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Abstract
The proposed Perception Evolution Network (PEN)
is a biologically inspired neural network model
for unsupervised learning and online incremental
learning. It is able to automatically learn suitable
prototypes from learning data in an online incre-
mental way, and it does not require the predefined
prototype number and similarity threshold. Mean-
while, being more advanced than the existing un-
supervised neural network model, PEN permits the
emergence of a new dimension of perception in the
perception field of the network. When a new di-
mension of perception is introduced, PEN is able
to integrate the new dimensional sensory inputs
with the learned prototypes, i.e., the prototypes are
mapped to a high-dimensional space, which con-
sists of both the original dimension and the new di-
mension of the sensory inputs. We call it a Cog-
nition Deepening Process. Artificial data and real-
world data are used to test the proposed PEN, and
the results show that PEN can work effectively.

1 Introduction
Biologically inspired computing has spawned many classical
and powerful algorithms including Perceptron [Rosenblatt,
1958], Self-Organizing Map [Kohonen, 1982].

In 2007, using genetic engineering, Jacobs et al. [Jacobs et
al., 2007] inserted human L-pigment genes into female mice
one X-chromosome and found that the heterozygous female
mice show enhanced long-wavelength sensitivity and acquire
a new capacity for chromatic discrimination. It means that
the knock-in mice express the human gene in their cone cells
and that the human L pigment transmits light signals with an
efficiency comparable to that of the mouse’s native pigments.
As a consequence, the knock-in mice are able to discriminate
among green, yellow, orange, and red panels that, to ordinary
mice, look exactly the same. From this work, we can see
that the brain of the organisms has an amazing adaptability
and plasticity; it can use the new introduced sensory receptor
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immediately! Such adaptability and plasticity of the brain
will make the knock-in mice “understand” the world much
deeper than other mice.

The above experiment inspires us a very interesting and
challenging problem: can we exploit a computational model
that is able to expand its cognitive dimension online freely? If
this is achieved, the agent with such model will be able to ex-
pand its sensing capability during its lifetime. This is differ-
ent from the natural way that the offspring get a new cognitive
dimension through genetic variation while their parents sac-
rifice. Here, the “parental generation” (i.e., the agent itself) is
given a new cognitive dimension “online” directly. We think
this way is more economical and suitable for the current ma-
chine type intelligence. And it will have broad applications
such as in robot system, information fusion, and data stream
mining. For example, if we install new sensors to an agent to
expand its sensing capability, with this model, we do not need
to retrain the agent offline from scratch, the information gath-
ered from the new installed sensors is fused with the existed
knowledge online automatically, in other words, the model
is autonomous for the sensory dimension. However, to our
knowledge, there is no such computational model. In the pro-

Figure 1: Perception evolution permits the organisms to un-
derstand the real world more deeply. The figure shows a
world in the eyes of the achromatopsia organisms and another
world in the eyes of the trichromatic organisms.

cess of evolution from lower organisms to higher organisms,
increasingly complex perceptual system is generated by the
evolution of the sense organs. Therefore, more information
arrives at the brain of the organisms. As a consequence, the
organisms are able to understand the real world more deeply,
as Figure 1 shows. We propose a Perception Evolution Net-
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work (PEN) to simulate the evolution of the perceptual sys-
tem, i.e., PEN permits the emergence of a new dimensions of
perception in the perception field of the network.

Figure 2 gives the mathematical modeling of the PEN. In
the beginning, the agent has two types of sensory neurons to
perceive the real world; correspondingly, the external world
is mapped into the agent’s internal world, which is a “two-
dimensional” space, while each dimension is attached to its
corresponding type of sensory neurons. After the agent gets a
new type of sensory neurons, the agent has a new information
channel to perceive the real world, the patterns (or “memo-
ries”) stored in the agent should be integrated with the new
dimensional sensory inputs, i.e., the patterns are mapped to
a high-dimensional space which consists of both the original
dimension and the new dimension of the sensory inputs. We
call it a Cognition Deepening Process.

