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Abstract

The problem of incomplete labels is frequently en-
countered in many application domains where the
training labels are obtained via crowd-sourcing.
The label incompleteness significantly increases
the difficulty of acquiring accurate multi-label pre-
diction models. In this paper, we propose a novel
semi-supervised multi-label method that integrates
low-rank label matrix recovery into the manifold
regularized vector-valued prediction framework to
address multi-label learning with incomplete la-
bels. The proposed method is formulated as a
convex but non-smooth joint optimization prob-
lem over the latent label matrix and the prediction
model parameters. We then develop a fast prox-
imal gradient descent with continuation algorithm
to solve it for a global optimal solution. The effi-
cacy of the proposed approach is demonstrated on
multiple multi-label datasets, comparing to related
methods that handle incomplete labels.

1 Introduction

Multi-label classification is an essential problem in many ap-
plication domains, including image annotation [Huiskes and
Lew, 20081, video classification [Snoek et al., 2006], docu-
ment categorization [Srivastava and Zane-Ulman, 2002], and
gene function prediction [Elisseeff and Weston, 2002]. Dif-
ferent from standard multi-class classification problems, a
multi-label prediction function maps an input instance to a
vector of interdependent multiple labels. Although multi-
label classification can be transformed into a set of inde-
pendent binary classification problems [Joachims, 1998], this
mechanism fails to take the label interdependency into ac-
count. Many multi-label learning methods hence have been
developed with a central theme of capturing label depen-
dence; e.g., [Guo and Schuurmans, 2011; Elisseeff and We-
ston, 2002; Minh and Sindhwani, 2011]. A few works have
also investigated exploiting unlabeled data to perform semi-
supervised multi-label learning [Guo and Schuurmans, 2012;
Luo et al., 2013]. These methods nevertheless have all as-
sumed training data with complete label assignments.
Complete training labels however are hard to collect in real
world problems. In many applications training labels are ob-
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tained via crowd-sourcing, which typically leads to label in-
completeness [Heymann et al., 2008]. For example, in image
or text tagging, human labelers tend to provide only a few
keyword labels that describe the most obvious visual or se-
mantic contents, while contents that are rare or ambiguous
can be simply omitted. Moreover, the keyword labels pro-
vided by different labelers for even similar objects can be dif-
ferent, which can also lead to incomplete labels in the uni-
fied label vocabularies from multiple labelers. Label incom-
pleteness can severely degrade the performance of the learned
multi-label classification models, since it will build negative
prediction patterns between the input instances and the miss-
ing labels and further propagate the mistakes into the predic-
tion phase on the test data. This raises the need for learn-
ing multi-label classification models that handle incomplete
labels. Although standard multi-label learning has received
significant attention, multi-label learning with incomplete la-
bels is still far from being well investigated. A number of
previous methods only take label imputation as a preprocess-
ing step [Lin et al., 2013; Wu ef al., 2013; Zhu et al., 2010;
Liu et al., 2010; Sun et al., 2010], which recover labels that
are not optimized for the target prediction models. A few oth-
ers have attempted to take the process of imputing missing la-
bels as part of the prediction model training [Qi er al., 2011;
Bucak et al., 2011; Chen et al., 2013], which however either
involve complex local training or are limited to supervised
learning over the sparsely labeled data.

In this paper, we propose a novel semi-supervised ap-
proach to perform multi-label learning with incomplete la-
bels based on a manifold regularized vector-valued learning
framework. The approach conducts automatic label impu-
tation with a low-rank matrix recovery model that encodes
the natural properties of label existence, while simultane-
ously performing vector-valued multi-label learning on the
completed label matrix by exploiting label correlations. The
unlabeled data is incorporated into the learning process by
enforcing a vector-valued Laplacian manifold regularization.
We formulate the learning process as a joint convex optimiza-
tion problem, and develop a fast proximal gradient descent
with continuation algorithm to solve the optimization prob-
lem for a global solution. Experiments are conducted on a va-
riety types of multi-label datasets, and the proposed method
demonstrates superior performance over a number of state-
of-the-art multi-label methods with incomplete labels.



