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Abstract
Exploiting the information from multiple views can
improve clustering accuracy. However, most ex-
isting multi-view clustering algorithms are non-
convex and are thus prone to becoming stuck into
bad local minima, especially when there are out-
liers and missing data. To overcome this prob-
lem, we present a new multi-view self-paced learn-
ing (MSPL) algorithm for clustering, that learns
the multi-view model by not only progressing from
‘easy’ to ‘complex’ examples, but also from ‘easy’
to ‘complex’ views. Instead of binarily separating
the examples or views into ‘easy’ and ‘complex’,
we design a novel probabilistic smoothed weight-
ing scheme. Employing multiple views for cluster-
ing and defining complexity across both examples
and views are shown theoretically to be beneficial
to optimal clustering. Experimental results on toy
and real-world data demonstrate the efficacy of the
proposed algorithm.

1 Introduction
Data collected from diverse sources or extracted from differ-
ent feature extractors have heterogeneous features in many
real-world applications [Xu et al., 2013]. For example, when
classifying webpages, a webpage can be described by its con-
tent, the text of webpages linking to it, and the link struc-
ture of linked pages [Xu et al., 2014]. Several different
descriptors have been proposed to enhance action recogni-
tion performance, each of which describes certain aspects
of object action [Xu et al., 2015]. In particular, histograms
of oriented gradients (HOG) [Dalal and Triggs, 2005] focus
on static appearance information, histograms of optical flow
(HOF) [Laptev et al., 2008] capture absolute motion infor-
mation, and motion boundary histograms (MBH) [Dalal et
al., 2006] encode related motion between pixels. Since these
heterogeneous features have distinct physical meanings and
represent objects from different perspectives, they can natu-
rally be regarded as multiple data views [Nguyen et al., 2013;
Xie and Xing, 2013].

Clustering aims to find meaningful groups of examples in
an unsupervised manner for exploratory data analysis. In-
dependently employing each view makes clustering inaccu-

rate, since each individual view does not comprehensively
describe all the examples. Therefore, it is beneficial to use
multiple views and exploit their connections to improve clus-
tering. This approach has given the rise to the field of multi-
view clustering.

A number of promising multi-view clustering algorithms
have been developed. [de Sa, 2005; Zhou and Burges, 2007;
Kumar et al., 2011a] fuse similarity measurements from di-
verse views to construct a graph for multi-view examples,
which successfully extends conventional single-view spectral
clustering methods to the multi-view setting. [Chaudhuri et
al., 2009; Liu et al., 2013; Cai et al., 2013] project multi-
ple views into a shared latent subspace, in which the conven-
tional single-view clustering algorithms can then be used to
discover clusters.

Most existing multi-view clustering methods aim to solve
non-convex objective functions. These can result in the solu-
tions stuck in bad local minima, especially in the presence of
noise and outliers. A heuristic method to alleviate this prob-
lem is to launch the algorithm multiple times with different
initializations and then choose the best solution. However,
this strategy is time consuming and generally difficult to im-
plement in the unsupervised setting, since there is no explicit
criterion for model selection.

By simulating human learning, self-paced learning [Kumar
et al., 2010] first attempts to train a model on ‘easy’ examples
and then gradually take ‘complex’ examples into considera-
tion. This has been shown to be beneficial in avoiding bad
local minima and improving the generalization result [Kumar
et al., 2011b; Tang et al., 2012; Zhao et al., 2015]. As well as
the complexities of examples in each individual view, multi-
view examples might also have ‘easy’ and ‘complex’ views,
and the distinction between ‘easy’ and ‘complex’ views might
be different for distinct multi-view examples. For example,
GIST features [Oliva and Torralba, 2001] achieve high ac-
curacy when used to recognize natural scene images, while
CENTRIST features [Wu and Rehg, 2008] are good at classi-
fying indoor environment images.

In this paper, we propose Multi-view Self-Paced Learning
(MSPL) for clustering, which learns multi-view models by
considering the complexities of both examples and views. In-
stead of hard treating examples or views as ‘easy’ or ‘com-
plex’, we design a smoothed weighting scheme that inher-
its the merits of logistic function and provides probabilistic
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weights. The resulting objective function is solved by a sim-
ple yet effective method. Using multiple views for cluster-
ing and the easy-to-complex strategy are proven theoretically
to be beneficial for approximating the ideal clustering result.
Experimental results on toy and real-world data demonstrate
the effectiveness of the algorithm in distinguishing complex-
ities across examples and views to improve clustering perfor-
mance.