Figure 2: Mathematical modeling of the PEN. With the com-
ing of the new type of sensory neuron, the organisms have
a new information channel to perceive the real world. As a
consequence, the internal mapping space has a correspond-
ing new dimension. Thus, the points in the low-dimensional
feature space will be mapped to a higher dimensional feature
space. We call it a cognition deepening process.

Meanwhile, the data in the real world are usually unla-
beled. Thus, PEN is designed as an unsupervised learning
model to build the representations of the external data. On the
other hand, the agent usually perceives the external world in
an online way, and it is usually an open system, which is able
to adapt to the changing or open-ended environment. In such
environments, data with new knowledge is coming continu-
ously. Therefore, keeping learning new knowledge quickly
without catastrophic forgetting of already learned, and still
successful, memories is a very important ability, just like hu-
mans are able to learn new “objects” or “words” without for-
getting the previously learned ones throughout their lifetimes.
Thus, Online Incremental Learning (OIL) is a distinct prop-
erty of the brain. And OIL is also introduced to PEN.

As a summary, we give the neural network modeling of
the PEN in Figure 3. The prototypes and connections be-
tween prototypes in the prototype field of the network are
created online and incrementally, i.e., new prototypes (nodes
with dashed edge in the prototype field in Figure 3) are cre-
ated for some new patterns (or new knowledge) which are
dissimilar with the existing prototypes (patterns) recorded in
the network. Each prototype Pi is associated with a 3-tuple:
{WPi

, TPi
,MPi

} which represent the weight vector, the sim-

ilarity threshold and the accumulated activation times of Pi

respectively. The perception field permits the emergence of
new sensory neurons. After getting some new sensory neu-
rons, PEN automatically integrates the new input signals (or
information) received from these new sensory neurons with
the existing knowledge (or prototypes) learned from the orig-
inal sensory neurons. Thus, the perception field and the pro-
totype field are open-ended. PEN is a kind of perception-
prototype field open-ended neural network model.

Figure 3: Neural network modeling of the PEN. The percep-
tion field permits the emergence of new sensory neurons. The
green nodes with dashed edge in the prototype field are added
for some new patterns during online learning. It is a kind of
perception-prototype field open-ended neural network.

Briefly, the main targets of PEN are to:
(1) Permit the emergence of new sensory neurons in the

perception field of the network, and integrate the new input
signals with the prior learned knowledge.

(2) Learn suitable prototypes from the data in an unsuper-
vised and incremental way, and not require predefined proto-
type number and similarity threshold.

2 Related Work
Many scholars study in unsupervised learning and on-
line incremental learning. The Adaptive Resonance The-
ory network (ART) [Carpenter and Grossberg, 1988] and
TopoART [Tscherepanow et al., 2011] will create a new node
when no match occurs between the current input sample and
the current category set. The degree of matching is controlled
by a vigilance parameter. However, the vigilance parameter
should be predefined, it is a difficult job when we have lit-
tle prior knowledge about the learning task, especially for the
unsupervised learning task.

Growing Cell Structure (GCS) [Fritzke, 1994] and Grow-
ing Neural Gas (GNG) [Fritzke, 1995] insert new node(s) for
every λ samples learned. However, during each λ period,
the input sample is forced to merge with a node no mat-
ter how big the gap between them. Considering the physi-
cal meaning, it is unreasonable to merge two patterns with
significant difference. Self-Organizing Incremental Neural
Network (SOINN) [Shen and Hasegawa, 2006], Adjusted-
SOINN (ASOINN) [Shen and Hasegawa, 2008] and LB-
SOINN [Zhang et al., 2014] decide whether to create a new
node for the input sample according to the node distribution
around the local region of the input sample.