2 Related Work

Multi-label learning with incomplete labels is a problem that
hinders information retrieval in many application domains,
and has been addressed in a number of previous works. One
class of methods attempts to complete the missing labels be-
fore classifier training as a pre-processing step; for example,
by training only on the labels provided [Yu et al., 2014], per-
forming label completion based on visual similarity and label
co-occurrence [Wu et al., 2013; Zhu et al., 2010], performing
image-specific and tag-specific linear sparse reconstructions
[Lin ef al., 2013], enriching an incomplete tagging with syn-
onyms and hypernyms [Liu et al., 2010], or employing label
graph propagation [Sun et al., 2010]. Unfortunately, these
methods do not directly consider the consequences on multi-
label prediction accuracy, which limits their effectiveness.

A few other works have attempted to consider prediction
accuracy as part of the process of imputing missing labels.
For example, Qi et al. [2011] developed a statistical gener-
ative model for mining partially annotated images. This ap-
proach however involves complex EM training for local op-
timal solutions, and is not discriminatively optimized for the
target prediction task. Bucak et al. [2011] proposed a rank-
ing based multi-label learning method for image annotation
with incomplete labels. Their method exploits the group lasso
regularizer to handle incompletely labeled training data when
estimating the errors in ranking the assigned labels against
unassigned labels. This method however focuses on the pre-
diction model training without exploiting label correlations
for label imputation. It does not exploit the unlabeled data ei-
ther. Chen et al. [2013] proposed a fast image tagging method
for multi-label learning from incompletely labeled data. It
learns two classifiers to predict tag annotations: one attempts
to reconstruct the (unknown) complete tag (label) set from
the few observed tags; the other learns a linear mapping from
image features to the reconstructed tag set. The two classi-
fiers are combined within a joint convex loss function via co-
regularization. Their method again is limited to supervised
training on the sparse and partially labeled data.

Our proposed method in this paper shares similarity with
the work [Chen et al., 2013] in simultaneously learning clas-
sifiers from the input features and reconstructing the labels
in the label space. But our method provides a principled
framework for exploiting key properties of multi-label learn-
ing problems, including the natural label sparsity property of
multi-label data, and the low-rank property of label matrix
induced by the existence of label correlations. Moreover, our
method exploits a vector-valued and kernelized multi-label
classifier to capture label dependence in the learning process
and exploit the unlabeled data via manifold regularization.

3 Approach

In this section, we present a semi-supervised method that
simultaneously performs manifold regularized vector-valued
multi-label learning and low-rank label matrix recovery on
the given training data. By integrating label imputation
and multi-label prediction in a mutually beneficial manner,
this approach is expected to exploit unlabeled data and la-
bel interdependencies to improve multi-label prediction per-
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formance. In particular, we consider a set of ¢ labeled in-
stances Dy = {(x;,y:)}¢_, and a large set of u unlabeled
instances D, = {xi}ij\i ?ﬁ“ for multi-label learning, where
x; € R is the input feature vector for the ¢-th instance, and
yvi € {+1,—1}" is the label vector for the i-th instance.
With incomplete labels, the +1 value in the label vector y;
indicates the ¢-th instance is assigned into the corresponding
class, but —1 value only indicates the unknown status of the
corresponding label.

3.1 Vector-valued Multi-label Learning

Multi-label prediction functions map each instance x into a
label vector y € ) in the vector space ), where ) = R"
and n is the number of classes. That is, given labeled training
data, we aim to learn a vector-valued function f : X +— ).
The formalism of vector-valued Reproducing Kernel Hilbert
Spaces (RKHS) [Micchelli and Pontil, 2005] can be naturally
adopted for multi-label function estimation. With regular-
ized least squares loss function, the multi-label learning in
the vector-valued RKHS [Minh and Sindhwani, 2011] can be
formulated as

¢
1 2 2
arg min — f(x:) —yilly +vallf (D
g mi é;H (xi) = yilly 1fl%

for y4 > 0, where K denotes an operator-valued positive
definite kernel and H x is a )-valued RKHS with reproduc-
ing kernel K. We expect the operator-valued kernel K can
provide a mechanism to capture the dependencies among the
multiple labels. Hence in this work, we consider the follow-
ing matrix-valued kernel employed in [Minh and Sindhwani,
2011]

