@ . (ﬁ[v’u])

Here Z is an appropriate normalizing constant, 6 is the weight
vector associated with the features ¢p,,,,,; on edge [v,u]. The
edge strength functions f used in this study are rectified linear
united (ReLU) [Nair and Hinton, 2010] and the hyperbolic
tangent function (tanh) [Glorot and Bengio, 2010].

Like Prolog, ProPPR’s proof graph is also constructed
on-the-fly, but rather than using depth-first search, we use
PageRank-Nibble, a fast approximate technique for incre-
mentally exploring a large graph from a an initial “seed” node
[Andersen et al., 2008]. PageRank-Nibble takes a parame-
ter € and will return an approximation p to the personalized
PageRank vector p, such that each node’s estimated probabil-
ity is within e of correct. ProPPR can be viewed as a scalable
extension of stochastic logic programs[Muggleton, 1996;
Cussens, 2001; Van Daele et al., 2014].

We close this background section with some final brief
comments about ProPPR.

Scalability. ProPPR is currently limited in that it uses mem-
ory to store the fact databases, and the proof graphs con-
structed from them. ProPPR uses a special-purpose scheme
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based on sparse matrix representations to store facts which
are triples, which allows it to accommodate databases with
hundreds of millions of facts in tens of gigabytes.

With respect to run-time, ProPPR’S scalability is improved
by the fast approximate inference scheme used, which is
typically an order of magnitude faster than power iteration
for moderate-sized problems [Wang et al., 2013], and much
faster on larger problems. Experimentation and learning are
also sped up because with PageRank-Nibble, each query is
answered using a “small”—size O(-L )—proof graph. Many
operations required in learning and experimentation can thus
be easily parallelized on a multi-core machine, by simply dis-
tributing different proof graphs to different threads.

Parameter learning. The personalized PageRank scores
are defined by a transition probability matrix W. ProPPR
allows “feature generators” to be attached to its rules, as
indicated by the code after the hashtags in the example
program: for instance, when matching the rule “sim(X,Y)
:- links(X,Y)” to a condition such as “sim(a,X)” the two
features “sim” and “link” are generated, and when match-
ing the rule “linkedBy(X,Y,W) :- true” to the condition
“linkedBy(a,c,sprinter)” the feature “by(sprinter)” is gener-
ated. Since edges in the proof graph correspond to rule
matches, the edges can also be labeled by features, and a
weighted combination of these features can be used to define
a total weight for each edge, which finally can be normal-
ized used to define the transition matrix W. Learning can be
used to tune these weights to data; ProPPR’s learning uses a
parallelized SGD method, in which inference on different ex-
amples is performed in different threads, and weight updates
are synchronized.

Structure learning. Prior work [Wang et al., 2014a] has
studied the problem of learning a ProPPR theory, rather than
simply tuning parameters in an existing theory, a process
called structure learning. In particular, inspired by recent ad-
vances in inductive logic programming [Muggleton er al.,
20141, Wang et al. [2014a] propose a scheme called the struc-
tural gradient which scores every rule in some (possibly
large) user-defined space R of potential rules, and then adds
high-scoring rules to a theory. In more detail, the space of po-
tential rules R is defined by a “second-order abductive the-
ory”, which conceptually constructs proofs using all rules in
‘R. The second-order theory is defined in such a way such that
each parameter in the second-order theory corresponds to a
rule in R, so the gradient of the parameter vector corresponds
to a scoring scheme for the rules in R. The structure learn-
ing via parameter learning idea of ProPPR’s structure learn-
ing method is broadly related to joint structure and parame-
ter learning of Markov Logic Networks [Khot et al., 2011].
The iterated structural gradient method that incrementally re-
fines the hypothesized structure space is also closely related
to a learn-and-join algorithm for learning Markov Logic Net-
works [Khosravi et al., 2010].

3 Hard Predicate Invention

In previous work [Wang et al., 2014a] involving the structural
gradient method, the space of rules R includes rules over a
fixed set if predicate symbols that are known in advance. In
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some cases it is useful to invent new predicates and define
them. For instance, in learning a definition of aunt using the
pre-defined predicates mother, father, a system might include
the rules:

aunt(X,Y) :- sister(X,Z),mother(Z,Y).
aunt(X,Y) :- sister(X,Z),father(Z,Y).