2 Problem Formulation
As a classical algorithm, k-means clustering uses k prototype
vectors (i.e., centers or centroids of k clusters) to character-
ize the data and minimize a sum of squared loss function to
find these prototypes using a coordinate descent optimization
method. It has been shown that non-negative matrix factor-
ization is equivalent to relaxed k-means [Ding et al., 2005].
Given n examples X = [x1, · · · , xn] ∈ RD×n, the k-means
clustering objective can be reformulated as

min
B,C

‖X − CB‖2F

s.t. Bij ∈ {0, 1},
k∑
i

Bij = 1,∀j ∈ [1, n]
(1)

where C = [c1, · · · , ck] ∈ RD×k is the centroid matrix
with ci as the cluster centroid of the i-th cluster, and B =
[b1, · · · , bn] ∈ Rk×n denotes clustering assignment. If the j-
th example is assigned to the i-th cluster, Bij = 1; otherwise
Bij = 0.

The original k-means clustering method only works for
single-view data. The obvious route to adapting single-view
clustering algorithms to the multi-view setting is to concate-
nate the features of multiple views into a long feature vector.
Since multiple views have distinct physical meanings and de-
scribe the objects from different perspectives, treating these
views equally without in-depth analysis usually fails to pro-
duce the optimal result. Therefore, it is necessary to exploit
the connections between multiple views to improve clustering
performance.

2.1 Multi-view Self-Paced Learning
Let Xv ∈ RDv×n and Cv ∈ RDv×k denote the features and
centroid matrix of the v-th view, respectively. In multi-view
clustering, the clustering results of different views should be
consistent; that is, given different centroid matrices, the clus-
tering assignments of m views should be the same. Hence,
Eq. (1) can be extended to handle multi-view examples:

min
B,C

m∑
v=1

‖Xv − CvB‖2F

s.t. Bij ∈ {0, 1},
k∑
i

Bij = 1,∀j ∈ [1, n],

(2)

where B is the assignment matrix shared by m views.
Neither the single-view formulation Eq. (1) nor the multi-

view formulation Eq. (2) is a convex problem, and thus they
both have the risk of getting stuck in bad local minima during

optimization. Recently, self-paced learning has been used to
alleviate this problem. The general self-paced learning model
is composed of a weighted loss term on all examples and a
regularizer term imposed on example weights. By gradually
increasing the penalty on the regularizer during model opti-
mization, more examples are automatically included in train-
ing from ‘easy’ to ‘complex’ via a pure self-paced approach.
The distinction between ‘easy’ and ‘complex’ not only exists
across examples but also across views. Since multiple views
have distinct physical meanings and describe examples from
different perspectives, a multi-view example can naturally be
more easily distinguished in one view than in the other views.
By simultaneously considering the complexities of both ex-
amples and views, we develop multi-view self-paced learning
for clustering:

min
W,B,C

m∑
v=1

‖(Xv − CvB)diag(
√
wv)‖2F + f(W )

s.t. Bij ∈ {0, 1},
k∑
i

Bij = 1,∀j ∈ [1, n],

wv ∈ [0, 1]n,∀v ∈ [1,m],

(3)

where wv = [wv1 , · · · , wvn] is composed of the weights of n
examples in the v-th view, W = [w1; · · · ;wm], and f(W )
denotes the regularizer determining the examples and views
to be selected during training. The previously adopted f(W )
in [Kumar et al., 2010] was simply

f(W ) = − 1

λ

m∑
v=1

n∑
i=1

wvi, (4)

which indicates that the optimal weight for the i-th example
in the v-th view is

w∗vi =


1 if `vi ≤

1

λ
,

0 if `vi >
1

λ
,

(5)

where `vi stands for the reconstruction error of the i-th ex-
ample in the v-th view. Taking 1

λ as the threshold, ‘easy’
examples (views) have losses less than the threshold, while
the losses of ‘complex’ examples (views) are greater than the
threshold. The parameter λ controls the pace at which the
model learns new examples (views), and it is usually itera-
tively decreased during optimization.

