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Abstract
As an important machine learning topic, dimen-
sionality reduction has been widely studied and uti-
lized in various kinds of areas. A multitude of
dimensionality reduction methods have been de-
veloped, among which unsupervised dimensional-
ity reduction is more desirable when obtaining la-
bel information requires onerous work. However,
most previous unsupervised dimensionality reduc-
tion methods call for an affinity graph constructed
beforehand, with which the following dimension-
ality reduction steps can be then performed. Sepa-
ration of graph construction and dimensionality re-
duction leads the dimensionality reduction process
highly dependent on quality of the input graph. In
this paper, we propose a novel graph embedding
method for unsupervised dimensionality reduction.
We simultaneously conduct dimensionality reduc-
tion along with graph construction by assigning
adaptive and optimal neighbors according to the
projected local distances. Our method doesn’t need
an affinity graph constructed in advance, but in-
stead learns the graph concurrently with dimen-
sionality reduction. Thus, the learned graph is opti-
mal for dimensionality reduction. Meanwhile, our
learned graph has an explicit block diagonal struc-
ture, from which the clustering results could be di-
rectly revealed without any postprocessing steps.
Extensive empirical results on dimensionality re-
duction as well as clustering are presented to cor-
roborate the performance of our method.

1 Introduction
Natural and social science applications are crowded with
high-dimensional data in this day and age. However, in
most cases these data are literally characterized by an under-
lying low-dimensional space. This interesting phenomenon
draws high attention to dimensionality reduction researches
which focus on discovering intrinsic manifold structure from
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the high dimensional ambient. Multitudinous supervised and
unsupervised dimensionality reduction methods have been
put forward, such as PCA (Principal Component Analysis),
LDA (Linear Discriminant Analysis), LLE [Roweis and Saul,
2000], LPP [Niyogi, 2004], shift invariant LPP [Nie et al.,
2014a], NMMP [Nie et al., 2007], TRACK [Wang et al.,
2014], etc. In the circumstances where accessing label of
the data is intricate, unsupervised dimensionality reduction
methods are more favorable. Meanwhile, among the tremen-
dous number of unsupervised dimensionality reduction meth-
ods, graph embedding method is laid more emphasis on since
graph and manifold information are utilized within.

However, most of state-of-the-art graph based dimension-
ality reduction methods require an affinity graph constructed
before hand, which makes their projection ability dependent
heavily on the input of graph. However, due to the sepa-
rated learning processes, the constructed graph may not be
optimal for the later dimensionality reduction. To address
this problem, in this paper, we propose a novel graph em-
bedding method for unsupervised dimensionality reduction
which asks for no input of the graph. Instead, graph construc-
tion in our model is conducted simultaneously with dimen-
sionality reduction. We assign adaptive and optimal neigh-
bors on the basis of the projected local distances. Our main
assumption is that data with lower distance apart usually has
a larger probability to be connected, which is a common hy-
pothesis in previous graph based methods [Nie et al., 2014b].
Also, we constrain the learned graph to an ideal structure
where the graph is block diagonal with the number of con-
nected components to be exactly the number of clusters in
the data, such that the constructed graph also uncovers the
data cluster structure to enhance the graph quality.

2 Related Work
PCA is the most famous dimensionality reduction method,
which is meant to find the projection direction where the
variance of data is maximized. Since the variance of pro-

jected data can be rewritten as
n∑
i

n∑
j

∥∥WT xi −WT xj

∥∥2
2

=

tr(WTXHXTW ), where H is the centering matrix as:

H = I − 1

n
11T , (1)
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and the goal of PCA is to solve:

max
WTW=I

tr(WTXHXTW ) .

However, as is pointed out in [Welling, 2005], PCA goes in-
capable when distances between classes lower down while
the scale of each class is still large in a certain degree, as we
can imagine the case where several cigars are placed closely,
with each cigar representing the distribution of data in one
class.

Afterwards, LDA was proposed to accomplish a better di-
mensionality reduction task as it was devoted to minimizing
the within class distance, Sw, while maximizing the between
class distance, Sb. Nevertheless, LDA also encounters sev-
eral problems. For example, the small sample size problem
occurs when the number of samples is smaller than the num-
ber of data dimensions. Researchers have came up with nu-
merous ways to overcome this obstacle. Authors in [Chen et
al., 2000] put forward an approach to finding the most dis-
criminative information in the null space of Sw which then
evades the computational difficulty generated by the singu-
larity of Sw in Fisher LDA. Another research [Yu and Yang,
2001] indicates that by discarding the null space of Sb, which
is non-informative, one can solve the traditional LDA prob-
lem from a better point of view.