K(Xiaxj) = k(xi7xj)Q7 (2)
for  Q=r0Ll,+(1—70)I, 3)

where k(-, -) is a scalar-valued kernel function, I, isann x n

identity matrix, Llut is the pseudo-inverse of the n x n Lapla-
cian matrix L,,; over the output label graph. The output
nearest-neighbor label graph can be constructed from the la-

bel matrix,
Ve =[yi, v € {+1, -1}, 4)

by taking each label, i.e., each column of Yy, as a data point.
The Laplacian matrix L,,,; can then be computed on this la-
bel graph. The trade-off parameter o satisfies vo € [0, 1],
and @ is thus a symmetric and positive semi-definite matrix.
The solution of (1) takes the form of f* = Zle Ky, a; with
{a;,i=1,---,£} C Y [Micchelli and Pontil, 2005].

3.2 Laplacian Manifold Regularization

To exploit the geometric structural information from the large
number of unlabeled instances for prediction function learn-
ing, graph Laplacian based manifold regularization [Belkin
et al., 2005; 2006] can be incorporated into the learning pro-
cess. Let W € {0, 1}V*¥ be the adjacency matrix of the k-
nearest-neighbor graph constructed from the input data, such
that W;; = W;; = 1ifi € Ny(j) or j € Ni(i), and



W;; = Wj; = 0 otherwise, where Ny (i) denotes the index
set of the k nearest neighbors of the i-th instance. The Lapla-
cian L of the input graph can then be obtained as L = D — W
with the diagonal matrix D;; = Zjvzl Wij.

Let YV denote the N-direct product of V. For f € Hy,
the function prediction over all the data instances is f =
(f(x1),..., f(xn)) € YN. Then based on the Laplacian
matrix, the semi-supervised multi-label learning with vector-
valued manifold regularization can be formulated as

1 4
7 D NFGa) =yillHHral i+l ME)yw
i=1
&)

where v4,vr>0. The matrix M is a symmetric positive op-
erator that satisfies (y, My)y~ > 0. Here it will be set as
M = L ® I,,, where ® denotes the Kronecker matrix prod-
uct, I, is the n x n identity matrix, L is the N x N graph
Laplacian matrix described above.

Let G be the N x N symmetric and positive semi-definite
Gram matrix produced by the scalar kernel k(-, -) over all the
N data points. Following [Minh and Sindhwani, 2011], we
have the following proposition.

arg min
feHk

Proposition 1. The minimization problem (5) has a unique
solution

f =50 K, (©)

forvectors a; € ) that satisfy the following linear equation
(JNG+ 1 LG)AQ + tyaA =Y, @)
where Jév is an N x N diagonal matrix, whose first { di-

agonal entries have value 1, and the rest have value 0. The
matrices A and 'Y are defined as

A:[al,... Y:[y17-'~

wherey; =0" fori =£+1,...,N.

Proof: The unique solution (6) can be obtained through
Representer Theorem [Micchelli and Pontil, 2005; Minh and
Sindhwani, 2011]. We can then have

Fx) =0 K(x,x;)a. ©)

By plugging the instantiations of (9) over all data points back
into the objective function (5), and then setting its derivative
regarding A to zeros, one can get (7). O

T

aaN]T7 7yN] ) (8)

3.3 Semi-supervised Learning with Incomplete
Labels

When the label matrix Yy in (4) is incomplete, that is, Y;;
—1 may either indicate that the i-th instance does not have
the j-th label or the j-th label is omitted for the i-th instance,
the performance of semi-supervised multi-label learning (5)
based on Y, will inevitably degrade. To address this prob-
lem, we propose to recover the underlying true label matrix
Z from Y, by augmenting Y, via Z = Y, + E, where E is
an ¢ X m nonnegative augmenting matrix that contains the la-
bels missed from Y}, and perform vector-valued multi-label
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learning over the latent true label matrix Z. Since labels gen-
erally present strong correlation patterns and dependence re-
lationships, the latent true label matrix Z should naturally be
low-rank. Moreover, since each instance is normally assigned
only a few positive labels, Z should also be sparse. Hence we
formulate the learning process with incomplete labels as the
following joint optimization problem