A potentially more compact definition for aunt might be
found by inventing the new predicate inventedl and defining
it as the disjunction of mother and father. Constructing and
defining new predicate symbols in this way is called predi-
cate invention (PI).

Existing PI approaches involve creating new predicates
based on similarities [Wogulis and Langley, 1989] and differ-
ences [Muggleton and Buntine, 1992] between learned rules.
However, many PI systems are not robust enough to handle
noisy data, as when incorrect predicates are invented, errors
may eaily cascade. In this paper we evaluated several varia-
tions of a CHAMP-style analysis [Kijsirikul et al., 1992] to
invent predicates based on sets of similar rules. We consider
pairs of rules to be similar if they have the following format.

e R1 is “p(X,Y) :- q(X,2),r(Z,Y)” and R2 is “p(X,Y) :-
q(X,2),s(Z,Y)”, i.e., they are length-two chains that dif-
fer only in the last predicate of the RHS, or

e R1is “p(X,Y) :- q(X,Y)” and R2 is “p(X.Y) :- s(X,Y)”,
i.e., they are length-one chains that differ only in the last
predicate of the RHS, or

e R1is “p(X,Y) :- q(Y.,X)” and R2 is “p(X,Y) :- s(Y,X)”,
which is the inverse relation case.

In our preliminary experiments on learning family relations
(detailed settings and quantitative results will be shown in
Section 5.), the results that “hard PI” were produced as fol-
lows:

nephew(X,Y) :- invented1(Y,X).
inventedl(X,)Y) :- uncle(X,Y).
inventedl(X,Y) :- aunt(X,Y).

uncle,X,Y) :- invented2(Y,X).
invented2(X,Y) :- nephew(X,)Y).
invented2(X,Y) :- niece(X,Y).

aunt(X,Y) :- sister(X,Z),invented1(Z,Y).
sister(X,Y) :- niece(X,Z),invented1(Z,Y).

brother(X,)Y) :- inventedl(X,Y).
uncle(X,Y) :- uncle(X,Z),inventedl(Z,Y).

Although the majority of the compressed rules produced by
hard PI are intuitively meaningful, the last two rules are not.

4 Structured Sparsity for Soft Predicate
Invention

From the example in the previous section, we see that a draw-
back of hard predicate invention is that, given noisy inputs, in-
correct clauses may be generated. In this section, we present
a structured sparsity based alternative to hard PI: instead of
creating new symbols, our approach groups similar concepts
together, and exploit regularization-based structured sparsity
technique to explore closely-related concepts and rules.



Element-Wise Regularization In this subsection, we briefly
review past work on regularization techniques. Here we de-
fine the weight parameter vector w, and each weight element
in w corresponds to a first-order logic clause candidate, ac-
cording to prior work on structure learning using parame-
ter learning for first-order logic [Wang et al., 2014al. Note
that ProPPR’s default regularization term s||w]||3, which is
the Ridge estimator [Le Cessie and Van Houwelingen, 19921,
will not be producing sparse estimates. The noisy estimates
may not be ideal, since the incorrect first-order logic program
may lead to more errors in the downstream applications. To
solve this issue, we consider the following Lasso [Tibshirani,
1996] formulation, where objective function is:

min ( —£+M\|w||1>

Unlike the Ridge estimator, the above Lasso penalty will now
produce sparse estimates, even though the objective function
is now non-differentiable. To optimize the above function, we
use a proximal operator: each weight component w is shrunk
towards O by a shrinkage value o,

signum(w) - maz (0, |w| — o)
where in our lazy L; regularization update is

o= 6V2up.

here, § is the total number of accumulated regularization up-
date, and [ is the learning rate. We use a Lazy L; update
algorithm [Carpenter, 2008] for optimization. The main idea
is that, the regularization updates for all features in each ex-
ample are slow and unnecessary, and we can cache the regu-
larization updates of relevant features, then update the accu-
mulated regularization changes.