Note that the classical regularizer (i.e., Eq. (4)) hard selects
examples (views) by assigning them binary weights, as shown
in Figure 1. Since noise is usually non-homogeneously dis-
tributed in the data, it is unreasonable to absolutely assert that
one example (view) is easy or complex. As demonstrated
in many real-world applications, soft weighting is more ef-
fective than the hard weighting and can faithfully reflect the
true importance of examples (views) during training. Hence,
instead of hard weighting, we propose a new regularizer for
self-paced learning:

f(wvi) = ln(1 + e−
1
λ − wvi)(1+e

− 1
λ−wvi)

+ ln(wvi)
wvi − wvi

λ
.

(6)
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Figure 1: Comparison of the regularizers for self-paced learn-
ing. Solid curves correspond to smoothed weighting (i.e., Eq.
(8)), while dashed curves correspond to hard weighting (i.e.,
Eq. (5)).

The optimal weight of the i-th example in the v-th view can
be solved using

min
wvi∈[0,1]

wvi`vi + f(wvi) (7)

by setting the gradient with respect to wvi to zero,

w∗vi =
1 + e−

1
λ

1 + e`vi−
1
λ

. (8)

Compared to Eq. (5), Eq. (8) is a smoothed function re-
lated to `vi, and its function curves under different λ’s are
presented in Figure 1. It is instructive to note that function
(8) can be regarded as an adapted logistic function, which
is a well-known loss function in machine learning. Hence,
Eq. (8) can inherit all the merits of logistic function, which
is infinitely many times differentiable, strictly convex, and
Lipschitz continuous. Most importantly, Eq. (8) provides a
probabilistic interpretation of the weights, because given dif-
ferent inputs it always outputs values between zero and one.
Instead of hard separating the examples and views into ‘easy’
and ‘complex’ as in Eq. (5), Eq. (8) tends to assign examples
and views the probabilities of being ‘easy’. Different from 1

λ

in Eq. (5), which determines whether w∗vi = 1 or w∗vi = 0 , 1
λ

in Eq. (8) influences the speed of change of the weight with
regard to the loss. It can be seen that when the loss is less than
1
λ , the examples and views can be implicitly treated as ‘easy’
since as their weights vary slowly with respect to the corre-
sponding loss; otherwise, they are ‘complex’ in line with the
fast variation of the weight with respect to the loss. Further-
more, as 1

λ increase, more examples and views are likely to
be included to train a mature model.

By combining Eqs. (3) and (6), we obtain the resulting ob-
jective function. In optimizing the proposed model, we prob-
abilistically measure the complexity of examples and views
and then gradually train the multi-view clustering model from
‘easy’ to ‘complex’ to prevent falling into bad local minima.

3 Optimization
We solve the optimization problem in an alternating fashion.
Under fixed centroid matrices {Cv}mv=1and assignment ma-

trix B, W can be optimized by

min
W

m∑
v=1

‖(Xv − CvB)diag(
√
wv)‖2F + f(W ). (9)

By adopting the regularizer f(W ) as in Eq. (6), we find that
the optimal W can naturally satisfy the constraint that wv ∈
[0, 1]n,∀v ∈ [1,m]. According to the discussion in Section
2.1, the optimal solution W ∗ can be written out in a closed
form as in Eq. (8).

If we focus on centroid matrixCv in the v-th view and keep
the other centroid matrices, assignment matrix, and weight
matrix fixed, we obtain the following sub-problem:

min
Cv
J = ‖(Xv − CvB)W v‖2F , (10)

where W v = diag(
√
wv). Taking the derivative of J with

respect to Cv , we obtain

∂J
∂Cv

= 2(Xv − CvB)W v(W v)TBT . (11)

Setting Eq. (11) as zero, we can update Cv through

Cv = (XvW v(W v)TBT )(B(W v)TBT )−1. (12)

When we fix all the centroid matrices on different views
and the weights, the original problem is reduced to

min
B

m∑
v=1

‖(Xv − CvB)W v‖2F

s.t. Bij ∈ {0, 1},
k∑
i

Bij = 1,∀j ∈ [1, n].

