
Unsupervised Machine Condition Monitoring
Using Segmental Hidden Markov Models

Chao Yuan
Siemens Corporation, Corporate Technology, Princeton, NJ 08540

yuanchao@yahoo.com

Abstract
The task of machine condition monitoring is to de-
tect machine failures at an early stage such that
maintenance can be carried out in a timely manner.
Most existing techniques are supervised approaches:
they require user annotated training data to learn
normal and faulty behaviors of a machine. However,
such supervision can be difficult to acquire. In con-
trast, unsupervised methods don’t need much human
involvement, however, they face another challenge:
how to model the generative (observation) process
of sensor signals. We propose an unsupervised ap-
proach based on segmental hidden Markov models.
Our method has a unifying observation model inte-
grating three pieces of information that are comple-
mentary to each other. First, we model the signal as
an explicit function over time, which describes its
possible non-stationary trending patterns. Second,
the stationary part of the signal is fit by an autore-
gressive model. Third, we introduce contextual in-
formation to break down the signal complexity such
that the signal is modeled separately under different
conditions. The advantages of the proposed model
are demonstrated by tests on gas turbine, truck and
honeybee datasets.

1 Introduction
We address the problem of machine condition monitoring by
analyzing sensor (e.g., temperature and pressure) time series.
This can be formulated as a classification problem to distin-
guish between normal class and each of the failure classes.
Supervised machine learning techniques use data annotated
by human experts to train their models [Sarkar et al., 2012;
Quinn et al., 2009; Smyth, 1993]. However, user an-
notation can be difficult to acquire. Unsupervised tech-
niques, on the other hand, are more user friendly. They
use all data available without annotation by performing seg-
mentation and classification, simultaneously [Eskin, 2000;
Antoniadou et al., 2015].

One big challenge for unsupervised approaches is how to
model sensor signals or design the observation model. First,
hidden Markov models (HMM) [Rabiner, 1989; Smyth, 1993;
Parson et al., 2014] and its extension hidden semi-Markov

models (HSMM) [Yu, 2010; Johnson and Willsky, 2014] use
time implicitly between states. Segmental HMMs (segHMM)
improve HSMM by modeling observation explicitly as a func-
tion over time [Kim and Smyth, 2006]. This feature fits condi-
tion monitoring nicely, because a fault usually develops over
time following a trending pattern. Second, previous observa-
tions that are often correlated with current observation can be
used to predict the latter. This motivates the vector autoregres-
sive HMM models (VAR-HMM) [Lütkepohl, 1991] and its
extensions [Fox et al., 2009; Jiang et al., 2012; Chang et al.,
2014]. Finally, using contextual information is common in con-
dition monitoring and anomaly detection [Song et al., 2007;
Hayes and Capretz, 2014; Valko et al., 2011]. This technique
divides all observed variables into two groups: a contextual
group consisting of input signals to the machine, and a be-
havioral group consisting of output signals of the machine.
Prediction is made only for output variables based on input
variables.

The above three pieces of information are complementary
to each other. Using contextual information helps to break
down the signal complexity, because instead of building one
single complex model for all variables, we only need to learn a
different simple model for output variables under each specific
condition (context). Using a function over time and using
autoregression information are essentially modeling the non-
stationary and stationary parts of the signal, respectively. De-
spite all the above advances, to the best of our knowledge, we
haven’t seen a work integrating all above pieces of information
in machine condition monitoring.

In this paper, we propose an unsupervised machine learning
approach for condition monitoring. We improve the segmental
hidden Markov models by a unified observation model with
three components. The first component explicitly uses time,
as in the original segHMM, to describe the possible trending
pattern. The second autoregressive component, as in an AR-
HMM, is intended to depict possible temporal dynamics. The
last contextual component uses information from input sensors.
By unifying these three pieces of important information, we
are able to achieve better unsupervised segmentation results
for sensor time series. The rest of this paper is organized as
follows. In Sect.2, we review previous work. In Sect.3, the
proposed approach is described. We present test results in
Sect.4 and conclude this paper in Sect.5.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4009

2 Related work
Condition monitoring has been applied to a wide range of
machines and applications including aircraft turbine engines
[Menon et al., 2003; Clifton et al., 2008; Sarkar et al., 2012],
wind turbines [Antoniadou et al., 2015], milling machines
[Geramifard, 2013], motor bearings [Marwala, 2012], antenna
systems [Smyth, 1993], hydraulic pumps [Dong, 2008], home
appliances [Parson et al., 2014] and computers [Eskin, 2000].
A variety of algorithms are used, for example, Gaussian mix-
ture models, self-organizing maps, Markov models, switching
Kalman filtering, neural networks, support vector machines,
Gaussian process. Most of them are supervised approaches, re-
quiring training data for the normal class and sometimes each
of the failure classes. Only few work such as [Eskin, 2000;
Antoniadou et al., 2015] proposes unsupervised methods.
However, they usually address a two-class anomaly detection
problem, distinguishing normality from abnormality. A more
detailed discussion about anomaly detection can be found in
[Chandola et al., 2009; Pimentel et al., 2014]. In contrast,
this paper tackles unsupervised multi-class machine condition
monitoring problems.