¢
. 1 2 2
[ z;llf(xz) = i3 +all I
+y(E, M)y~ + p([|Z]|« + A E]l1)  (10)
subjectto Z =Y, + FE; E>0

where Z = [z1,...,2¢] ", jr and ) are trade-off parameters,
other parameters are same as in (5); || - ||« and || - ||; denote
the trace norm and L1-norm over matrix respectively. Trace
norm is a convex envelope of the rank function. By adding
IZ]|« into the minimization objective function, we encode
the low-rank property of the underlying true label matrix Z
to capture label correlations. Since Y} is given, the L1-norm
regularization over E will encode the sparsity property of Z.
This joint minimization problem simultaneously performs la-
bel matrix recovery within a low-rank sparse matrix recovery
framework and conducts semi-supervised multi-label learn-
ing with the manifold regularized vector-valued model.

Note the minimization over f € Hy in (10) will again lead
to the solution in (6) or (9). By plugging the instantiations of
(9) over the training data back into the objective function in
(10), the optimization problem above can be transformed into
the following concrete formulation:

(11

+ytr(QTATGTLGAQ) + p (|1 Z]« + Al Ell1)
subjectto Z=Y,+E; E>0

1
i 75T GAQ = ZIIE + 7au(GAQAT)

where S = [I;,00.,] is a £ x N selection matrix, which
has a left identity matrix of size ¢ and zeros in all other en-
tries; A € RV*" is the parameter matrix defined in (8); |- ||
denotes the Frobenius norm. Note after solving this optimiza-
tion problem for A, a new test instance x can be classified by
using the kernelized prediction function in (9).

4 Learning Algorithm

The joint optimization problem in (11) is convex, but non-
smooth, due to the existence of the trace norm and L1-norm
operators. We develop a fast proximal gradient with continu-
ation algorithm to solve this minimization problem.

For the convenience of optimization, we first consider a re-
laxed intermediate formulation of (11) by replacing the equal-
ity constraint with a penalty regularization term

min
A,Z,E>0

1
ﬂ$YMQ—m@+mma%mU (12)

+tr(QTATGTLGAQ)
+u(1Z]lx + M EllL) + pll B+ Ye = Z|



where p is a parameter that controls the enforcement degree
of the equality constraint. With a continuation optimization
algorithm below, we can gradually increase p to enforce the
equality constraint in (11) and solve (12) as an intermediate
step for solving the optimization problem (11).

For simplicity of presentation, we use O to denote all the
parameters such that © = [A; Z; E]. Then the objective func-
tion of (12) can be expressed as the sum of two functions,
such as

@{rggo F(©) = h(®)+g(0) (13)
where
h(©) = 1|\S,ZVGAQ — Z||% 4 yatr(GAQAT) (14)

J4
+te(QTATGTLGAQ) + p|E +Ye — 2%
9(©) = p([|Z]l« + Al E]1) (15)

The first function h(O) is a convex and smooth function and
the second function ¢g(©) is convex but non-smooth.

To develop a proximal gradient optimization method, we
consider the second order approximation of the objective
function F(®). For v > 0, at a given point O©® | we define

M, (0,0 = h©eW) + (e -6 VheWM))

+2llo—6vE+g0) a6
where Vh(©®) is the gradient function of h(-) with respect
to © at the point ©®), Let £, (h) denote the Lipschitz constant
of Vi(©). Then for v > {.(h), this approximate function
becomes an upper bound such that M, (©,01")) > F(0)
[Beck and Teboulle, 2009]. By minimizing M, (©, @(t)),
we can reach the next point ©(*1)

P (0W) = argmin M, (©,01)
©:E>0

2
:argmin{g((a)—l—yu@—@(t)” }7 a7
©:E>0 2 F
where ©) = (1) — LTh(©WM). 1t is equivalent to the fol-
lowing sub-problems

2

)

(AW = argjnin % HA — AW -

(18)

2

)

po(Z®) = argmin ul|Z]. +%HZ—2<“ (19)
Z

R 2
E>0 2 "

which have closed-form solutions. The solution for (18) is
simply p, (A®) = A®) . For the convex minimization with
trace norm in (19), its solution can be computed via singular
value decomposition Z® =UsVT such that