(13)

Since each entry of B is a binary integer and each column
vector must only have a non-zero entry, it is difficult to opti-
mize matrix B as a whole. We solve this problem by decou-
pling the data and assigning the cluster centroid for them se-
quentially and independently. For the i-th example, we need
to solve

min
bi

m∑
v=1

wvi‖xvi − Cvbi‖22

s.t. bi ∈ {0, 1}k, ‖bi‖1 = 1,

(14)

where bi is the i-th column vector of matrix B and records
the clustering assignment of the i-th example. Given the fact
that there are k candidates as the solution of Eq. (14), each
of which is the column of matrix Ik = [e1, · · · , ek], we can
perform an exhaustive search to obtain the solution of Eq.
(14) as b∗i = ej , where j is decided as:

j = arg min
j

m∑
v=1

wvi‖xvi − Cvej‖22 (15)

Given the above optimization scheme over each objective
variable, we alternatively update {Cv}mv=1, B, and W and
repeat the process iteratively until the objective function con-
verges.
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4 Theoretical Analysis
In this section, we analyze the advantages of multi-view clus-
tering and the influence of self-paced learning on clustering
performance. Since the weights of all examples and views
will eventually be assigned 1’s during training, we first ana-
lyze the resulting clustering performance without weights for
simplicity, and then discuss the influence of self-paced learn-
ing on training.

Starting from Eq. (1), it is easy to note that the clus-
ters’ centroids are given by the averaged vectors of examples
falling into them. The rows ofB are mutually orthogonal vec-
tors. We normalize these row vectors to length 1 and denote
the new matrix B̃. The distortion of multi-view clustering can
thus be written as

D(B̃) =
m∑
v=1

(
tr
(
(Xv)TXv

)
− tr
(
B̃(Xv)TXvB̃T

))
. (16)

Since the last cluster can be determined by the other (k − 1)

clusters, we can uniquely represent B̃ by matrix Y with (k−
1) orthogonal rows,

V B̃ =
[
Y ; 1

1√
n

]
, (17)

where V is a k × k orthogonal matrix with its last row as
v−1 = [

√
n1

n , · · · ,
√

nk
n ], and 1 denotes the row vector of all

1’s. D(B̃) can thus be reformulated in terms of Y

D(Y ) =
m∑
v=1

(
tr
(
(Xv)TXv

)
− tr
(
Y (Xv)TXvY T

))
, (18)

where we assume that the input data are centered at the origin,
i.e.,Xv1T = 0. According to [Ding and He, 2004], the lower
bound of D(Y ) is

m∑
v=1

(
tr
(
(Xv)TXv

)
−
k−1∑
i=1

σvi

)
= D∗ ≤ D(Y ), (19)

where σv1 , · · · , σvk are the top (k−1) principal eigenvalues of
(Xv)TXv .

We first attempt to bound the difference betweenD(Y ) and
D∗. Assume that Uvt ∈ R(k−1)×n and Uvr ∈ R(n−k+1)×n are
composed of the top (k − 1) principal eigenvectors and the
remaining (n − k + 1) principal eigenvectors of (Xv)TXv

in the v-the view, respectively. [Uvt ;Uvr ] can be regarded as
the orthogonal basis in the v-th view in space Rn. Y can
thus be represented by the bases in different views in distinct
formulations:

Y =
[
E1
t E

1
r

] [U1
t

U1
r

]
; · · · ;Y = [Emt Emr ]

[
Umt
Umr

]
, (20)

where Evt ∈ R(k−1)×(k−1) and Evr ∈ R(k−1)×(n−k+1) are
the coefficients corresponding to Uvt and Uvr in the v-th view,
respectively. To better represent the dataset using k clusters,
Y should be constructed using the top (k−1) principal eigen-
vectors in each view as much as possible; that is, the smaller
{‖Evr ‖F }mv=1, the better the clustering. The following lemma
provides a bound on {Evr }mv=1.

Lemma 1. By factorizing the clustering Y in the v-th view,
we have

‖Evr ‖2F ≤ δv =
Dv(Y )−D∗v
σvk−1 − σvk

. (21)

Proof. Denoting Dv(Y ) and D∗v as the real and ideal distor-
tion in the v-th view, respectively, we have

Dv(Y )−D∗
v = tr(Σv

t )−tr(Ev
t Σv

t (Ev
t )T )−tr(Ev

r Σv
r(Ev

r )T ), (22)

where Σvt = diag(σv1 , · · · , σvk−1) and Σvr =
diag(σvk , · · · , σvn). Given α ∈ (σvk−1, σ

v
k), we have

tr(Σvt ) ≥ tr(Evt Σvt (E
v
t )T ) + αtr(Evr (Evr )T ), (23)

and Eq. (22) can be relaxed to

Dv(Y )−D∗v ≥tr
(
Evr (αI − Σvr)(E

v
r )T
)

≥tr
(
Evr (αI − σvkI)(Evr )T

)
=(α− σvk)‖Evr ‖2F .