In change point detection, time series are only segmented
without classification, because a state is exclusively used for
one segment [Xuan and Murphy, 2007; Saatci̧ et al., 2010].
Time series classification [Sarkar et al., 2012; Parson et al.,
2014] contrarily performs classification by assigning a class
label to the entire sequence without segmentation. In com-
parison, we perform segmentation and classification simul-
taneously, as required by condition monitoring. This is also
similarly done in [Hoai and Torre, 2012; Zhou et al., 2013;
Hoai et al., 2011; Oh et al., 2008; Quinn et al., 2009;
Fox et al., 2009; Jiang et al., 2012].

For many time series segmentation algorithms with a linear
observation model [Rabiner, 1989; Yu, 2010; Johnson and
Willsky, 2014; 2013] including ours, the learning is typically
done using the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977]. Markov Chain Monte Carlo (MCMC)
is also used in [Oh et al., 2008; Fox et al., 2009; Johnson and
Willsky, 2013], but is much more time consuming. Nonlinear
models, which use kernel functions to describe the similarity
of observations in different segments, are learned by quadratic
programming [Hoai et al., 2011] or coordinate descent [Zhou
et al., 2013]. These algorithms are also very expensive.

3 The proposed methodology
3.1 Problem definition
Suppose that we have an observation time series y1:T =
y1,y2, ...,yT for a machine. The time stamp t starts from
1 and ends at T . yt is a D-dimensional sensor vector con-
sisting of values from D sensors at time t. Our objective
is to partition this time series into K consecutive and non-
overlapping segments denoted by {t1:K , s1:K}. tk indicates
that the k-th segment with a state label sk = i ends at time
tk, where i = 1, 2, ...,M and k = 0, 1, ...,K. M indicates
the total number of possible states. Another way to represent
a partition is simply using a sequence of labels zt for every
time stamp t such that zt = sk if t belongs to the k-th seg-

…

,… ,௧ೖషమାଵܡ ௧ೖషభܡ

௞ିଵݏ	,௞ିଵݐ

,… ,௧ೖషభାଵܡ ௧ೖܡ

௞ݏ	,௞ݐ

௧ೖషమାଵܠ ௧ೖషభܠ ௧ೖషభାଵܠ… ௧ೖܠ

Figure 1: The proposed model. The gray nodes indicate known
variables and white nodes indicate hidden variables.

ment. This latter representation is useful when we evaluate or
visualize the partition results.

3.2 Model description
Fig.1 shows the graphical representation of our proposed
model. It is a snapshot showing how segment k − 1 and
k are related to each other. Our model consists of four major
components.

The initial state model indicates the initial state probability
at time 1

P (s1 = i) = πi. (1)

The transition model indicates the transition probability
from state sk−1 to the next state sk:

P (sk = j|sk−1 = i) = Aij . (2)

Note that self-transition is not possible P (sk = i|sk−1 = i) =
Aii = 0, because in that case there is only one segment instead
of two. We note that some previous work [Kim and Smyth,
2006] specifies a fixed order of state transition (e.g., state 1
can only switch to state 2). In contrast, we allow arbitrary
transitions between states.

The duration model specifies how long a state persists

P (tk|tk−1, sk = i) =
exp(−λi)λ

tk−tk−1−1
i

(tk − tk−1 − 1)!
. (3)

In this work, we consider a poisson distribution. Other choices
include geometric distribution and Gaussian distribution [Yu,
2010].

The observation model in general, assumes that the obser-
vation given a state follows a Gaussian distribution:

P (ytk−1+1:tk |tk−1, tk, sk = i) =

tk∏
t=tk−1+1

N (yt|fi(.),Vi),

(4)
where fi(.) is mean and Vi is covariance. The main differ-
ences of previous approaches lies in the specification of func-
tion fi(.). For most HMM or HSMM models, fi(.) is assumed
to be independent of time t (although fi(.) can depend on dura-
tion tk − tk−1 [Yu, 2010]). The previous segHMM improves
this by defining fi(t) = ai + bit as a function of t [Kim and
Smyth, 2006] or fi(t) = ai + cixt as a function of an input
variable (covariate) xt [Chaubert-Pereira et al., 2010].

4010

We consider a unified observation model defined as follows

fi(tk−1, t,yt−1:t−Q,xt) = θih

=
R∑
r=0

ai,r(t− tk−1)r +
Q∑
q=1

bi,qyt−q +
L∑
l=1

ci,lxt,l. (5)

Our model consists of three parts. The first part is a polyno-
mial function with a order of R over time, the second part
represents an autoregressive component with a order of Q
and the last part depends on a L-dimensional input variable
xt. h = [1 ... (t − tk−1)

R y′t−1 ... y′t−Q xt,1, ..., xt,L]
′ is

a column vector with all known information at time t and
θi = [ai,0 ... ai,R bi,1 ... bi,Q ci,1, ..., ci,L] contains all lin-
ear coefficients to be estimated. Note that θi is a matrix whose
row dimension is equal to D, the dimension of yt. The au-
toregressive part is also referred to as vector autoregressive
model (VAR) [Lütkepohl, 1991]. We will not distinguish AR
and VAR for the rest of this paper.

