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Abstract

The user ratings in recommendation systems are
usually in the form of ordinal discrete values. To
give more accurate prediction of such rating data,
maximum margin matrix factorization (M>F) was
proposed. Existing M3F algorithms, however, ei-
ther have massive computational cost or require ex-
pensive model selection procedures to determine
the number of latent factors (i.e. the rank of the
matrix to be recovered), making them less practi-
cal for large scale data sets. To address these two
challenges, in this paper, we formulate M®F with
a known number of latent factors as the Rieman-
nian optimization problem on a fixed-rank matrix
manifold and present a block-wise nonlinear Rie-
mannian conjugate gradient method to solve it ef-
ficiently. We then apply a simple and efficient ac-
tive subspace search scheme to automatically detect
the number of latent factors. Empirical studies on
both synthetic data sets and large real-world data
sets demonstrate the superior efficiency and effec-
tiveness of the proposed method.

1

The rapid increase of Web services has witnessed an increas-
ing demand for predicting the preferences of users on prod-
ucts of interest, such as movies and music tracks [Su and
Khoshgoftaar, 2009]. This task, also known as the collabo-
rative filtering (CF), is a principal task in recommender sys-
tems [Weimer et al., 2008; Huang ef al., 2013]. In general,
the user ratings are given in discrete values, including binary
ratings and ordinal ratings [Srebro et al., 2005]. The binary
ratings can be either “+1” (like) or “-1” (dislike); while the or-
dinal ratings are in discrete values such as 1-5 “stars”, which
are more popular in applications.

Given a small number of user ratings Y € R™*" (from m
users on n items), the aim of CF is to reconstruct the unob-
served ratings. Let ) be a subset containing the indices of the
observed entries. To perform the reconstruction, a common
approach is to learn a low-rank matrix X to fit Y by solving
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the following optimization problem:

n%n f(X), s.t. rank(X) <k, (1)
where k denotes the number of latent factors (i.e. the rank
of X) and f(X) denotes some loss functions. The low-rank
property has been studied in a variety of applications [Xiao
et al., 2014; 2015; Yang et al., 2013]. In many studies, such
as matrix completion, the least-square loss function f(X)
Yijea(Xij — Yi;)? is used [Candés and Recht, 2009;
Candés and Plan, 2010; Vandereycken, 2013]. Despite of its
popularity, the least-square loss may not perform well when
the ratings are discrete values [Srebro et al., 2005].

To deal with rating data, the maximum margin matrix
factorization (MF) is proposed using the hinge loss [Srebro
et al., 2005; Rennie and Srebro, 2005; Weimer et al., 2008].
For binary ratings, the objective function can be written as

min f(X) = min Z h(Y:;X5), (2)
ijeQ

where h(z) = max(0,1 — z). The hinge loss h(z) for bi-
nary ratings can be easily extended to general ordinal rat-
ings where Y;; € {1,2,...L} by applying L + 1 thresholds
0y < 0, < ... < 0, learned from data [Rennie and Srebro,
2005]. For the discrete valued rating data, hinge loss would
achieve better performance compared to the least square loss.

Problem (1) is known to be NP-hard. Many re-
searchers [Fazel, 2002; Recht et al., 2010] thus propose to
solve its nuclear-norm convex relaxation minx A||X|[. +
f(X), where [|X]||. denotes the nuclear norm of X and A is
a regularization parameter. Many convex optimization meth-
ods, such as proximal gradient methods [Toh and Yun, 2010;
Nie et al., 2012] can be adopted to solve this problem. How-
ever, these methods may scale poorly due to the requirement
of singular value decompositions (SVDs) of large ranks.