We summarize these unsupervised incremental learning
methods above as prototype field open-ended neural network
(PFOENN). This type of network makes the prototype field is
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open-ended for new categories by adding new prototypes. In
recent years, PFOENN are applied to various domains. How-
ever, the PFOENN is not able to expand the perception field
which we think is a very important ability for unsupervised
learning as mentioned in the introduction section. For exam-
ple, if we install new sensors to a robot as new information
channels, and we want the robot to use the new sensors di-
rectly and effectively. The PFOENN cannot deal with such
task. The PEN is designed to solve such problem.

3 Perception Evolution Network
3.1 Problem Formulation
Assume that the original neural network N has n neurons
in the perception field which receive n-dimensional exter-
nal data x = (x1, x2, ..., xn) ∈ Rn. After a period
of learning, some prototypes are created in the prototype
field of PEN, then, new m sensory neurons emerge in the
perception field of PEN, the received data becomes x =
(x1, x2, ..., xn, xn+1, ..., xn+m) ∈ Rn+m. The learned pro-
totypes will be mapped to a high-dimensional space which
contains the dimension of these m new sensory neurons. If
the new sense brings some new distinguishable categories,
PEN will create prototypes for such new categories.

The work flow of PEN is as follows: the prototype field
is empty in the beginning, learning samples are fed into the
network sequentially. PEN will create two prototypes using
the first two input samples. For the later input sample, PEN
first conduct prototype competition, then prototype learning
and self-organizing are conducted according to the result of
the competition step, meanwhile, the similarity threshold of
the activated prototypes will be updated. When all the steps
above are done, PEN will process the next input sample. Pro-
totype pruning is conducted after every λ samples learned.

When some new sensory neurons are introduced, PEN
will find some low-dimensional prototype to map to high-
dimensional space. Self-organizing and similarity threshold
updating are conducted similarly as the procedure before new
sensory neurons appear. We remove the prototypes that can-
not be mapped to the high space after a long period of learning
because they are potential distortion prototypes. Postprocess-
ing is executed when all prototypes are mapped to the high-
dimensional space.

Below, we denote the original low-dimensional space as
Sl = Rn, the new high-dimensional space as Sh = Rn+m,
the learned prototypes by PEN are stored in set P .

3.2 Prototype Competition
When an input sample x = (x1, x2, ..., xn, ..., xn+m) ∈ Sh

comes, we first calculate the Euclidean distance between x
and all prototypes in set P . The dimension of each Pi may
be different with x (because during learning, some Pi may be
already mapped to space Sh and some may still stay in space
Sl). For the prototype Pi ∈ Sl, we calculate the Euclidean
distance between x and Pi using the first n-dimensional at-
tributes, i.e., the attributes of space Sl. For the prototype
Pi ∈ Sh, we use all (n+m)-dimensional attributes to calcu-
late the Euclidean distance. Then we find the winner proto-

type P l
w in space Sl as:

P l
w = argmin

Pi∈P
‖x−WPi

‖Sl
(1)

whereWPi
is the weight vector of Pi and ‖·‖Sl

represents the
Euclidean distance in space Sl. For the prototypes belonging
to Sh, we use their first n-dimensional weights (i.e., the part
of their weight vector in space Sl) to compete with the pro-
totypes belonging to Sl. Therefore, P l

w may belong to space
Sl or Sh. Then we find the winner and runner-up prototypes
Ph
w , Ph

r in space Sh as:

Ph
w = argmin

Pi∈Ph

‖x−WPi
‖Sh

(2)

Ph
r = argmin

Pi∈Ph\Ph
w

‖x−WPi‖Sh
(3)

where Ph represents the set of prototypes belonging to space
Sh, and ‖ · ‖Sh

represents the Euclidean distance in space
Sh. The prototypes that belonging to Sl cannot be applied to
‖ · ‖Sh

. Therefore, the prototypes which belong to Sl do not
take part in this competition. For convenience in notation, we
rewrite P l

w as Pc, Ph
w as Pa, and Ph

r as Pb.
Note: If all prototypes in P have been mapped to space Sh,

we do not need to conduct the competition in space Sl.