(24)

When α approaches σvk−1, we obtain

Dv(Y )−D∗v ≥ (σvk−1 − σvk)‖Evr ‖2F . (25)

Given σvk−1 − σvk 6= 0, we obtain the desired result.

In general, D∗ cannot be achieved since it is usually im-
possible to make Y simultaneously consistent with the sub-
spaces spanned by the top (k − 1) principal eigenvectors of
{(Xv)TXv}mv=1 in multiple views. Denoting Y opt as the
clustering in multiple views with the smallest distortion, we
then note that D∗ ≤ D(Y opt) ≤ D(Y ). Given two cluster-
ings B̃ and B̃

′
, it is easy to show that the confusion matrix is

M = B̃(B̃
′
)T . For a stable evaluation of clustering perfor-

mance, the misclassification error (see e.g., [Meilă, 2012]) is
computed by

ME(B̃, B̃
′
) = 1− Purity(B̃, B̃

′
), (26)

whose connection with φ(B̃, B̃
′
) = ‖B̃(B̃

′
)T ‖2F is estab-

lished in [Meilă, 2012]. The difference between B̃ and B̃opt
can be bounded by the following theorem.

Theorem 1. Let B̃ be the multi-view clustering result. Given
pmin = mini ni/n and pmax = maxi ni/n, if δv ≤ k−1

2 and
minv ε(δv) ≤ pmin, we have

ME(B̃, B̃opt) ≤ pmax min
v
ε(δv),

where

ε(δv) = 2δv(1−
δv

k − 1
). (27)

Proof. Starting with Eq. (17), we denote Vt as the first (k−1)

rows of V , and formulate B̃ as

B̃ = V Tt Y +
1√
n
vT−11. (28)

Since (Xv)TXv1T = 0, 1 should be orthogonal with Uvt ,
and thus 1√

n
1 can be constructed from Uvr as 1√

n
1 = e1U

v
r .
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Based on Eq. (20), we factorize Y in the v-th view, and thus
Eq. (28) can be rewritten as

B̃ = V Tt E
v
t U

v
t + V Tt E

v
rU

v
r + vT−1e1U

v
r (29)

Similarly, for a second clustering B̃
′
, we have

B̃
′

= (V
′

t )T (Evt )
′
Uvt +(V

′

t )T (Evr )
′
Uvr +(v

′

−1)T e1Ur. (30)

Considering different factorizations of B̃ and B̃
′

in mul-
tiple views, we employ Lemma 2 in [Meilă, 2006] to show
that

φ(B̃, B̃
′
) ≥ k − ε(δv, δ

′

v), (31)

where

ε(δv, δ
′

v) = 2

√
δvδ

′
v(1−

δv
k − 1

)(1− δ′v
k − 1

) (32)

and δv, δ
′

v ≤ k
2 (see Lemma 1). Since Eq. (31) is applicable

to multiple views, we obtain

φ(B̃, B̃
′
) ≥ k −min

v
ε(δv, δ

′

v), (33)

[Meilă, 2012] establishes the connections between φ(B̃, B̃
′
)

and ME(B̃, B̃
′
). Given pmin = mini ni/n and pmax =

maxi ni/n, if φ(B̃, B̃
′
) ≥ k − ε and ε ≤ pmin then

ME(B̃, B̃
′
) ≤ εpmax. Considering D(Y opt) ≤ D(Y ), we

summarize the above results to obtain

ME(B̃, B̃opt) ≤ pmax min
v
ε(δv). (34)

According to Theorem 1, the misclassification error is
determined by the smallest δv among {δv}mv=1 in multiple
views. In practice, although some views might be interrupted
with noise and cannot produce satisfactory clusters, the over-
all clustering performance can be preserved by other more ac-
curate views, due to the complementarity of multiple views.
Moreover, the misclassification error is implicitly connected
to the distortion function during training (see Lemma 1). By
appropriately assigning larger weights to ‘easy’ examples and
views, the distortion could be reduced and clustering perfor-
mance could be improved.

5 Experiments
In this section, we evaluate MSPL on synthetic and real-word
datasets. The proposed algorithm is compared to the canon-
ical correlation analysis (CCA), centroid multi-view spectral
method (CentroidSC) [Kumar et al., 2011a], pairwise multi-
view spectral clustering [Kumar et al., 2011a], subspace-
based multi-view clustering (ConvexSub) [Guo, 2013], and
robust multi-view k-means clustering (RMKMC) [Cai et al.,
2013]. The clustering performance is measured using three
standard evaluation matrices: clustering accuracy (ACC),
normalized mutual information (NMI) and purity. Similar to
k-means, we used the clustering solution on a small randomly
sampled dataset for initialization. The initial λ is set such that
more than half of examples (views) are selected, and then it
is iteratively decreased.