To improve the scalability, some researchers assumes that
the rank of X (i.e. k) is known, and X can be explicitly factor-
izedas X = UV, where U € R"*¥ and V € R™** [Ren-
nie and Srebro, 2005; Mnih and Salakhutdinov, 2007]. They
then solve the following variational formulation instead:

. A 2 2 T
iy S([01%+ VI + F(UVT), )

where A is a regularization parameter. Many methods, such
as the stochastic gradient descent (SGD), can be used to solve



this problem. However, in real applications, the prior knowl-
edge about k is not likely accessible. Consequently, these al-
gorithms may have to perform expensive model selections to
determine k, which is unaffordable in computation [Xu er al.,
2012; 2013]. Additionally, since problem (3) is non-convex
w.rt. U and V simultaneously, most methods may face the
premature convergence problem [Hsieh and Olsen, 2014].

Regarding the scalability issue and the latent factor detec-
tion issue of existing methods, we propose an active Rieman-
nian subspace search for M®F (ARSS-M?F). The main con-
tributions of this paper are as follows:

e Leveraging the nonlinear Riemannian conjugate gradi-
ent, we propose an efficient block-wise nonlinear Rie-
mannian conjugate gradient (BNRCG) algorithm, which
reconstructs X and learns multiple thresholds € in M3F
in a joint framework. Compared to existing M3F algo-
rithms, the proposed algorithm is much more efficient.

Based on BNRCG, we proposed the ARSS-M?>F method
which applies a simple and efficient pursuit scheme
to automatically compute the number of latent factors,
which avoids expensive model selections.

Extensive experiments on both synthetic data sets and
real-world data sets demonstrate the superior efficiency
and effectiveness of the proposed methods.

2 Related Studies

The M3F problem can be formulated as a semi-definite pro-
gramming (SDP) problem, thus it can be solved using stan-
dard SDP solvers [Srebro et al., 2005]. However, the SDP
solver scales very poorly. To improve the scalability, a fast
M3F method is proposed to solve problem (3) by investigat-
ing the gradient-based optimization method [Rennie and Sre-
bro, 2005]. A low-rank matrix fitting algorithm (LMAFIT) is
proposed to solve (3) with the least square loss [Wen ef al.,
2012]. More recently, a lock-free approach to parallelizing
stochastic gradient descent is proposed [Recht ef al., 2011].
However, it is nontrivial for them to solve M°F.

Note that the fixed-rank matrices belong to a smooth ma-
trix manifold [Absil et al., 2008; Vandereycken, 2013]. Mani-
fold has been also exploited in a range of applications [Chang
et al., 2015; Han er al, 2013; Lu et al., 2013]. Many
manifold optimization methods have been proposed to solve
(3) [Meyer et al., 2011; Boumal and Absil, 2011; Vander-
eycken, 2013], such as the Riemannian trust-region method
for MC (RTRMC) [Boumal and Absil, 20111, the low-rank
geometric conjugate gradient method (LRGeomCG) [Van-
dereycken, 2013], the quotient geometric matrix comple-
tion method (qGeomMC) [Mishra er al., 2012], Grassman-
nian rank-one update subspace estimation (GROUSE) and the
method of scaled gradients on Grassmann manifolds for ma-
trix completion (ScGrassMC) [Ngo and Saad, 2012]. How-
ever, all these methods are not applicable to solve M3F.

A number of M®F extensions have been introduced in the
last decades [Weimer et al., 2008; 2007; Karatzoglou et al.,
2010]. For example, the authors in [Weimer et al., 2007] pre-
sented a method using M®F to optimize ranking rather than
ratings. Some researcher further improved the performance

3989

of M®F by casting it within ensemble approaches [DeCoste,
2006; Wu, 2007].

The importance of automatic latent factor detection (i.e.
the model selection problem) has been recognized by many
researchers [Xu et al., 2012; 2013; Mnih and Salakhutdinov,
2007]. For example, a probabilistic M®F model is proposed
in [Xu et al., 2012; 2013], where the number of latent factors
can be inferred from data. However, these methods are usu-
ally very expensive as the probabilistic model requires a large
amount of computation, which is avoided in our method.

3 M°F on Fixed-rank Manifold

Without loss of generality, we first study M3F where the rank
of the rating matrix X to be recovered is known. We propose
the BNRCG method by exploiting the Riemannian geome-
tries to address it.