This unified observation model is the highlight of this paper
as we fuse information from time, previous observations and
input variables. Using input variables for condition monitoring
and anomaly detection is a common practice [Song et al., 2007;
Hayes and Capretz, 2014; Valko et al., 2011]. For example, for
a gas turbine, gas flow, inlet guide vane (IGV) position (that
controls the air flow) and inlet temperature can all be viewed as
input sensors xt. They represent the inputs to the system and
determine the values of other output sensors yt such as power,
compressor temperatures and pressures, which are the main
indicators of the performance and status of a gas turbine. The
autoregressive part involving previous observations captures
the dynamics of a machine, which provides extra information
missed by using input variables alone. Finally, a failure often
develops over time and exhibits a trending pattern. This is
covered by the polynomial function over time in our model. If
we exclude this polynomial component, to depict a trending
pattern, we may have to use multiple states, one for each stage
of the trend. Due to the additive nature of our model, we can
easily add a new component if extra information is available or
remove an existing component if it is not needed. This makes
our model very flexible.

We have assumed a linear relationship between the parame-
ters θi and constants h. The magnitude of the coefficient for a
component indicates the importance of this component to the
observation. This makes our model very interpretable. It is not
difficult to extend fi(.) to a nonlinear function. For example,
if we consider a Gaussian process [Rasmussen and Williams,
2006] with Gaussian kernel functions, all linear coefficients
can be converted into the length scale parameters in the Gaus-
sian kernel. However, in that case, the factorized form of (4)
doesn’t hold any more, therefore, the training complexity will
be higher.

3.3 Training
During training, we are usually given N sequences. The n-th
sequence consists of an output variable sequence Yn = y

(n)
1:Tn

and an input variable sequence Xn = x
(n)
1:Tn

. The task of
training is to learn the parameters including initial state prob-
ability πi, transition probability Aij , duration parameter λi,

observation model coefficients θi and covariance Vi, where
i, j = 1, 2, ...,M . Let Ψ = {π,A,λ,θ,V} denote all param-
eters. We employ the Expectation-Maximization algorithm
[Dempster et al., 1977] to learn Ψ by maximizing the log
likelihood of all sequences logP (Y1:N , |X1:N ,Ψ).

In the E-step, based on the current parameter estimation, we
compute the following posterior distribution

α(t
(n)
k , s

(n)
k) =P (y

(n)

1:t
(n)
k

, s
(n)
k ends at t(n)k) (6)

=
∑

t
(n)
k−1<t

(n)
k ,s

(n)
k−1

α(t
(n)
k−1, s

(n)
k−1)P (yt(n)

k−1+1:t
(n)
k

|s(n)k)

P (t
(n)
k |t

(n)
k−1, s

(n)
k)P (s

(n)
k |s

(n)
k−1)

β(t
(n)
k−1, s

(n)
k−1) =P (y

(n)

t
(n)
k−1+1:Tn

|s(n)k−1 ends at t(n)k−1) (7)

=
∑

t
(n)
k >t

(n)
k−1,s

(n)
k

β(t
(n)
k , s

(n)
k)P (y

(n)

t
(n)
k−1+1:t

(n)
k

|s(n)k)

P (t
(n)
k |t

(n)
k−1, s

(n)
k)P (s

(n)
k |s

(n)
k−1)

The above procedure is often referred to as forward-backward
algorithm [Rabiner, 1989; Yu, 2010]. All probabilities in-
volved in (6) and (7) are defined in (1-4). It is important to
view k as any segment (instead of the k-th segment) and k− 1
as its previous segment, because all parameters are not de-
pendent on the the actual segment number (but only on its
associated state sk). By integrating out the actual number of
segments, we also reduce the complexity of the algorithm.

Once α(t
(n)
k , s

(n)
k) and β(t

(n)
k , s

(n)
k) are in place, it is

straightforward to compute

P (t
(n)
k−1, s

(n)
k−1, t

(n)
k , s

(n)
k |Yn) (8)

= P (s
(n)
k−1 ends at t(n)k−1, s

(n)
k ends at t(n)k |Yn)

∝ α(t
(n)
k−1, s

(n)
k−1)P (y

(n)

t
(n)
k−1+1:t

(n)
k

|s(n)k)

P (t
(n)
k |t

(n)
k−1, s

(n)
k)P (s

(n)
k |s

(n)
k−1)β(t

(n)
k , s

(n)
k).

Based on (8), we will compute posterior distributions that
are directly used in the M-step.

P (t
(n)
k−1, t

(n)
k , s

(n)
k |Yn) =

∑
s
(n)
k−1

P (t
(n)
k−1, s

(n)
k−1, t

(n)
k , s

(n)
k |Yn).

(9)
P (s

(n)
k−1, s

(n)
k |Yn) =

∑
t
(n)
k−1<t

(n)
k

P (t
(n)
k−1, s

(n)
k−1, t

(n)
k , s

(n)
k |Yn).

(10)
(9) is used to estimate the parameters for the duration model
(λ in (3)) and observation model (θ and V in (4)). (10) is used
to estimate the parameters for the initial state model (π in (1))
and transition model (A in (2)). All parameters are estimated
in analytical forms.