Structured Graph Laplacian Regularization One chal-
lenge associated with PI is that the reuse of invented pred-
icates makes them hard to remove by simple element-wise
regularizers. To better incorporate the dependencies among
the features in each logic clause, we introduce a pair-wise
graph Laplacian penalty [Belkin et al., 2006]:

min ( —0+C Z ||wp — wq”A(p,q))

(p,q)

Here, ¢ is the regularization coefficient that controls the
strength of the structured penalty, and A, ;) is an adjacency
matrix that indicates the pair-wise similarity among logic
clauses, and the basic idea is to push similar logic clauses
to have similar weights after learning. For example, consider
the following clauses:

sister(X,Y) :- daughter(X,Z), father(Z,Y).
sister(X,Y) :- daughter(X,Z), mother(Z,Y).

Since they share the same goal and the same first predicate
on the right hand side (RHS), it make sense for them to have
similar weights. To construct the sparse A matrix , we use a
CHAMP-style analysis [Kijsirikul et al., 1992]: for all pairs
of clauses that share the same goal and have |RHS| = 1
cases, we connect them in the adjacency graph. For all pairs of
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clauses that share the same goal and have | RH S| = 2 cases,
if the first predicates on the RHS are the same, we connect the
two clauses together in A. For instance, instead of inventing
a hard predicate for “nephew or niece”, we instead assign a
weight value of 1 for this pair of rules in the affinity matrix
A.

To implement this approach, we then define a degree ma-
trix D to be the total number of connections for each entry in
A, and the graph Laplacian to be L = D — A, which trans-
forms the optimization into:

min ( -0+ CWTLW)

where £ is the loss. Like ridge regression, this regularizer is a
quadratic penalty.

Sparse Laplacian Regularization To incorporate sparsity,
we may also consider this alternative sparse Laplacian reg-
ularization formula:

min ( 0wl + ngLw)

where the sparsity-inducing L; term was added.

Structured Sparsity via Group Lasso A problem with
Laplacian regularization is that while it pushes similar pairs
of clauses to have similar weights, it will not typically remove
groups in incorrect related clauses by pushing their weights
to zero. To solve this problem, we introduce a sparse group
Lasso [Friedman et al., 2010; Yuan and Lin, 2006] formula-
tion:

L
min (= ¢+ pl Wil + ¢ [1will2)
=1

where L is the total number of feature groups, and w; is the
parameter vector for the [-th group. This is now a structured
sparsity learning problem, where we can introduce group
sparsity. To generate the groups, we utilize the same A matrix
in the Laplacian regularization: each row in A corresponds to
a feature group, and different groups may have overlapping
features. The benefit of using sparse group Lasso is that it
will drive the weights for the entire group of features to zero
if the group is not useful or noisy, which appears to be critical
for soft PI. Again, we take the first-order derivatives of the
group Lasso term, and use the same proximal operator algo-
rithm to solve the sparse group Lasso optimization. We also
consider a “group lasso” alternative of the above formulation
when we remove the element-wise L term. Note that Nishino
et al. [2014] is among the first to study a projected gradient
approach for learning sparse parameters in relational param-
eter learning, but the problems of learning sparse structures
and predicate invention are not discussed.

S Experiments

In this section, we evaluate the effectiveness of the pro-
posed approach on two datasets: a new, large family relation
dataset®, which features the Kings and Queens of Europe, in-
cluding Great Britain’s royal family up to 1992; as well as

3This is motivated by Hinton’s classic kinship dataset, which in-
cludes only two families, each with twelve individuals, and twelve
binary relations between these individuals.



Methods MAPReLU) AUC-PR(ReLU) #c Time  MAP(tanh) AUC-PR(tanh) #c Time
Hard Predicate Invention ~ .708 4 .012 13 £ .011 79  09:05 713 & .008 720 £ .007 79  09:26
No Predicate Invention 744 £+ .010 751 £ .011 101 11:24 764 £+ .018 771 £ .015 101 12:25
+ Ridge 752 £+ .009 758 £ .010 101 11:05 .785 % .010 794 £+ .008 101 11:47
+ Lasso A 763 £+ .015 173 £+ .020 95 10:23 792 £ .018 798 £+ .017 95 10:45
Soft Predicate Invention