3.1 Notations

Throughout the paper, we denote by the superscript T the
transpose of a vector/matrix, 0 a vector/matrix with all zeros,
diag(v) a diagonal matrix with a vector of diagonal entries
equal to v. Let A ® B and (A, B) tr(ABT) repre-
sent the element-wise product and inner product of the ma-
trices A and B, respectively. The singular value decom-
position (SVD) of matrix X € R™*™ is given by X
U(diag(o))V ". Based on the SVD, the nuclear norm (or
trace-norm) of X is defined as || X||. = ||o||s = >_, |o;], and
the Frobenius norm of X is defined as | X||r = ||o]|2.

3.2 The Proposed Model

In collaborative filtering tasks, the preference scores are of-
ten ordinal ratings, where Y;; € {1,2,...L}. To generalize
the hinge loss for binary case to ordinal ratings, we intro-
duce L + 1 thresholds 6y < 6; < ...,< 6p. By default,
we have 6 oo and 0; = +4oo. Therefore, there are
L — 1 free threshold parameters to be determined, namely
0 = [91,92,...,9L_1]T € RE-1. Ina hard-margin case, X
must satisfy the following conditions on observed entries

Ov,;—1+1<X; <0y, — 1.

In a soft-margin setting, the hinge loss error for each entry of
X can be written as

L—1
§ij = Z h(T7 - (0 — Xij)),Vij € Q, @)
z=1

+1 forz > Y
—1 forz < Yy

Principally, we propose to reconstruct X by minimizing the
squared hinge loss error

(x.0)=; > ¢

ijEQ

where T} = and h(z) = max(0,1 — z).

Additionally, to prevent from over-fitting, we regularize
(X, ) by a regularizer Y(X) = 1(||X][|% + v[|XT]|%),
where X' denotes the pseudo-inverse and v > 0 is a small
scalar (e.g., v = 0.0001 in this paper by default) and || X*||%



is a barrier to avoid decreasing of the rank of X [Vanderey-

cken, 2013]. The M>F problem is formulated as the following
optimization problem

min f(X, 0), s.t.
x,0

=k, &)

rank(X) =

where f(X,0) = AT(X) +4(X,0) and 0 < A < 1 de-
notes the regularization parameter. Note that this regularizer
is different from that used in [Vandereycken, 2013], and it
is very important for preventing from the over-fitting issue in
the context of M®F (see more details in experimental studies).

After addressing problem (5), the prediction can be easily
made by

Y

5 =max{z|X;; > 6.,z=1,...,L}. (6)

Unfortunately, since f(X, @) is non-convex due to the con-
straint rank(X) = k, the optimization of (5) is very difficult.
Noting X is restricted on fixed-rank matrices, we accordingly
propose to address it by exploiting the Riemannian geome-
tries on fixed-rank matrices.

3.3 Riemannian Geometry of Fixed-rank Matrices
Suppose rank(X) = r with r being known, then X lies on

a smooth manifold of fixed rank-r matrices [Vandereycken,
2013], which is defined as

M, {X e R™*" : rank(X) = r}
{Udiag(e)V" : U € St"", V € St ||o||o = 7}
with St = {U € R™*" : UTU = I} the Stiefel manifold

of m x r real and orthonormal matrices. The tangent space
Tx M, of M, at X = Udiag(a)VT € R™*" is given by

TxM, = {UMV'+U,V+UV, : M € R"*",
U, cR™", U,U=0,V, c R V,V =0}. (7)

By defining a metric gx(A,B) = (A,B) on M,, where
X € M, and A, B € Tx M,, then M,. becomes a Rieman-
nian manifold by restricting (A, B) to the tangent bundle,
which is defined as the disjoint union of all tangent spaces
TM; = Uxep X} x TxM, = {(X,E) € R™*" x
Rm*m: X e M, E € TxM,}.