3.3 Prototype Learning
The winner prototype Pc is the candidate prototype to be
mapped to the high-dimensional space Sh. If

dimdimdim(Pc) = n (4)

i.e., Pc ∈ Sl, it is indeed a low-dimensional prototype, then
we check the following condition:

‖x−WPc‖Sl
≤ T l

Pc
(5)

where T l
Pc

represents the similarity threshold of Pc in space
Sl. Formula (5) means that the distance between Pc and x is
less than the similarity threshold T l

Pc
, i.e., sample x is very

similar with Pc in space Sl. Then Pc is activated, we add the
accumulated times of activation of Pc in space Sl by 1, i.e.,
M l

Pc
=M l

Pc
+ 1. Then we map Pc to space Sh as:

W l =WPc
+ (1/M l

Pc
)(xl −WPc

) (6)

Wh−l = xh−l (7)

WPc
= (W l,Wh−l) (8)

where xl represents the attributes of space Sl, i.e., xl =
(x1, x2, ..., xn). xh−l represents the attributes of the new per-
ception neurons, i.e., xh−l = (xn+1, xn+2, ..., xn+m). Ac-
cording to formulas (6)–(8), the weights of Pc learned from
original perception neurons are moved toward x, the weights
from new perception neurons are added in the tail of WPc .
Meanwhile, the threshold Th

Pc
(the similarity threshold of Pc

in space Sh) is initialized to +∞, and Mh
Pc

(the accumulated
times of activation of Pc in space Sh) is initialized to 1.

If condition (5) is not satisfied, i.e., sample x is not similar
with Pc in space Sl. We will create a new prototype Pnew for
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x as:
Wnew = x

M l
new = 1, Mh

new = 1

T l
new = +∞, Th

new = +∞
(9)

If condition (4) is not satisfied, i.e., Pc already belongs to Sh,
we will deal with x using Pa and Pb. If

‖x−WPa
‖Sh

= 0 (10)

i.e., sample x is equal to Pa, then Pa is activated and the time
of activation M l

Pa
and Mh

Pa
will be added by 1. Else, we will

check the following condition:

‖x−WPa
‖Sh
≤ Th

Pa
and ‖x−WPb

‖Sh
≤ Th

Pb
(11)

If it is satisfied, i.e., Pa and Pb are activated simultaneously,
we first addM l

Pa
andMh

Pa
by 1. Then we move prototype Pa

toward x as:

W l
Pa

=W l
Pa

+ (1/M l
Pa
)(xl −W l

Pa
)

Wh−l
Pa

=Wh−l
Pa

+ (1/Mh
Pa
)(xh−l −Wh−l

Pa
)

(12)

where W l
∗ represents the attributes of space Sl, i.e.,

W l
∗=(w1, w2, ..., wn). Wh−l

∗ represents the attributes of new
perception neurons, i.e., Wh−l

∗ =(wn+1, wn+2, ..., wn+m). If
formula (11) is not satisfied, we will create a new prototype
for x using formula (9).

3.4 Self-Organizing
Self-Organizing process is conducted through connection es-
tablishing, strengthening, weakening and removing.

Connection establishing and strengthening are conducted
according to the Hebbian learning rule. If Pa and Pb are
activated simultaneously, i.e., formula (11) is satisfied, we
will establish a connection between Pa and Pb; if there is
no connection between them, then we set the outdate degree
Age(a,b) to 0 to represent the connection is the most recent.
If there is already a connection between Pa and Pb, we will
set Age(a,b) to 0 to strengthen the connection.

For the dynamically changing environment, the prototypes
change their locations slowly during learning. Prototypes that
are connected to each other at an early stage might not be
near at advanced stage, and we remove such connections. If
prototype Pi is mapped to space Sh or moved toward input
sample x, we weaken the connections emanating from Pi by
increasing the outdate degree of these connections as:

Age(i,j) = Age(i,j) + 1, Pj ∈ NPi
(13)

where Age(i,j) is the outdate degree of the connection be-
tween prototype Pi and Pj . NPi is the neighbor prototype
set of Pi, i.e., the set of the prototypes connected to Pi.
Connections whose Age is larger than a predefined threshold
Agemax will be removed.