+ Laplacian A 766 £+ .013 782 + .013 101 11:23 770 & .011 781 £ .010 101 12:01
+ Group Lasso A 761 £+ .015 177 £ .014 86  09:25 .768 £+ .013 779 £+ .012 88  09:56
+ Sparse Laplacian A 173 £+ .007 177 £+ .005 95 10:14  .790 £ .007 798 4+ .007 95 10:36
+ Sparse Group Lasso A 801 + .015 812 +.012 65 08:01 .807 £.012 813 +.014 63  07:55

Table 2: The MAP results from non-iterated structural gradients for KB completion on the royal family dataset. #c: the averaged
number of logic clauses with non-zero weights across all runs. Time: the averaged runtime (minutes) of inference on the test.
A indicates that comparing to the no PI baseline, the p-values of the repetitive McNemar tests are all < .0001.

the NELL subsets that include up to 100K grounded facts ex-
tracted from the Web. In particular, we focus on the task of
structure learning for knowledge base completion [Wang et
al., 2014a; Cropper and Muggleton, 2014], where the goal is
to learn first-order logic program to reconstruct the KB, given
only partially complete background database. For compre-
hensive empirical comparisons of ProPPR’s structure learn-
ing scheme to the Markov Logic Networks’ structure learn-
ing baseline, we refer the readers to prior work [Wang et al.,
2014al.

5.1 Learning Family Relations

We introduce a new dataset for research in SRL: the orig-
inal dataset was created in 1992 by Denis R. Reid, includ-
ing 3010 individuals and 1422 families of European royalty.
We further parsed the genealogical data to extract six pairs of
inter-related family relations: {uncle & aunt, sister & brother,
daughter & son, father & mother, husband & wife, niece &
nephew}. (Learning such pairs of relations has proven to be
quite difficult for ProPPR structure-learning systems in past
work [Wang et al., 2014a].) We use a temporal split to sepa-
rate the train and test subsets. The training set includes 21,430
facts, while the test set contains 8,899 facts. In our KB com-
pletion experiment, we randomly delete 50% of the back-
ground facts for both the training and test sets respectively,
and we use soft PI to complete the missing facts, and eval-
uate the effectiveness of our approach using Mean Average
Precision (MAP), and Area Under the precision-recall Curve
(AUC-PR). Throughout the experiments, the regularization
coefficient p for the Lo penalty was set to 0.00001, and p
for the L, penalty was set to 0.00002. We repeat each exper-
iment 3 times and report the averaged score and the standard
deviation of the results. We also report the number of non-
zero rules after learning, as well as the inference time on the
test set. The McNemar test [McNemar, 1947] is used to test
the statistical significance of various models.

Table 2 shows the MAP results for KB completion on
the royal family dataset, using the non-iterated and iterated
structural gradient variants [Wang et al., 2014a] respectively.
We see that hard PI performs poorly, due to the error cas-
cades.* Traditional element-wise non-sparse and sparse meth-

“Hard PI here is the best of several PI techniques we experi-
mented with. Details are omitted due to space.

KB seed
Google baseball
top 1k entities
#train/test queries 100 100
#DB facts 853 890
top 10k entities
#train/test queries 1000 1000
#DB facts 10630 11972
top 100k entities
#train/test queries 5000 5000
#DB facts 12902 9746

Table 3: Summary of the KBs used in experiments on com-
pleting subsets of NELL’s KB. Note that we also use a tem-
poral split to create the train/test split for this experiment.

ods, namely, the Ridge and Lasso estimators, did help im-
proving the test performance. The pair-wise graph Laplacian
regularization also improves the performance. This is proba-
bly because by forcing similar logic clauses to learn similar
weights, we are implicitly learning similarities among various
clauses, and use them to find informative clauses that lead to
better predictive results. We observe that for soft PI, the pro-
posed sparse overlapping group Lasso method do have strong
gain on this task: it outperforms all the competitive baselines
by a large margin. In general, we also see the advantage of
soft PI for inference with probabilistic logic programs— they
tend to lead to better predictive performances than hard PI
or no PI solutions. Our results also align with the findings in
a prior study on empirical loss minimization with sparsity-
inducing regularization terms [Duchi and Singer, 2009]: both
papers suggest that the compact parameter space with fewer
non-zero weights may lead to better predictive results.