5,y = max (o, 5 ﬁ)  p(Z0)=US,, V. @)
14
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Algorithm 1 Fast Proximal Gradient with Continuation
Input: X € RV*4 Y, € {1, +1}¢*7;
YA, VI, YO, b > 07 A= V max(& n)v
O0<pr <pa<...<pr;n>1
Initialize Z(©) = Y,, E(©) = otxn A0) = gNxn,
0 = [AO); z©), EO)] » =1.
Compute G, L, Q, S}
for pP= [ph p2; - - 7pk] do
Initialize Q) =00 ¢t =1, ¢; = 1.
for iter =1:maxiters do
Lwhile F(p, (1)) > M, (p,(Q®), Q") do
{v=nv}
end while
/ 2
2.0 = pu(Q(t))v dt+1 = w
Qi+ — ) L—l(@(t) —ei-1)
qt+1

>

3.Set t=1t+1.
end for
Set 00 = @(t-1),
end for

The closed-form solution of the minimization problem (20)
with sparsity inducing norm and nonnegativity constraint can
be computed by applying soft-thresholding operator

( ).

where abs(-) is the absolute value function, and the operator
(-)+ = max(-,0),

By setting the next point as ©(¢+1) = p,(©1)), and con-
ducting iterative proximal gradient updates according to (17),
a sequence of points, {@(0)7 e, . .}, can be obtained to
minimize the objective function F(©). To speed up the con-
vergence of the optimization procedure, we further adopt
the fast proximal gradient update scheme from [Beck and
Teboulle, 2009]. Moreover, to enforce the equality constraint
Z =Yy + E, the p parameter in (12) needs to be set as a
large value. To improve the convergence speed, we employ
a batch-mode continuation strategy which starts with a rela-
tively smaller p and then gradually increases the p value af-
ter a certain number of iterations. The overall algorithm is
given in Algorithm 1. In this algorithm, we set A parameter
as A = 1/y/max(¢, n), where (¢, n) is the dimension size of
Y%, according to [Wright et al., 2009], to ensure a robust label
matrix recovery.

~ A
= [ abs(E®) — HA

14

pu(EW) 22)

S Experiments

We report our experimental setting and results in this section.

5.1 Experimental Setting

Datasets. We conducted experiments with six multi-label
datasets: corel5k, msrc, mirflicky, mediamill, tmc2007 and
yeast. Msrc is a Microsoft Research labeled image dataset
with 591 images in 23 object classes. Each image is repre-
sented as a vector with 960 GIST [Oliva and Torralba, 2001]



Table 2: The average comparison results and their standard deviations in terms of Micro F1 Score.

Dataset Proposed MLR-GL FastTag LEML BR BR-C

corel5k 0.260 + 0.005 | 0.212+0.007 | 0.218 £0.004 | 0.187+0.002 | 0.168 +0.005 | 0.214 + 0.003
msrc 0.571 £+ 0.016 0.477 £0.010 0.485 £ 0.010 0.398 £0.010 0.438 £0.023 0.537 £0.014
mirflickr 0.431 +£0.005 | 0.375+0.011 | 0.344=£0.009 | 0.318 £0.001 | 0.286 4+ 0.003 | 0.326 = 0.001
mediamill 0.528 £ 0.003 0.446 £ 0.011 0.545 £0.011 0.556 + 0.001 0.423 £ 0.004 0.519 £ 0.001
tmc2007 0.612 £+ 0.004 | 0.443+0.016 | 0.452+0.004 | 0.388 £0.006 | 0.440£0.005 | 0.544 +0.004
yeast 0.641 + 0.003 | 0.608 £0.011 | 0.599 £0.007 | 0.608 £0.006 | 0.443+0.005 | 0.559 =+ 0.003

Table 3: The average comparison results and their standard deviations in terms of Macro F1 Score.