Pruning. We start the EM iterations with M = 10 states
(obtained by randomly sampling training sequences). During
EM iterations, we will prune a state if it is not supported by
the data. Specifically, if a state i has a very low accumulative

4011

posterior probability
∑N
n=1

∑Tn

t=1 P (z
(n)
t = i|Yn) < 0.1, we

will prune this state so the M can be reduced gradually. We
found that using Poisson distribution for the duration model
helps pruning (or merging of states). We initialize λi to being
the average sequence length. This gives a broad prior for the
duration such that the state whose observation model fits better
will become more dominant. In contrast, using geometric
distribution in the duration model doesn’t have this property,
because geometric distribution peaks at short duration and
thus encourages shorter state (segment). For similar reasons,
HMM doesn’t have this nice property, either.

Numerical stability. The above algorithm as it often suf-
fers numerical stability problems. The reason is that the
EM iterations often involve multiplication of several expo-
nential terms. If two such terms become extremely small or
large, we may have an underflow or overflow problem, re-
spectively. To overcome this, we compute both α(.) and β(.)
in the log domain. The multiplication of two exponential
terms exp(u) and exp(v) is simply u + v in the log domain.
For adding two exponential terms, we take the maximum
of u and v, which for example is u, and the result will be
u + log(1 + exp(v − u)). This can be easily extended to
operations involving more than two exponential terms. Once
logP (t

(n)
k−1, s

(n)
k−1, t

(n)
k , s

(n)
k |Yn) is obtained in this way, we

convert it back into the P (t(n)k−1, s
(n)
k−1, t

(n)
k , s

(n)
k |Yn) to com-

plete the remaining EM computations.
Complexity. The complexity of training is O(NT 2M2),

where N is number of sequences, T is the maximum length
of all sequences and M is the number of states. This is more
expensive than O(NTM2), the cost of training a HMM.

3.4 Monitoring
Once our model is trained, the standard way to find the best
partition of a sequence is by using the Viterbi algorithm [Ra-
biner, 1989; Yu, 2010]. The complexity is O(T 2M2) and it
can be done online without iteration. We note that for real-
time application, the most recent time t may not be the end of
a segment as we have assumed in training. This situation is
often referred to being right censored [Yu, 2010], in which we
have to consider all possible ending point ≥ t for the current
segment. The duration model will play a larger role in this
situation, because we only have observations up to t. This
will demand more training data to assure an accurate duration
model. For our applications, relying more on the observation
model than the duration model is more reasonable and thus
we still assume that the current segment ends at t.

4 Test results
Under the unsupervised setting, many existing condition mon-
itoring algorithms that require labels for training cannot be
used. Therefore, we focus on comparing unsupervised HMM-
based methods that are widely used and achieve impressive
performances. Many such methods can be represented by our
proposed unifying model. They differ by which information
do we use in the observation component in (5). Let “HSMM”,
“t”, “AR”, “C” denote hidden semi-Markov model, using time
component, using autoregressive component and using contex-
tual component, respectively. Thus, in a t-AR-HSMM model,

only time and autoregressive parts are used, i.e., ci,l in (5) is
preset to zero. In a HSMM model, only ai,0 in (5) is used.
We can similarly define other possible combinations. Note
that t-HSMM is equivalent to segHMM. Our model can also
be easily converted into hidden Markov models (HMM) by
removing the duration model (thus no time component) and
allowing self transition. For example, C-HMM means that
only contextual part is used in the observation model.

Note that if a method, either HMM-based or HSMM-based,
does not use input variables, we will append input variables
xt to the end of yt. By doing this, different models are using
the same data, but in a different way, either conditionally or
jointly. All above models are implemented in matlab. For all
tests conducted, we set the order of the polynomial function
R = 1 and order of the autoregressive component Q = 1. The
initial number of states is set to M = 10.

We conduct several tests to evaluate the performance of the
proposed algorithm. These include two gas turbine data sets
(from Siemens Energy), a truck data set (from Siemens Mobil-
ity) and the honeybee data set [Oh et al., 2008]. For test cases
where we have ground truth label for every time stamp z∗t , we
can evaluate the performance of an algorithm quantitatively,
as similarly done by other unsupervised techniques [Fox et al.,
2009]. First, we convert the best partition obtained after the
Viterbi algorithm into a label sequence zt. However, the label
may not match that of z∗t even if they correspond to the same
segment. Therefore, for each ground truth label i, we find
the corresponding label j produced by an algorithm that has
the most overlap with i and map j to i. We repeat this for all
ground truth labels. Note that this remapping doesn’t change
the segmentation result but only re-order its states. Finally, we
define the classification rate Pc as Pc =

∑T
t=1 δ(zt−z

∗
t)

T , where
δ(zt − z∗t) = 1 if zt = z∗t and zero otherwise. Unmatched la-
bels either from ground truth or results all lead to classification
errors.

4.1 Gas turbine performance data
We consider six sequences from power generation. Each se-
quence represents a different gas turbine with about 10 months
of operation data. The data resolution is one day. We focus on
the power sensor as the output sensor yt (D = 1), because it
is the most important performance indicator for a gas turbine.
L = 3 input sensors including gas flow, IGV position and inlet
temperature (Fig.2) are used.

Since we intend to learn behaviors of different machines
jointly, data normalization is needed. One standard approach
is to normalize each sensor to zero mean and unit variance.
We instead normalize data by dividing each sensor over its cor-
responding maximum value. By doing this, we maintain the
physical meaning of zero, which indicates a machine shutdown
and this is true for all machines. If we use the standard nor-
malization method, zero is likely to be converted to a negative
value for shutdown period and can be different for different
machines.