5.2 Completing the NELL KB

Finally, as a larger-scale and more realistic task, we explore
learning inference rules for the NELL knowledge base. The
NELL (Never Ending Language Learning) research project is
an effort to develop a never-ending learning system that oper-
ates 24 hours per day, for years, to continuously improve its
ability to read (extract structured facts from) the web [Carl-
son et al., 2010]. NELL is given as input an ontology that de-
fines hundreds of categories (e.g., person, beverage, athlete,
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Figure 1: Performance on completing subsets of the NELL KB. Left, interpolated precision vs rank for two KBs with 100k
entities; right; comparison on three KBs of different sizes based on the seed “Google”.

sport) and two-place typed relations among these categories
(e.g., athletePlaysSport(Athlete, Sport)), which it must learn
to extract from the web. NELL is also provided a set of 10
to 20 positive seed examples of each such category and rela-
tion, along with a downloaded collection of 500 million web
pages from the ClueWeb2009 corpus (Callan and Hoy, 2009)
as unlabeled data, and access to 100,000 queries each day
to Google’s search engine. NELL uses a multi-strategy semi-
supervised multi-view learning method to iteratively grow the
set of extracted “beliefs”.

For experimental purposes, we construct a number of
varying-sized versions of the KB using the following pro-
cedure. First, we construct a “knowledge graph”, where the
nodes are entities and the edges are the binary predicates from
NELL. Then, we pick a seed entity s, and find the M enti-
ties that are ranked highest using a simple untyped random
walk with restart over the full knowledge graph from seed s.
Finally, we project the KB to just these M entities: i.e., we
select all entities in this set, and all unary and binary relation-
ships from the original KB that concern only these M entities.
Here the seed entities are “Google” and “Baseball”. We use
the same datasets from Wang er al.[2014a], and compare with
their ridge method. The summary of the dataset is shown in
Table 3.

Inference on NELL'’s learned KB is challenging for two
reasons. First, the learned KB is not only incomplete, but also
noisy, since it is extracted imperfectly from the web. For ex-
ample, a football team might be wrongly recognized as two
separate entities, one with connections to its team members,
and the other with a connection to its home stadium. Second,
the inference problems are large.

The performance of soft PI via sparse group Lasso on
these tasks is shown in Figure 1. Here we sort the list of an-
swers by their PPR scores in the descending order, and the
rank corresponds to the position in the list. Even though the
data is noisy, we see that the overlapping sparse group Lasso
learns large and useful theories—theories such that the high-
confidence predictions do indeed correspond, in most cases,
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with facts actually in the NELL knowledge base. Comparing
to the Ridge estimator, our proposed method is better at mod-
eling the long-tail distribution of facts on all of the “Google”
and “Baseball” subsets in the NELL KB. For conciseness, we
do not show other baselines in the figures, but the element-
wise and structured regularization models’ results are consis-
tent with the family dataset.

6 Conclusions

In this work, we investigate an alternative approach to hard
predicate invention. Instead of explicitly inventing new pred-
icates, our approach relies on structured regularization tech-
niques to learning similar clauses that lead to the discovery
of informative clauses and better predictive performances. In
particular, we focus on a new, scalable logic called ProPPR.
More specifically, we use an iterated structural gradient ap-
proach and CHAMP-style compression to induce the over-
lapping groups, and solve a group Lasso problem. To reduce
the overhead in regularization, we propose a Lazy proximal
update algorithm.

We also introduce a new royal family dataset® for research
in statistical relational learning: it contains more than 30K of
facts about royal families in Europe. On this dataset, we show
that our proposed soft PI model improves over various hard
PI and no PI baselines by a large margin. In addition to this,
we demonstrate the scalability of our approach by perform-
ing sparse group Lasso experiments on the NELL dataset. By
comparing to the non-sparse Lo regularization method, it is
shown that our proposed sparse group Lasso method has bet-
ter performances on modeling the long tail distribution of the
NELL KB.
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