3.5 Adaptation of the Similarity Threshold
Similarity threshold T is used to make the decision whether
to add a new prototype or move an existing prototype when
an input sample comes. In PEN, we do not use global
predefined threshold, we give each prototype a similarity

threshold which is adaptively changing with the environment.
The threshold of Pi is decided by the prototype-distribution
around Pi: If Pi does not have neighbor prototype, i.e., no
other prototype is directly connected to Pi, the similarity
threshold of Pi is calculated using the minimum distance be-
tween Pi and all the other prototypes:

T k
Pi

= min
Pj∈P\Pi

‖WPi
−WPj

‖Sk
, k = l, h (14)

If Pi has neighbor prototypes, i.e., some prototype(s) is di-
rectly connected to Pi, the similarity threshold is calculated
using the maximum distance between Pi and its neighbor pro-
totypes:

T k
Pi

= max
Pj∈NPi

‖WPi
−WPj

‖Sk
, k = l, h (15)

For the prototype Pi belongs to space Sl, we only calculate
threshold T l

Pi
. For the prototype Pi belongs to space Sh, we

calculate threshold T l
Pi

and Th
Pi

. To improve the computa-
tional efficiency, in practice, we only update the thresholds of
Pa, Pb and Pc when an input sample comes.

3.6 Prototype Pruning
Prototype pruning is conducted after every λ samples learned.
The prototypes existed before the new sensory neurons ap-
pear are not the targets to be pruned, because these prototypes
are gained by a period of learning and they are already pruned
by PEN during that period, they are a “knowledge base” of
PEN now. The prototypes which are created after new sen-
sory neurons appear will be pruned, we use setQ to represent
these prototypes. The isolated prototype with small M value
in Q will be removed. First, we calculate the mean value of
Mh

Pi
as:

Mh
mean =

∑
Pi∈Ph

Mh
Pi
/|Ph| (16)

where Ph represents the prototypes belong to space Sh, |Ph|
represents the element number of set Ph. If

|NQi | = 0 and Mh
Qi
< Mh

mean (17)

or if
|NQi

| = 1 and Mh
Qi
< c×Mh

mean (18)

is satisfied, where Qi ∈ Q, 0 ≤ c ≤ 1, large c means much
noise, vice versa. |NQi

| represents the neighbor number of
prototypeQi, we will remove prototypeQi, connections from
Qi are also removed simultaneously.

3.7 Postprocessing
Postprocessing is enabled after all prototypes are mapped to
space Sh. This procedure simplifies the learning procedure.

Because all prototypes are mapped to space Sh, there is no
prototype needs to be mapped to space Sh. We do not find
winner prototype Pc when an input sample x ∈ Sh comes,
we only find prototypes Pa and Pb. Then the procedure of
mapping a prototype to space Sh does not need to be executed
anymore (procedure from formulas (4)–(9)), we directly deal
with x using Pa and Pb, i.e., the procedure of moving Pa
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toward x or creating a new prototype using x. We replace
parameters M l

Pi
and Mh

Pi
with one parameter MPi :

MPi
= (Mh

Pi
+M l

Pi
)/2, Pi ∈ P (19)

weight vector updating formula (12) can be simplified into:

WPa =WPa + (1/MPa)(x−WPa) (20)

For formula (9) which is used to create new prototype, the
parameters M l

new and T l
new are no longer needed. Self-

Organizing process remains unchanged. The parameter T l
Pi

of each prototype Pi can be removed, then we only update
threshold Th

Pi
of each prototype Pi. The prototype pruning is

conducted on all prototypes, i.e., set P , instead of set Q.
Note: For the prototypes which can not be mapped to space

Sh after a long period of learning (in the experiment, after all
samples x ∈ Sh are learned), we remove them because they
are potential “distortion” prototypes (see Figure 7).