Whereas, all these LDA methods mentioned above ne-
cessitate the knowledge of data labels, which may not be
always easily accessible, especially in the cases where la-
beling a data calls for mountains of work. Researches in
the state of art come up with graph embedding methods,
among which LPP can be seen as an representative exam-
ple. Given data X ∈ Rd×n, suppose we are to learn a pro-
jection matrix W ∈ Rd×m, where m is the number of di-
mension we’d like to reduce to. The idea of LPP works like
this: firstly learn an affinity graph S showing pairwise affin-
ity between data points and then find a ”good” mapping by
tackling the following problem [Belkin and Niyogi, 2001;
Niyogi, 2004]:

min
WTXDXTW=I

n∑
i

n∑
j

∥∥WT xi −WT xj

∥∥2
2
sij ,

where D is the degree matrix of S.
Also, there is another variant of this model published in

[Kokiopoulou and Saad, 2007]:

min
WTW=I

n∑
i

n∑
j

∥∥WT xi −WT xj
∥∥2
2
sij .

Despite the fact that no more do these graph embedding meth-
ods require label information, it is still a must that an affinity
graph constructed ahead of time to work as the input. These
methods separate dimensionality reduction and graph con-
struction, thus depend on quality of the input affinity graph
to a large extent, where poor quality graph gives rise to erro-
neous dimensionality reduction. In this paper, we put forward
a novel graph embedding dimensionality reduction method
which combines these two steps together. In our method,
we concurrently carry out dimensionality reduction as well as

graph construction by assigning adaptive and optimal neigh-
bors on the basis of the projected local distances. Our funda-
mental standing point is that data with lower distance apart
usually has a larger probability to be connected, in other
words, in the same cluster. Also, we constrain the learned
graph to an ideal structure where the graph is block diagonal
with the number of connected components to be exactly the
number of clusters in the data. The detailed description on
how we implement dimensionality reduction and graph con-
struction at the same time and what remarkable properties of
the learned graph have will be exhibited in the next section.

3 Graph Embedding Discriminative
Unsupervised Dimension Reduction

We hope to learn the optimal affinity graph S to optimize
the projection matrix W for unsupervised dimensionality re-
duction. Ideally, we should learn both S and W simulta-
neously in a unified objective. To design the proper learn-
ing model, we hope to emphasize the following ideas: 1)
The affinity matrix S ∈ Rn×n and projection matrix W are
mutually learned, e.g. optimize S and W simultaneously in

min
W,S

n∑
i

n∑
j

∥∥WT xi −WT xj

∥∥2
2
sij (previous methods learned

S separately and only optimize W in dimensionality reduc-
tion). 2) The learned affinity matrix S implies the probability
of each data point in X to connect with its neighbors, i.e. a
larger probability should be assigned to a pair with smaller
distance, such that the graph structure is interpretable. 3) The
data variance in the embedding space is maximized to retain
most information.

Based the above considerations, we can build the following
objective:

min
S,W

n∑
i,j=1

∥∥WT xi −WT xj
∥∥2
2
sij

tr(WTXHXTW )

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1,WTW = I ,

(2)

where H is the centering matrix define in Eq. (1).
However, Problem (2) has a trivial solution that only the

nearest data point of WTxi is assigned a probability as 1
while all others assigned 0, that is to say, xi is connected with
only its nearest neighbor in the projected space.

That is definitely not what we expect. Instead, we hope
the learned affinity graph can maintain or enhance the data
cluster relations, such that the projected data don’t destroy
such important structure. The desired result is that we project
the data to a low-dimensional subspace where the probabil-
ity within cluster is nonzero and evenly distributed while the
probability between clusters is zero.

The assumption of this ideal structure describes a block
diagonal graph whose number of connected components is
the same as the the number of clusters. However, how to
translate this ideal structure to an equation language seems to
be a fairly intractable task. Here we come up with a novel and
simple idea to accomplish this challenge.
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Given F ∈ Rn×k, suppose each node i is assigned a func-
tion value as fi ∈ R1×k, then it can be verified that:∑

i,j

‖fi − fj‖22 sij = 2tr(FTLSF ) , (3)

where LS = DS − ST+S
2 is the Laplacian matrix in graph

theory, and the degree matrix DS ∈ Rn×n is a diagonal ma-
trix whose i-th diagonal element is

∑
j(sij + sji)/2. If S

is nonnegative, then the Laplacian matrix has an important
property as follows [Mohar, 1991].
Theorem 1 The multiplicity k of the eigenvalue 0 of the
Laplacian matrix LS is equal to the number of connected
components in the graph associated with S.