Let G be the gradient of any smoothing function f(X) in
Euclidian space at X = Udiag(o) V. The Riemannian gra-
dient of f(X) on M, is given as the orthogonal projection of
G onto the tangent space at X:

gradf(X) = Prym, (G). ®)

Here Prym, (Z) : Z — PyZPy + PFZPy + PyZPy
denotes the orthogonal projection of any Z € R™*™ onto the
tangent space at X = Udiag(o)V', where P; = UUT and
P =I-UUT forany U € St".

With prior knowledge about differential geometries on
fixed-Rank matrices, we can compute the Riemannian gra-
dient of f(X,0) wrt. X on M,. Let gradf(X, @) denote
the Riemannian gradient. To compute gradf(X,6), we
need to calculate the gradient of f(X, ) on Euclidean space.
Firstly, the gradient of ¢(X, 6) w.r.t. X, denoted by G, can
be calculated by

L—-1

=27

8€X9

-~

= Xij))- ©))
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where ij € €. Note that the gradient of Y(X) w.rt. X is
Udiag(o — v/o?)VT at X = Udiag(a)VT. The gradient
of f(X,0) w.rt. X in Euclidian space, denoted by G, can be
computed by

G = G + AUdiag(o — v/a®)V". (10)

Once G is computed, grad f (X, ) can be calculated accord-
ing to equation (8). The details of computation can be found
in Appendix A.

Finally, the gradient of f(X,0) w.r.t. 8, denoted by g =

91,92, -, 9L71]T, can be calculated by
8 X 9)
: f => T (0 —Xi), (D)
ijEQ
where z € {1,2,...,L — 1}.

3.4 Block-wise Nonlinear Riemannian Conjugate
Gradient Descent for M>F

The objective function in (5) involves two types of variables,
namely the rating matrix X € M, and the thresholding
parameter 8 € RE~1. Accordingly, we propose a Block-
wise Nonlinear Riemannian Conjugate Gradient (BNRCG) to
solve problem (5), which is shown in Algorithm 1. The basic
idea is that, at each iteration, we first minimize f(X, ) w.r.t.
X with fixed 6 by a Nonlinear Riemannian Conjugate Gradi-
ent method (Steps 1-3), and then minimize f(X,6) w.r.t.
with fixed X by applying a standard gradient descent method
(Steps 4-5). We will illustrate Steps 2-5 in details.

Algorithm 1 BNRCG for Fixed-rank M>F.
Given rank(X) = r. Initialize X4, 1, and 6;. Let ¢t = 1.

1: Compute E; = —grad f(X;, 6;) according to (8).

2: Compute the conjugate direction with PR+ rule:
= E; + BtTthlﬁxt, (nt—l) €TM,.

3: Choose a step size «; and set X;11 = Rx, (aum,).

4: Compute g; according to (11).

5: Choose a step size y; and set 0y1 = 0y — V&

6: Quit if stopping conditions achieve.

7:Lett =t 4+ 1and go to step 1.

When updating X, different from the classical gradient
methods on Euclidean space, the search direction in manifold
optimization needs to follow a path on the manifold. Let X,
be the iteration variable in the BNRCG method on Euclidean
space, the search direction 7, is calculated by

1, = —gradf(X¢) + Bem,_1, 12)

where (3; can be calculated by a Polak-Ribiere (PR+)
rule [Vandereycken, 2013]:

grad f (X.)" (gradf (X:) — gradf(X¢—1))
(gradf(X;—1), grad f(X¢-1)) .

Be = 13)

Unfortunately, since gradf(X;), gradf(X;_1) and n,_,
are in different tangent spaces Tx, M and Tx, , M, the
above two equations are not applicable on Riemannian man-
ifolds. To address this issue, we need two geometric oper-
ations, namely, Retraction and Vector Transport. With the



retraction mapping, one can move points in the direction of a
tangent vector and stay on the manifold. In [Vandereycken,
2013], the retraction on M,, can be computed in a closed
form by