If some new sensory neurons emerge later, we take the cur-
rent space Sh as Sl, the space with dimension of these new
sensory neurons as new Sh, then we get a recursive process.

Meanwhile, the initial learning stage before the m sensory
neurons emerge is conducted similarly as the postprocessing.
When an input sample x ∈ Rn comes, we find the winner and
runner-up prototypes Pa and Pb in space Rn using formulas
(2) and (3), where h is replaced by l. Then we decide whether
to create a new prototype or move the winner prototype ac-
cording to formulas (10) and (11), where h is replaced by l.
For formula (9), the parameters Mh

new and Th
new do not ex-

ist. The weight vector updating formula is the same as (20),
whereM∗ is the activation time in space Rn. Self-Organizing
process remains unchanged, we only need replace h with l in
condition formula (11). The threshold is updated by (14) and
(15), where k = l. The prototype pruning process will be
conducted on all prototypes instead of set Q, similarly, h is
replaced by l in formulas (16)–(18).

4 Experiments
4.1 Artificial Feature Data
We conduct this experiment on the artificial feature data as
shown in Figure 4. The data set is separated into five parts,
and each data set contains 2000 samples, and we add 5% ran-
dom noise. Set A satisfies 3-D sinusoidal distribution. Sets B
and C satisfy 3-D ring distribution. Sets D and E satisfy same
2-D Gaussian distribution in the X-Y space but different 3-D
Gaussian distribution in the X-Y-Z space. Sets D and E show
an actual phenomenon: in the early period, we have few per-
ception neurons, the information we gained is only enough
to make a rough cognition. However, with the evolution of
perception, we get more information through some new per-
ception neurons, then we can make a further cognition. It is
a Cognition Deepening Process. The parameters of PEN are:
λ = 200, Agemax = 200, c = 1.0.

In the experiment, we first give PEN two sensory neurons,
i.e. one sensory neuron receives the X-dimension data, the
other receives the Y-dimension data. After all samples have
been learned, we give PEN another sensory neuron to receive
the Z-dimension data, therefore, PEN is able to perceive the

X-Y-Z space. Then we feed all samples to PEN again. 10000
samples are randomly fed to the network.

The learning results are shown in Figure 5. As shown
in Figure 5(a), PEN gets a satisfactory learning result, the
learned prototypes fit the learning data very well. Figure 5(b)
shows the learning result after PEN gets a new sensory neu-
ron, which receives the input signal from Z-dimension. All
prototypes are mapped to the X-Y-Z space, the prototypes fit
the learning data very well. Meanwhile, sets B and C are
no longer concentric rings in the X-Y-Z space, sets D and E
which cannot be distinguished in the X-Y space are separated
from each other in the X-Y-Z space. PEN comes to a “new
world” through the new sensory neuron Z.

Figure 4: Artificial feature data. (a) Representation of the
data in the X-Y space. (b) Representation of the data in the
X-Y-Z space.

Figure 5: (a) learning result in the X-Y space (80 prototypes).
(b) learning result after new sensory neurons appear (117 pro-
totypes). Black circles denote the learned prototypes and yel-
low lines are the connections between prototypes.

4.2 Real-World Data
The RGB-D data set [Lai et al., 2011] is used in this experi-
ment. We use 20 objects, and the first 25 images (the object
in each image is rotated by an angle) of each object are for
learning. In the testing phase, we use 200 more images, the
testing images are taken in different angles from the training
images, and each object includes 10 testing images.

As mentioned in [Jacobs et al., 2007], the dichromatic
color vision comes from just two kinds of visual pigments:
one absorbs blue light and the other one is sensitive to green
light. The trichromatic color vision has one more visual pig-
ment which absorbs red light. Therefore, in the experiment,
we first give PEN two perception channels to receive the G
and B parts of the RGB images (Period I), after all sam-
ples have been learned, we give another perception channel
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to PEN to receive the R part of the RGB images, i.e., PEN is
used to perceive RGB color synchronously (Period II).