For this data set, we don’t have ground truth labels. Our
goal is to apply our t-AR-C-HSMM to blindly partition all six
sequences, and find states indicating outliers and performance
differences, shared through all units. After the EM algorithm
converges, only M = 4 states remain while the other 6 are

4012

0 50 100 150 200 250 300
Time (days)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Gas flow

Po
w

er

state 1
state 2
state 3

(b)

0 50 100 150 200 250 300
Time (days)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gas flow

Po
w

er

state 1
state 3
state 4

(d)

Figure 2: Gas turbine performance data and results. (a) displays the output sensor (power) and three input sensors (gas flow, IGV
position, inlet temperature) and our partition result for the first gas turbine, respectively. (b) shows the power vs. gas flow plot for
the first gas turbine. (c) and (d) show similar contents for the fourth gas turbine. A total of four states are found and shared by all
six machines. They are denoted by different colors and symbols.

State i ai,0 ai,1 bi,1 ci,1 ci,2 ci,3

1 0.002 0.000 0.005 0.954 0.015 −0.007
2 −0.008 0.000 0.012 1.040 0.055 −0.050
3 0.114 −0.029 −0.051 0.180 0.734 0.010
4 0.535 −0.000 0.000 −0.000 0.492 −0.226

Table 1: Learned coefficients of the observation model for
the gas turbine performance data. The second through the
sixth columns correspond to the coefficients of the time com-
ponent, autoregressive component and contextual components,
respectively.

pruned by our algorithm automatically. Table 1 shows all
estimated observation coefficients. Gas flow appears to have
the most impact on power because its corresponding coeffi-
cient (ci,1 in the fifth column) is the highest for the first two
states. Autoregressive coefficient (bi,1 in the fourth column)
is the lowest, implying that power is quite independent from
its previous value. This can be attributed to the low resolution
we use: after one day, little dynamics is left.

Figs.2(a) and 2(c) show sensor signals and our partition
results for the first and fourth gas turbines, respectively. To
make more sense out of the partition result, we show Figs.2(b)
and 2(d) as well, where power is plotted against gas flow and
different states are marked by different colors and symbols.
This is a nice view to indicate the performance of a gas turbine.
Typically, a higher power is desired given the same gas flow.
A diagonal line is drawn to better visualize the performance
difference. State 1 (black stars) appears to represent the most
dominant mode (also see Fig.2(a)) of this gas turbine when
the performance is slightly lower than the diagonal line. This
is confirmed by its corresponding c1,1 = 0.954 (c1,1 = 1 rep-
resenting the diagonal line) in Table 1. State 2 (blue squares)
represents a higher efficiency with most data points above the
diagonal line because of its c2,1 = 1.040.

State 3 clearly indicates an under-performing case. Power
is much less correlated with gas flow and most data points
are well below the diagonal line (red circles in Fig.2(b)). In
addition, the first order polynomial coefficient a3,1 = −0.029
captures the downward trending of power around day 260 in
the first plot of Fig.2(a). State 3 also covers some outlier time
stamps when power is negative. This is unrealistic and could
be due to sensor reading error.

State 4 is not shown in the first gas turbine, but has a sig-
nificant presence in the fourth gas turbine (green curves or
triangles in Figs.2(c) and 2(d)). A key characteristic of state 4

Gas turbine state 1 state 2 state 3 state 4
1 0.847 0.100 0.053 0.000
2 0.963 0.027 0.010 0.000
3 0.037 0.957 0.006 0.000
4 0.694 0.000 0.010 0.296
5 0.199 0.000 0.000 0.801
6 0.944 0.000 0.056 0.000

Table 2: Percentage of states for gas turbine performance
data. For example, Gas turbine one is in state 1 in 0.847 of its
operation time.

is that we have power even when gas flow is zero (e.g., day 60
in Fig.2(c)). This again is likely due to sensor reading error.
However, even when gas flow reading is normal (e.g., day 40
in Fig.2(c)), that data point is still classified as state 3. This
can be attributed to the duration model that has a tendency to
merge small segments into a big one if the resulting model
error is tolerable.

Table 2 shows the percentage of four states in each of the six
gas turbines. Based on the above analysis, we can conclude
that the third gas turbine is the most efficient, because it has the
most presence (0.957) of the most efficient state 2. The second
gas turbine is mostly operating in the slightly less efficient
state 1. Both the first and sixth gas turbine have about 0.05 of
their time running in the very inefficient state 3. Therefore, a
maintenance inspection should be suggested. The data from
the fifth gas turbine appear to have many sensor reading errors
because 0.801 of its time is in the unrealistic state 4. So a data
cleaning is recommended.

4.2 Gas turbine failure data
In this section, we use gas turbine data containing a common
failure due to cracks in the blade path component. This is
usually reflected by a drop of the blade path temperatures.
Typically, multiple (in our case eight) temperature sensors are
installed in different locations of the blade path. The sensor
closest to the crack will show the most obvious symptom and
thus guide engineers to inspect that particular location. In this
data set, there is one sequence with a resolution of 45 minutes.
The beginning part of the sequence is normal and the failure
shows in the last part. Therefore, we have ground truth with
two states, one for normality and one for the failure.