Figure 3: Tendency curves of NMI (a), ACC (b) and Purity
(c) with respect to iterations for MSPL.

Table 1: Performance on the Handwritten Numerals dataset.
Methods NMI ACC Purity
FOU 0.547± 0.028 0.556± 0.062 0.579± 0.048
FAC 0.679± 0.032 0.707± 0.065 0.737± 0.051
KAR 0.666± 0.030 0.689± 0.051 0.714± 0.044
MOR 0.643± 0.034 0.614± 0.058 0.642± 0.050
PIX 0.703± 0.040 0.694± 0.067 0.723± 0.059
ZER 0.512± 0.025 0.534± 0.052 0.568± 0.043
Con-MC 0.739± 0.039 0.728± 0.067 0.760± 0.059
RMKMC 0.807± 0.033 0.788± 0.075 0.824± 0.052
MSPL 0.868± 0.020 0.874± 0.055 0.875± 0.033

5.1 Toy Example
We first conduct a toy experiment using synthetic data to
show our algorithm’s ability to progressing from ‘easy’ to
‘complex’ examples and views in multi-view learning. The
toy dataset is composed of 400 data points, each of which is
described using 3 views, as shown in Figures 2 (a)-(c). The
multi-view examples can be grouped into 4 clusters. The data
points in each cluster on one view are sampled from a Gaus-
sian distribution with the distinct center and variance.

We conduct multi-view clustering using the proposed
MSPL algorithm with the smoothed weighting scheme on the
toy dataset. If the weight wvi for the i-th example on the v-th
view is near 1, we consider that the example on that view has
been added for model training. The sequential orders of the
examples selected during training on each view are recorded
by colors. The darker color implies that the example is easier
and thus is selected earlier. From Figures 2 (a)-(c), it can be
found that the data points next to the cluster centers can be
regarded as ‘easy’ examples and selected with high priorities,
compared with those far away from their corresponding clus-
ter centers. It is instructive to note that the greater variance
of the clusters, the more complex the clustering. We record
the sequential orders of the views selected for each example
using the colors as well, and present the result in Figure 2 (d).
From this figure, we find that the examples in the 1st clus-
ter tend to select view-1 first, and then view-2 and view-3.
This is because that the easiest view of 1st cluster is view-1,
whose variance is smaller than those of view-2 and view-3.
Similar conclusions can be derived for the 2nd and 3rd clus-
ters. Since the variances of the 4th cluster in three views are
similar, there is no explicit preference.

For the data matrix on each view, 80% of the entries are
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Figure 2: Illustrations on the complexities across examples ((a) in view-1, (b) in view-2 and (c) in view-3) and views (d).

Table 3: NMI comparisons of different multi-view clustering algorithms on the WebKB dataset.

Datasets Con-MC CCA PairwiseSC CentroidSC ConvexSub MSPL
Cornell 0.094± 0.003 0.090± 0.003 0.112± 0.002 0.104± 0.002 0.233± 0.001 0.215± 0.002
Texas 0.143± 0.005 0.120± 0.002 0.179± 0.002 0.169± 0.002 0.245± 0.004 0.255± 0.003
Washington 0.159± 0.007 0.223± 0.003 0.212± 0.002 0.185± 0.002 0.251± 0.004 0.281± 0.005
Wisconsin 0.090± 0.002 0.092± 0.002 0.098± 0.001 0.108± 0.002 0.303± 0.003 0.337± 0.002

Table 2: Performance on the Animal with attribute dataset.
Methods NMI ACC Purity
CH 0.077± 0.003 0.067± 0.002 0.087± 0.002
LSS 0.081± 0.005 0.071± 0.002 0.088± 0.002
PHOG 0.069± 0.003 0.069± 0.004 0.082± 0.004
ColorSIFT 0.086± 0.004 0.072± 0.003 0.088± 0.003
SIFT 0.094± 0.005 0.073± 0.003 0.091± 0.004
SURF 0.088± 0.003 0.076± 0.003 0.097± 0.004
Con-MC 0.107± 0.003 0.080± 0.001 0.100± 0.001
RMKMC 0.117± 0.005 0.094± 0.005 0.114± 0.005
MSPL 0.132± 0.002 0.115± 0.003 0.126± 0.002