In recent years, depth cameras are widely used. We assume
a scene: there is a robot using a RGB camera as its “eyes”,
now, we install a depth cameras to the robot’s “eyes”, then
the robot has one more way to perceive the real-world. Thus,
after the learning has finished in the RGB space, we give an-
other perception channel to PEN to receive the depth infor-
mation, i.e., PEN is used to perceive RGB color and spatial
information synchronously (Period III). Overall, the percep-
tion evolution is as follows:

GB RGB RGB-D (21)

We set λ = 200, Agemax = 200, c = 0.5 for PEN.
We conduct this experiment in (1) Closed environment;
and (2) Open-ended environment (for the Stability-Plasticity
Dilemma [Carpenter and Grossberg, 1988]). We do 10000
learning iterations for each Period. In the closed environment,
training images are randomly chosen from the training set in
each iteration. In the open-ended environment, we first give
the images of the first 10 objects in the first 5000 iterations,
training images are randomly chosen during learning. After
that, we give the images of the remaining 10 “new” objects in
the second 5000 iterations, training images are also randomly
chosen. We conduct the experiment 100 times in different
random sequences of samples.

Figure 6: (a) Prototypes are mapped to high-dimensional
space perfectly when new dimension of perception emerges.
(b) Trend of the recognition rate according to the cognition
dimension.

The number of the prototypes learned by PEN in the closed
environment ranges from 143 to 171 for 100 times experi-
ments, the mean value of the prototype number is 155.6. In
the open-ended environment, the number of the prototypes
learned by PEN ranges from 225 to 236, the mean value is
228.4. Figure 6(a) shows the learning result of PEN from GB
space to RGB-D space of 20 prototypes (one prototype for
each object). Due to space constraint, we do not show all
of the prototypes, learning results of the other prototypes are
similar to these 20 prototypes. In the RGB-D space of Fig-
ure 6(a), the RGB image and the depth image of a prototype
are shown separately, actually, the two images are integrated
in one prototype by PEN. In Figure 6(a), the prototypes are

mapped to high-dimensional space perfectly when PEN gets
new dimension of perception. In the GB space, there are few
kinds of colors. After dimension R comes, much more dis-
tinguishable colors appear. At last, after dimension D comes,
PEN acquires both the image information and the spatial in-
formation of the objects. The robot comes to a new world
with the concept of the “space.”

Figure 6(b) shows the trend of the recognition rate accord-
ing to the cognition dimension. In the GB space, PEN can
only “see” green and blue color, and it classifies the GB part
of the testing images by nearest neighbor method. RGB and
RGB-D space are treated similarly. In Figure 6(b), the recog-
nition rate is increasing with the deepening of the cognition
dimension.

Figure 7: “Distortion” prototypes learned by other methods.

We also compare PEN with some classical and state-of-
the-art methods including SOM, GNG, ASOINN, TopoART,
and LB-SOINN. We run PEN in two conditions: (condition
1) To ensure the consistent experimental environment with
other methods, we directly use RGB-D images to train PEN,
i.e., give PEN RGB-G four channels directly without “per-
ception evolution”; (condition 2) To measure the learning re-
sults of PEN with “perception evolution”, we run PEN as for-
mula (21). We conduct the experiment in both closed and
open-ended environments. To make SOM and GNG gener-
ate similar scale of prototypes with PEN, we set the grid size
of SOM as 12×13 in the closed environment and 15×15 in
the open-ended environment. λ of GNG is set to 65 in the
closed environment and 45 in the open-ended environment.
The parameters of ASOINN, TopoART and LB-SOINN are
set following suggestions of their papers.

As shown in Figure 7, there are many “distortion” proto-
types generated by the other methods, these prototypes merge
many different types of objects. They are meaningless and
useless. To quantify the comparison, we give each prototype
an entropy to measure the “purity” of the prototype. Assume
there are k objects {o1, o2, ..., ok}, prototype Pi merges m
samples coming from k objects, the entropy of Pi can be cal-
culated as: Entr(Pi)=−

∑k
i=1 p(oi) log p(oi).