We use D = 8 output sensors, all blade path temperature
sensors as noted above and L = 3 input sensors including
power, inlet temperature and the average of all output sensors.
The last input variable is a calculated value, which is widely

4013

0 50 100 150 200
Time (45 minutes)

Figure 3: Gas turbine failure data and results. The first six
plots shows the three output variables and three input vari-
ables. The last three plots show the ground truth partition, the
partition found by t-AR-HSMM model and t-AR-C-HSMM
model, respectively.

used in power generation. The basic assumption is that even if
one temperature has deviation, the average temperature should
still be stable and can be used to represent the normal behavior.

Fig.3 shows three output sensors and three input sensors.
The third output sensor carries the failure symptom of a down-
ward trending pattern at the end of the period. The ground truth
labels, the partition results from a t-AR-HSMM and our model
are also shown at the bottom. Classification rates for all mod-
els are shown in the third row of Table 3. Our model achieves
the highest 0.980. We detect the failure slightly earlier than
the ground truth annotated by the human expert (Fig.3), which
may be more preferable. The t-AR-HSMM model creates an
extra state at the begin of the sequence, which leads to a poor
Pc = 0.680. This can be attributed to the following. Without
using contextual component, the first part of the sequence
(especially around day 60 in Fig.3) does look different from
the rest. However, in the context of input sensors, the output
sensors still follow the same state. This shows the benefit of
using contextual information.

4.3 Truck data
We use operation data from a truck. We consider two types
of failures. The first type is caused by the failure of the ex-
haust filter, which results in a hike in exhaust air pressure.
The second type is due to blocking of the grill, which leads
to an increase of engine intake manifold temperature. There-
fore, we use D = 2 input sensors including the exhaust air
pressure and engine intake manifold temperature to identify
these two failures. L = 7 other sensors including charge air
cooler temperature, road speed, throttle, engine load, cooling
temperature, ambient air temperature and altitude are used as
input sensors.

There are N = 3 sequences used in this test, representing
normality (ground truth state 1), exhaust filter failure (ground
truth state 2), grill failure (ground truth state 3), respectively.
Therefore, there is only one segment in each sequence. Each
sequence has a resolution of one minute. Fig.4 shows all three
sequences with two output sensors and the first four input
sensors. The exhaust filter failure appears to be apparent:
when it occurs, the exhaust air pressure (first plot in Fig.4(b))
is much higher than that in normal condition (first plot in
Figs.4(a) and 4(c)). The grill blocking failure seems to be

0 100 200 300 400 500 600
Time

Figure 5: Honeybee data and results. The first four plots shows
the honeybee’s x, y coordinates and sine, cosine of its head
angle. The last two plots show the ground truth partition, the
partition found by our AR-HSMM model, respectively.

more subtle, because only a slight increase in engine intake
manifold temperature is observable (second plot in Fig.4(c)
compared to those in Figs.4(a) and 4(b)).

Our model and most other HSMM-based models are able to
get perfect Pc = 1.000 for all three sequences (last three rows
in Table 3). However, we note that t-HSMM gets Pc = 0.000
for the first sequence. A detailed check turns out that this
model mis-classifies all data points in the first sequence to state
3. This suggests that using more evidence such as contextual
information can increase modeling accuracy.

4.4 Honeybee data

This dataset has N = 6 sequences, each with D = 4 signals
indicating the honeybee’s x, y coordinates and sine, cosine
of its head angle. Fig.5 shows all four signals of a sample
sequence. There are three states to be identified: waggle, left
turn and right turn, denoted by black, blue and red, respec-
tively. This data set is not from machine condition monitoring
field, but is well studied by many time series segmentation
algorithms.

Since there is no trending pattern within a state and no
concept of contextual variables, we use AR-HSMM as our
model. There are two settings to conduct the test. The first
setting is unsupervised as we have been doing so far: an
algorithm is trained using all six sequences without using any
ground truth labels. The results are then evaluated against the
ground truth. The second setting is supervised with a leave-
one-out strategy: five sequences with the ground truth labels
are used for training and the remaining sequence is for testing.
Following [Fox et al., 2009], we fix the partitions for all five
training sequences and learn our model. Then we apply the
learned model with fixed parameter Ω to find the partition of
the test sequence.

Table 4 shows the classification rate for all algorithms. In
the supervised setting, SVM [Hoai et al., 2011] performs
the best, possibly due to the nonlinear nature of a honey-
bee’s trajectories. In the unsupervised setting, our results
(last column) are better than those of [Fox et al., 2009;
Hoai and Torre, 2012] but worse than that of [Zhou et al.,
2013]. However, we note that both [Zhou et al., 2013] and
[Oh et al., 2008] use domain knowledge specific to this prob-
lem in their model, which helps to improve their results.

4014

Models HMM AR-HMM C-HMM AR-C-HMM HSMM t-HSMM AR-HSMM C-HSMM t-AR-HSMM t-C-HSMM AR-C-HSMM t-AR-C-HSMM

Gas 0.557 0.533 0.631 0.612 0.910 0.750 0.939 0.926 0.680 0.828 0.885 0.980

Truck 1 0.847 0.943 1.000 0.838 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Truck 2 0.758 0.847 0.718 0.758 1.000 1.000 0.919 1.000 0.919 1.000 1.000 1.000

Truck 3 0.634 0.927 0.945 0.512 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Classification rates for different models on different datasets. “HMM” represents hidden Markov model and “HSMM”
represents hidden semi-Markov model. “t”, “AR” or “C” indicates whether we use time component, autoregressive component or
contextual component in the observation model.