P
Rx(E) = Pp,(X+E) =Y oipiai, (14)
=1

where Zle o;piq; denotes the best rank-p approximation

to X + E. In addition, the following Vector Transport makes
the calculations of (12) and (13) meaningful. A vector trans-
port 7 on a manifold M is a smooth map which transports
tangent vectors from one tangent space to another. For conve-
nience, let 7x_, v (17x ) denote the transport from one tangent
space Tx .M to another tangent space Ty M, where nx de-
notes the tangent vector on X. The step size in the Step 3 and
Step 5 is computed by the line search method. When updat-
ing X1, given a descent direction n,, € Tx, M., the step
size oy, is determined such that

F(Rx,, (cmy)) < f(Xi) + craw(gradf(Xk), ny), (15)

where c; is the parameter. When updating 61 by the stan-
dard gradient descent method, the step size y; can be com-
puted by the line search on the following condition

F(Xit1,0641) < f( X1, 0k) + coavige, (16)

where c; is the parameter and 0 < ¢; < ¢ < 1/2.

Lastly, Algorithm 1 is guaranteed to converge to a station-
ary point of f(X, ).
Proposition 1. The BNRCG algorithm is guaranteed to
converge fo a stationary point (X*,0%) of f(X,0) where
gradf(X*,0") = 0and Vg f(X*,0%) = 0.

The proof can be found in Appendix B.

3.5 Automatic Latent Factor Detection by Active
Subspace Search

Based on BNRCG for fixed-rank M®F, we propose an active
subspace search method to detect the number of latent factors
automatically presented in Algorithm 2.

Starting from X = 0 where £ = b, ARSS-M?F iter-
ates with two main steps: to identify the most-active subspace
through the worst-case analysis in Step 1, and to find the so-
lution of the fixed-rank M>F problem by BNRCG in step 2.
In the following, we present the details of the two main steps.

In the first step, we compute the gradient G of f(X,0)
w.r.t. X and the active subspace can be found by performing
a truncated SVD on G with the dimensionality of p. In the
second step, we initialize X* = Ryxr—1 (—tminX,) where the
step size t,,,;y, is determined by the line search method on the
following condition:

PRy (~tainG 1) < FX) = PG @A) (1)

Then, the initialized X* is used as the input of the Algorithm
1, namely BNRCG, by which X* and 6* can be updated it-

eratively. Note that after initializing X* in the step 2(a), we
increase the estimated rank of BNRCG by p. Due to (17),

the objective value f(X*) monotonically decrease w.r.t. k.
Therefore, we stop Algorithm 2 once the following condition
is achieved

(FXEN) = X))/ (pf(XETY) <, (18)
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where € is a stopping tolerance. In this way, as the algorithm
is performed iteratively, we are able to detect the rank of the
matrix to be recovered.

Algorithm 2 Active Riemannian Subspace Search for M®F .

Initialize X° = 0,7 =0, £ = band 6. Let k = 1.
1: Find active subspaces as follows:

(a): Compute G = %’Z’g);

(b): Do thin sVD on G: [P,,X,,Q,] = SVD(G, p).
2:LetX,=P,% ,,QI, do master problem optimization:

(a): Find an appropriate step size tmin by (17) and initial-
ize X* = Ryr—1(—tminX,) (Warm Start).

(b): Let r = r + p and update X* and % by Algorithm 1
3: Quit if stopping conditions are achieved. Let k = k 4 1
and go to step 1.

4 Empirical Studies

We demonstrate the performance of the proposed meth-
ods, namely BNRCG-M?F with fixed-rank problems and
ARSS-M?F, by comparing with several related state-of-the-
art methods, including FM®F [Rennie and Srebro, 20051,
GROUSE [Balzano et al., 20101, LMAFIT [Wen ef al., 20121,
ScGrassMC [Ngo and Saad, 2012], LRGeomCG [Vanderey-
cken, 2013] and RTRMC [Boumal and Absil, 2011], on both
synthetic and real-world CF tasks. Seven data sets are used in
the experiments, including three synthetic data sets and four
real-world data sets, Movielens 1M, Movielens 10M [Her-
locker et al., 1999], Netflix [Bennett and Lanning, 2007] and
Yahoo! Music Track 1 data set [Dror et al., 2012].