Dataset Proposed MLR-GL FastTag LEML BR BR-C

corel5k 0.182 +0.006 | 0.160+0.003 | 0.174+0.002 | 0.142+0.002 | 0.107£0.005 | 0.153 £ 0.005
msrc 0.446 +£0.026 | 0.4254+0.014 | 0.398 £0.018 | 0.327 £0.010 | 0.356 £0.002 | 0.468 + 0.016
mirflickr 0.243 + 0.002 0.236 £ 0.003 0.171 £ 0.007 0.153 £ 0.001 0.164 £ 0.001 0.192 £ 0.001
mediamill 0.252 £ 0.005 0.257 £ 0.002 0.206 £0.011 0.225 £ 0.004 0.215 £ 0.001 0.267 £ 0.001
tmc2007 0.403 +0.007 | 0.301 +£0.012 | 0.32340.005 | 0.265+0.009 | 0.290 £0.009 | 0.399 £ 0.004
yeast 0.396 £+ 0.004 0.427 £ 0.004 0.390 £ 0.010 0.369 £ 0.002 0.315 £ 0.003 0.391 £ 0.003

Table 1: Statistical information of the datasets

Dataset # instances | # features | # labels | label card.
corelSk 4,609 499 30 2.07
msrc 591 960 23 2.51
mirflickr 5,000 512 38 4.77
mediamill | 42,023 120 30 421
tmc2007 28,596 500 22 2.16
yeast 2,417 103 14 4.24

features. Corel5k [Duygulu ef al., 2002] is a scene classifica-
tion dataset. Some labels in this dataset rarely appear, and we
selected its top 30 labels to use. This leads to a subset with
4609 images, each of which is expressed as a vector with 499
features. Mirflickr [Huiskes and Lew, 2008] is a large col-
lection of images. We randomly sampled a subset of 5000
images to use, which has 38 labels, and each image is repre-
sented as a vector of 512 GIST features. Mediamill [Snoek
et al., 2006] is a large video dataset. We used the top 30 la-
bels, which leads to 42,023 instances. Each of its instances is
expressed with 120 low-level features. Tmc2007 dataset [Sri-
vastava and Zane-Ulman, 2002] is a large text dataset with
28,596 instances and 22 labels in total. We used its short
version with 500 features. Yeast dataset [Elisseeff and We-
ston, 2002] is a gene function classification dataset with 2417
genes and 14 classes. Each gene is expressed with 103 micro-
array expression features. The statistical information of the
six datasets are summarized in Table 1, where label cardi-
nality (label card.) denotes the average number of labels as-
signed to each instance.

Approaches. In the experiments, we compared our proposed
approach to the following methods: (1) the multi-label rank-
ing method with group lasso regularizer (MLR-GL) [Bucak et
al., 20111; (2) the fast tagging method (FastTag) [Chen et al.,
2013]; (3) the large scale empirical risk minimization method
with missing labels (LEML) [Yu er al., 2014]; (4) the baseline
method, binary relevance (BR); and (5) binary relevance with
complete labels (BR-C). The first two methods are state-of-
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the-art methods for multi-label learning with incomplete la-
bels. LEML was used to handle missing labels directly in [Yu
et al., 2014]. The BR is a baseline method, where we train a
binary SVM classifier for each label on the observed incom-
pletely labeled data. The BR-C is same as BR except that we
use complete labels. We used libsvm [Chang and Lin, 2011]
as implementation for BR and BR-C. For the proposed ap-
proach, we used RBF kernels as the input kernel &(-, -), and
set v0=0.5 to compute the matrix-valued kernel. We used 5
nearest neighbor graph to construct the Laplacian matrix on
the input data, and set the number of nearest neighbors ap-
proximately as 30% of the label dimension size to construct
the Laplacian matrix on the output label matrix.

Experiment Setup. For each dataset, we simulate the in-
complete label condition by randomly dropping 30% of the
observed labels on the labeled training data. For msrc, we
randomly selected 80% of the data for training (30% labeled
and 50% unlabeled) and used the rest 20% for testing. For all
the other five datasets, we randomly selected 500 instances as
labeled data and 1000 instances as unlabeled data, and used
the remaining data for testing. We compared all methods us-
ing the same data setting, and repeated each experiment five
times with different random partitions.

For all the methods, we conducted parameter selection by
performing 5-fold cross-validation on the training set. We
further dropped 20% labels on the labeled training data of
each cross-validation to simulate the missing label situation.
For our proposed approach, we selected the trade-off param-
eters v4 and ~; from {1077,107%,107°5,10=%,1073}, and
selected 4 from {107°,1074,1073,1072,10~1}. Parameter
selections via cross validation are also conducted for the other
comparison methods accordingly.