0 10 20 30 40 50 60 70 80 90 100
Time (minutes)

(a)

0 20 40 60 80 100 120
Time (minutes)

(b)

0 20 40 60 80 100 120 140 160
Time (minutes)

(c)

Figure 4: Truck data and results. (a),(b) and (c) show the normal, exhaust filter failure and grill blocking failure sequence,
respectively. Each figure displays two output sensors and four input sensors, respectively.

Test [Oh] [Hoai’11] s-[Fox] s-ours [Fox] [Hoai’12] [Zhou] Ours
1 0.759 0.859 0.659 0.784 0.465 0.510 0.845 0.635
2 0.924 0.926 0.885 0.844 0.441 0.666 0.925 0.638
3 0.831 0.813 0.792 0.846 0.456 0.483 0.600 0.620
4 0.934 0.923 0.869 0.918 0.832 0.916 0.922 0.930
5 0.904 0.906 0.923 0.905 0.932 0.912 0.878 0.920
6 0.910 0.931 0.891 0.893 0.887 0.888 0.928 0.900

Ave 0.877 0.893 0.837 0.865 0.669 0.729 0.850 0.774

Table 4: Classification rates Pc for different algorithms on the
honeybee dataset. The first four methods are supervised and
the last four are unsupervised. s-[Fox] and s-ours represent
the supervised version of [Fox et al., 2009] and our method,
respectively. The last row is the average Pc for all algorithms.

5 Summary
This paper tackles the machine condition monitoring problem
under the unsupervised and multi-class setting, which is often
neglected but becomes increasingly important in the era of big
data. We present a new time series segmentation approach
based on segmental hidden Markov model. We model the
sensor observation as a unified function of three components
including time, previous observations and contextual variables,
which is proven to be suitable for machine condition monitor-
ing. One big challenge of unsupervised approaches is how to
interpret the results. Based on the intuitive meaning associated
with the parameters, we show how the differences between
states can indicate different operating modes and efficiencies
of a machine. A variety of tests are conducted to show the
effectiveness of the proposed model. Due to the additive na-
ture of our observation model, we can easily introduce a new
component if extra information is available or remove an ex-
isting component if it is not needed. This makes our model
very flexible to be easily extended to other applications.

In this work, all coefficients in the observation model are
free parameters. Overfitting doesn’t appear to be a concern
so far for two reasons. First, the parameters for each state
are shared across segments and sequences (like a multi-task
setting). Second, we keep the time and AR components rather
simple by setting R = Q = 1. However, in some other
applications, overfitting can occur with increasing model com-

plexity or decreasing training set size. Parameter reduction
techniques similar to LASSO [Jiang et al., 2012] and principal
component analysis [Chang et al., 2014] have been introduced
recently in several VAR-based approaches. One possible fu-
ture direction of our model is to introduce regularization for
variable selection as similarly done in [Jiang et al., 2012]. Our
optimization objective will then consist of the log likelihood
for the standard EM algorithm and this new regularization
term. Another future direction is to extend our linear model
to a nonlinear model such as Gaussian process [Rasmussen
and Williams, 2006], as noted earlier. Gaussian process has a
built-in mechanism for relevance determination.

Finally, although our training via the EM algorithm is much
faster than MCMC-based algorithms and nonlinear segmen-
tation algorithms, our algorithm still has a complexity pro-
portional to T 2, the square of a sequence length. This may
become prohibitive for long sequences. One possible improve-
ment is a multi-resolution coarse-to-fine approach that breaks
an original sequence into many sub-sequences with multiple
levels.

References
[Antoniadou et al., 2015] I. Antoniadou, N. Dervilis, E. Pap-

atheou, A. E. Maguire, and K. Worden. Aspects of struc-
tural health and condition monitoring of offshore wind
turbines. Philosophical Transactions of the Royal Society
A, 373, 2015.

[Chandola et al., 2009] V. Chandola, A. Banerjee, and V. Ku-
mar. Anomaly detection: A survey. ACM Computing
Surveys, 41(3):15:1–15:58, 2009.

[Chang et al., 2014] J. Chang, B. Guo, and Q. Yao. Segment-
ing multiple time series by contemporaneous linear trans-
formation. In arXiv:1410.2323, 2014.

[Chaubert-Pereira et al., 2010] F. Chaubert-Pereira, Y. Gue-
don, C. Lavergne, and C. Trottier. Markov and semi-
Markov switching linear mixed models used to identify

4015

forest tree growth components. Biometrics, 66:753–762,
2010.

[Clifton et al., 2008] D. A. Clifton, L. A. Clifton, P. R. Ban-
nister, and L. Tarassenko. Automated novelty detection in
industrial systems. Advances of Computational Intelligence
in Industrial Systems Studies in Computational Intelligence,
116:269–296, 2008.

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and
D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39:1–38, 1977.