The root-mean-square error (RMSE) on both training and
testing set will be used as the comparison metric: RMSE =

\/ZijeH(ij —Y;;)?/|1I|, where Y* denoted the recon-

structed ratings according to (6), and |II| denotes number of
emblements in the set II. All the experiments are conducted
in Matlab on a work station with an Intel(R) CPU ( Xeon(R)
E5-2690 v2 @ 3.00GHz) and 256GB memory.

4.1 Synthetic Experiments

In the synthetic experiments where we know the ground-
truth, we will demonstrate four points: 1) The sensitivity of
the regularization of the proposed M3F methods; 2) The scal-
ability of BNRCG-M®F and ARSS-MF over other methods;
3) The importance of the squared hinge loss measure over
other measures for rating data, e.g., the least square error; 4)
The effectiveness of latent factor detection by ARSS-M>F. To
demonstrate the above points, we study three synthetic prob-
lems of two scales.

Synthetic Problem
For each of the three synthetic problems, motivated by [Ngo
and Saad, 2012; Tan et al., 2014], we first generate a ground-

truth low-rank matrix by X = ﬁdiag(g){ﬂ, where 0 is a
r-sparse vector with each nonzero entry sampled from Gaus-

sian distribution A/(0,1000), U € St™ and V € St”. In the
both two small-scale problems, X is of size 1,000 x 1,000



with » = 20, while the large-scale problem X is of size
20,000 x 20,000 with » = 50. After sampling the orig-
inal entries, we respectively produce the binary ratings by
Y,;; = sgn(X;;), and the ordinal ratings {1,2,3,4,5} by
projecting the entries of X into five bins according to their
values, which results in a rating matrix Y. Once Y is gen-

erated, we sample [ = r(m +n — r) x (,s entries from Y
uniformly to form the observed ratings Y, where (,s is the
oversampling factor [Lin et al., 2010]. In the experiments we
set (o5 = 3.5.

Sensitivity of Regularization Parameter

In this section, to demonstrate the sensitivity of regulariza-
tion, we perform experiments on the small-scale binary ma-
trix. To illustrate the impact of the regularization in the pro-
posed methods, we test BNRCG-M?>F with various regular-
ization parameters A. Figure 1 reports the training RMSE and
testing RMSE. The convergence is shown in Figure 2(a). As
can be seen, the regularization is crucial for preventing over-
fitting.
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Figure 1: RMSE of BNRCG-M?F on binary rating data.
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Figure 2: Relative objective values of various methods.

Convergence of M>F on Ordinal Rating Data

In this section, we perform experiments on the small-scale
ordinal matrix. We compare the proposed algorithms with the
six baseline methods and collect the convergence behavior of
the three M3F methods. The ground-truth rank is used as the
estimated rank for all methods excluding ARSS-M?>F.

The convergence behavior of our methods and FM?F is
illustrated in Figure 2(b), which shows that our methods
can converge better and faster. Table 2 reports the resultant
RMSE on the testing set and the computational time of each
method on the small-scale synthetic ordinal rating data set.
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Scalability of M>F on Ordinal Rating Data

In this section, we perform experiments on the large-scale or-
dinal matrix. We compare our methods with the 5 baseline al-
gorithms. We use the ground-truth rank as the estimated rank
for all methods except ARSS-M>F. The average estimated
rank of ARSS-M3F is 42, which is close to the groundtruth
rank of 50. According to the estimated rank in the two syn-
thetic datasets, the latent factor detection of ARSS-M? is ef-
fective. The RMSE on the testing set and computational time
of each algorithm are listed in Table 2.

Table 1: Statistics of the Real-world Data Sets.

Data Sets # users # items # ratings

Movielens 1M 6,040 3,952 1,000,209
Movielens 10M 71,567 10,681 10,000,054
Netflix 480,189 17,770 | 100,480,507
Yahoo! Music Track 1 | 1,000,990 | 624,961 | 262,810,175

4.2 Real-world Experiments

In real-world data experiments, to demonstrate the signifi-
cance of the hinge loss to the rating data and effectiveness
of latent factor estimation of our method, we study four real-
world large scale data sets, namely Movielens 1M, Movie-
lens 10M data set, Netflix data set and Yahoo! Music Track
1 data set. The baseline methods include FM®F, GROUSE,
LMAFIT, ScGrassMC, LRGeomCG and RTRMC.