Given the probability matrix S, Theorem 1 indicates that if
r(LS) = n − k, the graph could explicitly partition the data
points into exactly k clusters according to the block diagonal
structure.

What’s more, to guarantee that the probability within
clusters is evenly distributed, we add a regularization term
γ ‖S‖2F , where a large enough γ could force the sij value
within a block to be the same.

Thus our model becomes:

min
S,W

n∑
i,j=1

∥∥WT xi −WT xj
∥∥2
2
sij

tr(WTXHXTW )
+ γ ‖S‖2F

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1,WTW = I,

rank(LS) = n− k .

(4)

It is notable that our model learns the projection matrix W
and the affinity matrix S at the same time, which is signifi-
cantly different from previous works. Moreover, our learned
affinity matrix S has an ideal block diagonal structure. But
Problem (4) seems very difficult to solve especially when
there is a strict constraint on rank(LS). In the following sec-
tion, we propose a novel algorithm to fulfil the optimization.

4 Optimization Algorithm Solving Problem
(4)

In Problem (4), suppose σi(LS) is the i-th smallest eigen-
value of LS . It is easy to see that σi(LS) ≥ 0 since LS is
positive semi-definite. So for a large enough λ, Problem (4)
would be equivalent to:

min
S,W

n∑
i,j=1

∥∥WT xi −WT xj
∥∥2
2
sij

tr(WTXHXTW )
+ γ ‖S‖2F

+ 2λ
k∑

i=1

σi(LS)

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1,WTW = I ,

(5)

where a large enough λ guarantees that the k smallest eigen-
values of LS are all zero and thus the rank of LS is n− k.

According to the Ky Fan’s Theorem [Fan, 1949], we have:
k∑

i=1

σi(LS) = min
F∈Rn×k,FTF=I

tr(FTLSF ) . (6)

So we turn to solve:

min
S,W,F

n∑
i,j=1

∥∥WT xi −WT xj

∥∥2
2
sij

tr(WTXHXTW )
+ γ ‖S‖2F

+ 2λtr(FTLSF )

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1,WTW = I,

F ∈ Rn×k, FTF = I .

(7)

We can solve Problem (7) by means of the alternative opti-
mization method.

The first step is fixing W,S and solving F . Then Problem
(7) becomes:

min
F∈Rn×k,FTF=I

tr(FTLSF ) (8)

The optimal solution of F in Problem (8) is formed by the
k eigenvectors corresponding to the k smallest eigenvalues of
LS .

The second step is fixing S, F and solvingW . Then Prob-
lem (7) becomes:

min
WTW=I

n∑
i,j=1

∥∥WT xi −WT xj
∥∥2
2
sij

tr(WTXHXTW )
, (9)

which can be rewritten as

min
WTW=I

tr(WTXLSX
TW )

tr(WTXHXTW )
. (10)

We can solve W using the iterative method introduced in
[Nie et al., 2009]. The Lagrangian function of Problem (10)
is:

L(W,Λ) =
tr(WTXLSX

TW )

tr(WTXHXTW )
−tr(Λ(WTW−I)) . (11)

Taking derivative w.r.t. W and set it to zero, we have:

(XLSX
T − tr(WTXLSX

TW )

tr(WTXHXTW )
XHXT )W

= ΛW .

(12)

The solution of W in Problem (12) is formed by the m
eigenvectors corresponding to the m smallest eigenvalues of
the matrix:

(XLSX
T − tr(WTXLSX

TW )

tr(WTXHXTW )
XHXT ) . (13)

We can iteratively updateW untilK.K.T. condition in Eq.
(12) is satisfied.

The third step is fixingW,F and solving S. Then accord-
ing to Eq. (3), Problem (7) becomes:

min
∀i,sTi 1=1,0≤sij≤1

n∑
i,j=1

∥∥WT xi −WT xj
∥∥2
2
sij

tr(WTXHXTW )

+ γ ‖S‖2F + λ
n∑

i,j=1

‖fi − fj‖22 sij .

(14)
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Problem (14) can be solved separately for each si as fol-
lows:

min
si

n∑
j=1

(
dwx
ij sij + γs2ij + λdfijsij

)
s.t. sTi 1 = 1, 0 ≤ sij ≤ 1 ,

(15)

where dwx
ij =

‖WT xi−WT xj‖2
2

tr(WTXHXTW )
and dfij = ‖fi − fj‖22.

Then Problem (15) can be rewritten as:

min
sTi 1=1,0≤sij≤1

∥∥∥∥si +
1

2γ
di

∥∥∥∥2
2

, (16)

where dij = dwx
ij +λdfij . Then we can update si accordingly.