[Dong, 2008] M. Dong. A novel approach to equipment
health management based on auto-regressive hidden semi-
Markov model (AR-HSMM). Science in China Series F:
Information Sciences, 51:1291–1304, 2008.

[Eskin, 2000] E. Eskin. Anomaly detection over noisy data
using learned probability distributions. In International
Conference on Machine Learning, 2000.

[Fox et al., 2009] E. B. Fox, A. S. Willsky, E. B. Sudderth,
and M. I. Jordan. Nonparametric Bayesian learning of
switching linear dynamical systems. In Advances in Neural
Information Processing Systems 21, 2009.

[Geramifard, 2013] O. Geramifard. Hidden Markov model-
based methods in condition monitoring of machinery sys-
tems. PhD Thesis, National University of Singapore, 2013.

[Hayes and Capretz, 2014] M. A. Hayes and M. A. M.
Capretz. Contextual anomaly detection in big sensor data.
In IEEE International Congress on Big Data, 2014.

[Hoai and Torre, 2012] M. Hoai and F. De La Torre. Maxi-
mum margin temporal clustering. In International Confer-
ence on Artificial Intelligence and Statistics, 2012.

[Hoai et al., 2011] M. Hoai, Z.-Z. Lan, and F. De la Torre.
Joint segmentation and classification of human actions in
video. In Proceedings of IEEE Conf. on Computer Vision
and Pattern Recognition, 2011.

[Jiang et al., 2012] H. Jiang, A. C. Lozano, and F. Liu. A
bayesian Markov-switching model for sparse dynamic net-
work estimation. In SIAM Conference on Data Mining,
2012.

[Johnson and Willsky, 2013] M. J. Johnson and A. S. Will-
sky. Bayesian nonparametric hidden semi-Markov models.
Journal of Machine Learning Research, 14(1), 2013.

[Johnson and Willsky, 2014] M. J. Johnson and A. S. Willsky.
Stochastic variational inference for Bayesian time series
models. In International Conference on Machine Learning,
2014.

[Kim and Smyth, 2006] S. Kim and P. Smyth. Segmental
hidden Markov models with random effects for waveform
modeling. Journal of Machine Learning Research, 7, 2006.

[Lütkepohl, 1991] H. Lütkepohl. Introduction to Multiple
Time Series Analysis. Springer-Verlag, Berlin, 1991.

[Marwala, 2012] T. Marwala. Condition monitoring using
computational intelligence methods: applications in me-
chanical and electrical systems. Springer, 2012.

[Menon et al., 2003] S. Menon, O. Uluyol, K. Kim, and E. O.
Nwadiogbu. Incipient fault detection and diagnosis in tur-
bine engines using hidden Markov models. In ASME Turbo
Expo., 2003.

[Oh et al., 2008] S. M. Oh, J. M. Rehg, T. Balch, and F. Del-
laert. Learning and inferring motion patterns using para-
metric segmental switching linear dynamic systems. Inter-
national Journal of Computer Vision, 77:103–124, 2008.

[Parson et al., 2014] O. Parson, S. Ghosh, M. Weal, and
A. Rogers. An unsupervised training method for non-
intrusive appliance load monitoring. Artificial Intelligence,
217:1–19, 2014.

[Pimentel et al., 2014] M. A. F. Pimentel, D. A. Clifton,
L. Clifton, and L. Tarassenko. A review of novelty de-
tection. Signal Processing, 99:215–249, 2014.

[Quinn et al., 2009] J. A. Quinn, C. K. I. Williams, and
N. McIntosh. Factorial switching linear dynamical systems
applied to physiological condition monitoring. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 31:1537–
1551, 2009.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition. In
Proceedings of the IEEE, pages 257–286, 1989.

[Rasmussen and Williams, 2006] C. E. Rasmussen and
C. K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[Saatci̧ et al., 2010] Y. Saatci̧, R. Turner, and C. E. Ras-
mussen. Gaussian process change point models. In In-
ternational Conference on Machine Learning, 2010.

[Sarkar et al., 2012] S. Sarkar, K. Mukherjee, S. Sarkar, and
A. Ray. Symbolic transient time-series analysis for fault de-
tection in aircraft gas turbine engines. In American Control
Conference, 2012.

[Smyth, 1993] P. Smyth. Markov monitoring with unknown
states. IEEE Journal On Selected Areas In Communica-
tions, 12:1600–1612, 1993.

[Song et al., 2007] X. Song, M. Wu, C. Jermaine, and
S. Ranka. Conditional anomaly detection. IEEE Trans. on
Knowledge and Data Engineering, 19(5):631–645, 2007.

[Valko et al., 2011] M. Valko, B. Kvetony, H. Valizadeganz,
G. F. Cooperx, and M. Hauskrecht. Conditional anomaly
detection with soft harmonic functions. In IEEE Interna-
tional Conference on Data Mining, 2011.

[Xuan and Murphy, 2007] X. Xuan and K. Murphy. Mod-
eling changing dependency structure in multivariate time
series. In International Conference on Machine Learning,
2007.

[Yu, 2010] S. Yu. Hidden semi-Markov models. Artificial
Intelligence, 174(2):215–243, 2010.

[Zhou et al., 2013] F. Zhou, F. De la Torre, and J. K. Hodgins.
Hierarchical aligned cluster analysis for temporal clustering
of human motion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(3), 2013.

4016