Table 1 lists the size statistics of the four data sets. The
vast majority (99.71%) of ratings in Yahoo! Music Track 1
are multiples of ten. For convenience, we only consider these
ratings. For Movielen 10M and Yahoo! Music Track 1, we
map the ratings to ordinal integer values before the exper-
iment. For each data set, we sample 80% of data into the
training set and the rest into the testing set.

Table 2 reports the computational time of all comparison
methods and testing RMSE on the four data sets. Accord-
ing to the resultant RMSE, compared to other loss measure,
i.e. least square loss, our method can recover the matrix
with lower error. Note that in all experiments in both syn-
thetic and real-world data, no model selection cost is included
for all comparison methods. If model selections are con-
sidered, the comparison methods will cost much more time.
Some results for GROUSE and M3F are not available due to
their high computation cost. From the table, ARSS-M?3F and
BNRCG-M?®F recover the rating matrix efficiently and out-
perform other comparison methods in terms of RMSE on the
four real-world data sets. It is worth mentioning that though
LRGeomCG shows faster speed on Yahoo data set, it achieves
much worse RMSE than M3F based methods.

5 Conclusion

To deal with the ordinal discrete ratings in recommendation
systems, M?3F is proposed. However, existing M®F meth-
ods is faced with the scalability and latent factor detection
issues. To address the two challenges, we present ARSS-
M?3F, a scalable M3F method based on active Riemannian
subspace search. Specifically, the proposed algorithm first
treat the M®F problem as the fixed number of latent factors



Table 2: Experimental results on synthetic and real-world data sets. Computational time is recorded in seconds.

Methods Small Synthetic* | Large Synthetic* Movielens 1M} Movielens 10M Netflix Yahoo Musict

RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time
FM°F [Rennie and Srebro, 2005] 0.3811 11.99 | 0.3899 2186 0.9344 | 212.2051 | 0.9143 | 13001 1.0971 | 65662 -

GROUSE [Balzano et al., 2010] 0.4718 | 27.84 0.512 11214 | 0.9225 39.4184 0.8653 3853 - - - -
LMAFIT [Wen et al., 2012] 0.4701 6.08 0.4973 827 0.9373 19.9465 0.8424 832 0.9221 4374 24.222 24349
ScGrassMC [Ngo and Saad, 2012] 0.4638 10.19 | 04714 2149 0.9372 21.3109 0.8427 917 0.9192 5787 24.7982 | 37705
LRGeomCG [Vandereycken, 2013] | 0.4679 6.01 0.4904 814 0.9321 10.2484 0.849 312 0.9015 3151 25.2279 8666
RTRMC [Boumal and Absil, 20111 | 0.4676 8.68 0.4715 884 0.9311 14.1038 0.846 673 0.9102 6465 24.5971 | 32592
BNRCG-M3F 0.3698 5.34 0.3915 635 0.9285 13.4437 0.8437 714 0.9022 4118 23.8573 | 24631
ARSS-M3F 0.3693 5.33 0.3684 542 0.9222 9.5482 0.8411 650 0.9001 3583 23.7902 | 22065

*No cost of model selections is included for all fix-rank methods as the ground-truth rank is available.
T The rank detected by ARSS-M®F is used as the estimated rank for other methods. Thus no model selection is considered. The average
ranks estimated by ARSS-M3F on Movielens 1M, Movielens 10M, Netflix and Yahoo Music are 8, 14, 16 and 28 respectively.

and solve it using BNRCG. In the meantime, a simple and
efficient active subspace search approach is applied to auto-
matically compute the number of latent factors. Experiments
on both synthetic and real-world data demonstrate that the
proposed method can provide competitive performance.
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A Appendix A: Computation of gradf (X, 0)

According to [Vandereycken, 2013], a tangent vector n €
TM, is represented as p = UMVT+U,VT+ UV; (see
equation (7) for details). By definition, the Riemannian
gradient of f(X,0) wrt. X, denoted by gradf(X,0), at
X = Udiag(o) VT can be calculated by Pry o, (G), where
Prym, (Z) = PyZPy + PFZPy + PyZ Py is the projec-
tion of G onto the tangent space 7 M,.. Let = = \diag(o —
v/a?). For convenience, we first present the computation of
gradf (X, 0) in Algorithm 3.