We can iteratively update F , W and S with the three alter-
native steps mentioned above and the algorithm for solving
Problem (7) is summarized in Algorithm 1.

Algorithm 1 Algorithm to solve Problem (7).
Input:

Data matrix X ∈ Rd×n, number of clusters k, reduced
dimension number m, parameter γ and λ.

Output:
Projection W ∈ Rd×m and probability matrix S ∈ Rn×n

with exactly k connected components.
Initialize S by setting its i-th column si as the optimal so-

lution to min
sTi 1=1,0≤sij≤1

n∑
j=1

(‖xi − xj‖22 sij + γs2ij).

while not converge do
1. Update LS = DS − ST+S

2 , where DS ∈ Rn×n

is a diagonal matrix whose i-th diagonal element is∑
j(sij + sji)/2.

2. Update F , whose columns are the k eigenvectors of
LS corresponding to the k smallest eigenvalues.
2. Update W , whose columns are the m eigenvectors of
matrix in (13) corresponding to them smallest eigenval-
ues. Update W iteratively until converges.
3. For each i, update the i-th column of S by solving
Problem (16).

end while

5 Discussion of Algorithm 1
Our algorithm uses the alternative optimization method,
whose convergence has already been proved in [Bezdek and
Hathaway, 2003]. In our method, the slowest step in each it-
eration is the eigen-decomposition step for Eq. (8) and Eq.
(13), which can be efficiently solved by many existing nu-
merical computation packages. The time complexity of our
method is O((d2m + n2k)T ), where T is the number of it-
erations. In practice, our method usually converges within 20
iterations, so it is fairly efficient in both dimensionality re-
duction and clustering tasks. It is also worth mentioning that
we get clustering results immediately with the structure of
S, with no need of post processing like K-Means in spectral
clustering methods.

There are three hyper parameters in Problem (7), which
are k, γ and λ. The number of clusters k can be set via pri-
ori knowledge of the data, or discovered using some efficient
methods like [Rodriguez and Laio, 2014]. As for λ, it can be
determined in an heuristic approach: first set λ with an initial
guess, then in each iteration, we compute the number of zero
eigenvalues, if it’s larger than k, then divide λ by 2; if smaller
than k then multiply λ by 2; otherwise we stop the iteration.
So in our algorithm, the only parameter we need to tune is γ.

Even though Algorithm 1 is proposed for linear dimension-
ality reduction, it can be easily extended to non-linear cases.
By assorting to the data transformation technique proposed
in [Zhang et al., 2010], we can simply perform Algorithm 1
on the transformed data and achieve the same effect as kernel
methods do.

6 Experimental Results
In this part, we will firstly validate performance of our di-
mensionality reduction method (Model (7)) on both synthetic
data and real-world benchmark data sets. Afterwards we will
present clustering results achieved by our method. For sim-
plicity, we denote our clustering method as DUDR (Discrim-
inative Unsupervised Dimensionality Reduction) in the fol-
lowing context.

6.1 Experiments on Synthetic Data
The synthetic data in this experiment is a randomly generated
two-Gaussian matrix. We stochastically generate two clus-
ters of data which obeys Gaussian distribution. Our goal is to
find an effective projection direction in which the two clusters
could be explicitly set apart. We compared our dimensional-
ity reduction method DUDR with two related methods, PCA
and LPP, and displayed comparison results in Fig. 1. Seen
from Fig. 1, we know that when these two clusters are far
from each other, all these three methods could easily find a
good projection direction. However, as the distance between
two clusters lower down, PCA becomes incompetent. As
the two clusters draw closer, LPP also lose its way to find
a “good” projection direction. In contrast, DUDR performs
consistently well under all occasions. The reason for this phe-
nomenon goes as follows: PCA is focused on the global struc-
ture of data, so when the distance between clusters becomes
smaller than the length of each cluster, it is unable to distin-
guish two clusters thus fails immediately. As for LPP, it pays
more attention to the local structure, thus works well when
two clusters are relatively close. However, when the distance
further lower down, LPP is not capable any more. Whereas,
our method DUDR lays more emphasis on the discriminative
structure, hence is able to preserve its projection ability in all
circumstances.

6.2 Experiments on Real Benchmark Datasets
We tested both projection and clustering ability of DUDR
on 8 benchmark image datasets: Pathbased, Compound, Spi-
ral, Movements [Asuncion and Newman, 2007], Jaffe [Lyons
et al., 1998], AR ImData [Martınez and Benavente, 1998],
XM2VTS [Messer et al., 1999] and Coil20 [Nene et al.,
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1996], among which the first three are shape set data 1, while
the latter five are image data sets. Description of these 8
datasets is summarized in Table 1.