added to Gaussian noise, while the remaining entries are
added to uniform noise. Denote the MSPL algorithm with
classical hard weighting (i.e., Eq. (4)) as MSPL-hard, and
that with proposed smoothed weighting (i.e., Eq. (6)) as
MSPL-smooth. We compare these two weighting schemes
on the toy noisy dataset. As an in-depth analysis on the be-
havior of the regularizers, we plot the curves of NMI, ACC
and Purity with respect to iterations using hard and smoothed
weighting schemes in Figure 3. For easy comparison, we also
report the performance of multi-view clustering without self-
paced learning (denoted MSPL-naive), as shown in Eq. (2). It
can be seen that both regularizers can eventually discover bet-
ter clusterings than that of MSPL-naive. Compared with the
MSPL-hard that is seriously perturbed in the first few itera-
tions, the smoothed weighting delivers more accurate results,
thus demonstrating the stability of smoothed weighting. For
the advantages of smoothed weighting, we mainly focus on
the evaluations on MSPL-smooth in what follows.

5.2 Multi-view Clustering Comparisons
We first evaluate the advantages of multi-view clustering
over single-view clustering on the Handwritten Numerals

and Animal with attribute datasets. The Handwritten Nu-
merals dataset is composed of 2000 examples from 0 to 9
ten-digit classes. Six kinds of features are used to repre-
sent each example; that is, Fourier coefficients of the char-
acter shapes (FOU), profile correlations (FAC), Karhunen-
Love coefficients (KAR), pixel averages in 2 × 3 windows
(PIX), Zernike moment (ZER), and morphological features
(MOR). The Animal with attribute dataset contains 30475 ex-
amples from 50 classes and described by six features: Color
Histogram (CH), Local Self-Similarity (LSS), PyramidHOG
(PHOG), SIFT, colorSIFT, and SURF.

The clustering results on the Handwritten Numerals and
Animal with attribute datasets are presented in Tables 1 and
2, respectively. In Con-MC, the features are concatenated
on all views and then standard k-means clustering is applied.
It can be seen that employing multiple views leads to im-
proved clustering performance than using each view indepen-
dently, demonstrating the benefits of integrating the informa-
tion from different views. Moreover, all the multi-view clus-
tering algorithms are better than the single-view clustering,
and MSPL’s clustering is even better than those of multi-view
algorithms Con-MC and RMKMC. This is because that Con-
MC neglects the connections between different views while
concatenating them for clustering, and RMKMC is likely to
fall into a bad local minima due to its non-convex objective
function.

We next compare different multi-view clustering algo-
rithms on the WekKB dataset, which contains webpages col-
lected from four universities: Cornell, Texas, Washington and
Wisconsin. The webpages are distributed over five classes:
student, project, course, staff, and faculty. ‘Content’ and
‘link’ are two views that describe each webpage.

The clustering performance in terms of NMI is reported in
Table 3. Specifically, on the Washington dataset, the NMI
of MSPL improves about 26% over that of CCA and 51%
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over that of CentroidSC. The performance of MSPL is similar
to that of ConvexSub, which is an elaborately designed con-
vex algorithm that discovers the subspace shared by multiple
views. It is instructive to note that MSPL decreases the risk
of falling into bad local minima by carefully conducting clus-
tering starting from ‘easy’ to ‘complex’ examples and views.
On the other hand, ConvexSub separates the multi-view clus-
tering task into two steps: learning the subspace shared by
different views and launching k-means in this subspace. To-
gether, this two-step approach carries a risk of bad local min-
ima when clustering.

6 Conclusion
In this paper, we propose multi-view self-paced learning for
clustering, which could overcome the drawback of bad local
minima during optimization inherent in most existing non-
convex multi-view clustering algorithms. Inspired by self-
paced learning, the multi-view clustering model is trained
starting from ‘easy’ to ‘complex’ examples and views. A
smoothed weighting scheme provides a probabilistic inter-
pretation of the weights of examples and views. The ad-
vantages of using multiple views for clustering and the in-
fluence of self-paced learning on clustering performance are
analyzed theoretically. Experimental results on toy and real-
world datasets demonstrate the advantages of the smoothed
weighting scheme and the effectiveness of progressing from
‘easy’ to ‘complex’ examples and views when clustering.
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