Lemma 1. Suppose U,,, V,,, and M are obtained from Al-
gorithm 3, then gradf(X,0) = UMVT + U, VT + UV;.

Algorithm 3 Compute Riemannian gradient grad f
1

X).

: Let 2 = Mdiag(o — v/o3), and compute G via (9).

: Compute G,, = @TU, and G, = GV.

: Compute M = u'G,.

: Compute U, = G, — Uﬁ, and V, = G, — vMT.

: Update M = M + =.

: Output U,, V,, and M, and grad f(X,0) = UMV '+
U,V'+UV;.

AN B W

Proof. To verify the validity of Algorithm 3, we just need to
show that, Pry 1, (G) = UMVT™+U,VT+UV].

Notice that, UTU = I and VIV = L On one hand,
we have Pry v, (G) = Py, (G + UEVT) = GPy +
PU(A} - PUéPV + UZVT. On the other hand, according
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to Algorithm 3, we have n = UMV T+U,VT+ UVZT)
UMVT + U,VHUV] + UEVT = GVVT + UU"G —
UMVT + UEVT, which actually equals to Pryrq, (G).
This completes the proof. O

B Appendix B: Proof of Proposition 1

The proof parallels the proof in [Vandereycken, 2013]. Notice
that, the optimization on 6 is conducted in Euclidian space
RE-L. Moreover, {6;} is bounded; otherwise £(X, ) will
go to infinity according to (4). Without loss of generality,
suppose 0; € [—1,1]*~!, where [ > 0 is a finite number. Fol-
lowing [Vandereycken, 2013], we can also show that {X;}
stay in a closed and bounded subset of M,..

Let U = {X € M,, f(X,0) < f(Xo,600)} be the level
set at (Xg, 8). Due to the line search, we have £(X;, 8;) +

A(1Xel12 + v|[X[]|2) < f(Xo,80). Therefore, we have
2I1Xe||% < f(Xo,800), which implies o1 = /[[X¢[[% <
2f(Xo, 0p)/A. Here, 01 denotes the largest singular value

of X;. Similarly, we have %HXIHQF = >, % <
f(Xo,00), which implies that 22 < f(Xo,00),Vi €

{1,...,7}. This further implies that 0. > /vA/2f(Xo, 00),
where o, is the least singular value of Xj;.

Clearly, all X; stay inside the set S = {X € M, : 01 <

2f(Xo,00)/ A, 0r > \/vA/2f(X0,00)}, which is closed
and bounded, hence compact.

Now we complete the proof by contradiction. Without
loss of generality, suppose lim;_, .. ||gradf (X, 0:)||Fr +
[[Vg, f(X¢,0:)[|2 # 0, then there exists an € > 0, and a sub-
sequence in {(X¢, 0;)}ier such that ||gradf (X, 0:)||F +
IIVgf(X:,0¢)|l2 > € > 0 for all ¢t € T. Since
X; € & and 0, is constrained in [—[,]]L71, the subse-
quence {(X4,0;)}ter should have a limit point (X*, 6*)
in S x [~1,{]*"1. By continuity of gradf(X,#) and
Vg f(X,8) (which can be easily verified for squared hinge
loss), this implies that ||grad (X, 8:)||r > € which con-
tradicts Theorem 4.3.1 in [Absil ef al., 2008] that every ac-
cumulation point is a critical point of f(X,60). We there-
fore conclude that lim; , ||gradf(X;, 0:)||r = 0 and
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