Table 1: Description of 8 benchmark data sets

Data sets # of Instances Dimensions Classes
Pathbased 300 2 3
Compound 399 2 6

Spiral 312 2 3
Movements 360 90 15

Jaffe 213 1024 10
AR ImData 840 768 120
XM2VTS50 1180 1024 295

Coil20 1440 1024 20

Experiments on Projection
We evaluated our dimensionality reduction method on the
5 benchmark data sets with high dimensions: AR ImData,
Movements, Coil20, Jaffe, XM2VT. Similar to that in the
synthetic data experiment, we compared DUDR with PCA
and LPP methods.

The comparison is based on the clustering experiments,
where we first learned the projection matrix separately with
these three methods and then ran K-Means on the projected
data. For each method we repeated K-Means for 100 times
with the same initialization and recorded the best result w.r.t.
the K-means objective function value in these 100 runs.

Among these three methods, LPP requires an affinity ma-
trix constructed before hand, so in this experiment we con-
structed the graph with the self-tune Gaussian method [Chen
et al., 2011]. We set the number of neighbors to be 5 and
the parameter σ to be self-tuned so as to guarantee the input
graph quality. As for DUDR, we tuned the γ value via cross
validation.

For Movement data set, we compared the performance by
setting reduced dimensions to the range of 1 to 16, while for
all other four data sets, we set the scale to be 1 to 100. Besides
the three dimensionality reduction methods, we also included
the baseline results by conducting K-means clustering on the
original data.

The comparison results are reported in Fig. 6.2, from which
we obtain two interesting observations: 1. Clustering results
in the projected space tend to outperform the one in the orig-
inal space, especially when the number of dimensions of the
projected space increases. This is because noise may occur in
the original space, whereas dimensionality reduction methods
can find the subspace with discriminative power and discard
the distracting information, thus cluster more accurately and
rapidly. 2. DUDR outperforms PCA and LPP under differ-
ent circumstances, and the superiority is especially evident
when the number of projected dimension is small. DUDR
method is able to project the original data to a subspace with
quite small dimensions(k-1), where k is the number of clus-
ters in the data set. Such low-dimensional subspace projected
by our method even gains an advantage over that obtained by

1Downloaded from http://cs.joensuu.fi/sipu/datasets/

PCA and LPP with higher dimensions. So with DUDR we
can project the data to a much lower dimensional space with
clustering ability not weakened, which makes the dimension-
ality reduction process more efficient and effective.

Experiments on Clustering
We evaluated the clustering ability of DUDR on all 8 bench-
mark data sets and compared it with several famous cluster-
ing methods, which areK-Means, Ratio Cut, Normalized Cut
and NMF methods.

In the clustering experiment, we set the number of clus-
ters to be the ground truth k in each data set and we set the
projected dimension in DUDR to be k-1. Similar to that of
the previous subsection, for all methods in need of an affin-
ity matrix as an input, like Ratio Cut, Normalized Cut and
NMF, the graph was constructed using the self-tune Gaussian
method. For all methods involving K-Means, including K-
Means, Ratio Cut and Normalized Cut, we ran K-Means for
100 times with the same initialization and wrote down their
average performance, standard deviation and the performance
corresponding to the best K-Means objection function value.
As for NMF and DUDR, we ran only once and recorded the
results.

The evaluation is based on two widely used clustering met-
rics: accuracy, NMI (normalized mutual information). Re-
sults summarized in Table 2 prove that DUDR outperforms all
counterparts on most data sets. Under most occasions DUDR
acquires an equivalent or even better accuracy and NMI with
less time consumed, since K-Means, Ratio Cut and Normal-
ized Cut need 100 times run but DUDR only calls for a few
numbers of iteration; NMF requires a graph constructed be-
fore hand but DUDR doesn’t. Moreover, clustering results of
DUDR are steady for a certain setting while other methods
are astable and heavily dependent on the initialization.

7 Conclusions
In this paper, we proposed a novel graph embedding dimen-
sionality reduction model. Instead of learning a probabilistic
affinity matrix before dimensionality reduction, we simulta-
neously conducted these two processes. We assigned adaptive
and optimal neighbors according to the projected local con-
nectivity. In our new graph embedding dimensionality reduc-
tion method, the learned graph has a promising block diag-
onal structure with exactly k connected components, where
k denotes the number of clusters. We attained this goal by
imposing rank constraint on the Laplacian matrix of graph.
We derived an efficient algorithm to optimize the proposed
objective and conducted rich experiments on both synthetic
data and 8 real-world benchmark data sets to elucidate the
superiority of our model.
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