For WPi
is weighted summed by the weight vectors of the

m samples, p(oi) represents the proportion of the weight vec-
tor of oi in WPi

. We calculate the entropy of each prototype
and get the mean value ME. As shown in Table 1, the ME
of PEN is much smaller than the other methods, it means that
PEN seldom produces “distortion” prototypes. We also cal-
culate the mean quantization errors MQE. Table 1 shows
that PEN gets a much smaller MQE than the other methods.

At last, nearest neighbor is used to classify the testing im-
ages. As shown in Table 1, the correct recognition CR ra-
tio of PEN is much higher (the baseline CR of supervised
method LibSVM [Chang and Lin, 2011] is 93.0%). The CR
of other methods is very unstable, significant decrease of the
CR in one environment is marked by ↓ in the table. They suf-

3972



Table 1: Statistical results of 100 experiments (mean+std). PEN◦ and PEN• represent the results of condition 1 and condition 2
respectively. “—” represents the measurement is Not Applicable for the methods. The best and second best results are in bold.

Environment SOM GNG ASOINN TopoART LB-SOINN PEN◦ PEN•

Closed
ME 2.51±0.03 2.49±0.03 0.92±0.01 1.03±0.01 1.04±0.02 0.025±0.003 0.021±0.004
MQE 7.47±0.31 5.89±0.28 3.05±0.21 — 3.01±0.20 1.49±0.15 1.43±0.18
CR 73.5±0.80% 76.6±0.80% 88.2±0.71% 83.5±0.55% ↓ 90.1±0.67% 92.1±0.50% 94.2±0.58%

Open-ended
ME 2.53±0.06 2.51±0.06 1.13±0.04 0.90±0.01 1.02±0.03 0.024±0.003 0.021±0.003
MQE 8.50±0.40 6.17±0.38 3.28±0.27 — 2.98±0.18 1.45±0.15 1.41±0.15
CR 55.5±0.86% ↓ 57.9±0.79% ↓ 83.4±0.64% ↓ 89.2±0.57% 85.2±0.61% ↓ 92.3±0.53% 94.5±0.51%

fer the Stability-Plasticity Dilemma; The CR of PEN is very
stable in both environments.

4.3 Experiment Summary
In the experiments, we see that PEN is able to create new pro-
totypes for new categories of objects effectively; this implies
that PEN has a degree of freedom on the breadth of cogni-
tion. PEN also permits the emergence of new dimension of
perception; it means that PEN has a degree of freedom on the
depth of cognition. Meanwhile, the new dimension of percep-
tion will promote the breadth of cognition, i.e., PEN will find
some new categories of objects in the “new perceived world”.

5 Conclusion
The proposed Perception Evolution Network is a biologi-
cally inspired computing model which permits the emergence
of a new dimension of perception. Zhou and Chen [Zhou
and Chen, 2002], based on the supervised learning view,
gave three types of incremental learning including example-
incremental learning, class-incremental learning [Da et al.,
2014], and attribute-incremental learning. Based on the un-
supervised learning view, we think the incremental learning
should be classified into: (1) the extension of the connotation
of the existing knowledge system; and (2) the discovery and
fusion of new knowledge system. The two points are another
explanation of the breadth and depth of the cognition. They
are an intrinsic whole that complement each other.

From the experiment, we see that PEN can deal with many
potential practical problems. For example, if we install new
sensors to a robot to expand its sensing capability, with PEN,
we do not need to retrain the robot offline from scratch, the
information gathered from the new installed sensors is fused
with the existing knowledge online by PEN automatically.
This means PEN will have broad applications such as robot
system, information fusion, video game [Stanley et al., 2005].

The influence of the order of sensor addition will be dis-
cussed in the future. This is an extremely interesting topic
which aims to see the outcome of different evolution orders.
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