5.2 Experiment Results

We measure the classification results in terms of two stan-
dard multi-label evaluation criteria: micro-F1 measure and
macro-F1 measure, which take both precision and recall into
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Figure 1: Performance vs. missing label proportion on msrc and tmc2007.
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Figure 2: Parameter sensitivity analysis on msrc.

accounts. The average classification results and their stan-
dard deviations in terms of these two criteria are reported in
Table 2 and Table 3 respectively.

From Table 2, we can see the three methods, Proposed,
MLR-GL and FastTag, which handle incomplete labels, con-
sistently outperform the baseline BR method across all the
datasets. The LEML also outperforms BR with large mar-
gins on four datasets. This suggests that it is important
to address the missing label problem when learning multi-
label classifiers on data with incomplete labels. Among the
advanced learning methods, MLG-GL, Fastlag and LEML
demonstrated strengths over each other on different datasets.
Our proposed approach on the other hand produced the best
results and outperform all the other methods with large mar-
gins over five out of the total six datasets. Even on the remain-
ing dataset, mediamill, our result is still very good. Moreover,
the proposed approach also consistently outperforms BR-C,
which used the complete labels for training. Similar results
are presented in Table 3 as well, where the values are given in
terms of the macro-F1 score. Among all the methods that
handle incomplete labels, the proposed approach produces
the best results on four out of the six datasets, while produc-
ing the second best results on the other two datasets. The
proposed approach also outperforms BR-C on four datasets.

Overall, these results demonstrate the benefit of handling
incomplete labels in the learning process. It also clearly
shows the advantage of our proposed semi-supervised learn-
ing approach which is able to exploit unlabeled data and si-
multaneously perform label imputation and multi-label learn-
ing by exploiting the label correlations.

Impact of missing labels fractions. The results above
were conducted with a given label missing fraction. There
is one remaining question: How do the comparison meth-
ods, especially our proposed approach, perform with differ-
ent fractions of missing labels? To answer this question,
we conducted another set of experiments on the msrc and

tmc2007 datasets with a number of different fraction val-
ues of missing labels on the labeled training data: ¢ €
{10%, 20%, 30%, 40%, 50%}. For each given missing label
fraction value ¢, we randomly dropped ¢ portion of the orig-
inal observed labels from the labeled training instances, and
conducted experiments using the same setting as above. The
average and standard deviation results in terms of the two F1
measures are reported in Figure 1.

From the results on both msrc and tmc2007, we can see that
the proposed approach greatly outperforms all the other meth-
ods in terms of the micro-F1 measure across the whole range
of different missing label fractions. In terms of macro-F1, the
proposed approach outperforms the other four methods across
¢ € {10%, 20%, 30%, 40%} on the msrc dataset, and outper-
forms all the other methods on the #mc2007 dataset. These
results again verified the efficacy of the proposed approach
on addressing multi-label learning with incomplete labels.

Parameter sensitivity analysis. We have also conducted
parameter sensitivity analysis for the proposed approach on
the msrc dataset over the trade-off parameters, v 4,y and p.
The sensitivity analysis results in terms of micro-F1 regarding
each parameter are reported in Figure 2, given the other two
parameters fixed (y4 = 107,77 = 1075, 4 = 1073). We
can see, within the considered range of values, the approach
is quite robust in 74 and vy given their values are no bigger
than 10~°. The u parameter that controls the level of low-
rank and sparse properties of the label matrix however does
not have a very robust value zone and hence needs a good
parameter selection procedure such as cross-validation.

6 Conclusion

In this paper, we proposed a semi-supervised method to ad-
dress multi-label learning with incomplete labels, which inte-
grates two functions, label imputation and multi-label predic-
tion, in a mutually beneficial manner. Specifically, the pro-
posed method conducts automatic label imputation within a
low-rank and sparse matrix recovery framework, while simul-
taneously performing vector-valued multi-label learning and
exploiting unlabeled data with vector-valued manifold regu-
larization. With a least squares loss function, we formulated
this problem as a joint convex optimization problem over the
latent label matrix and the classification model parameters.
We then developed a fast proximal gradient descent with con-
tinuation algorithm to solve it. We conducted experiments on
a variety types of multi-label datasets, and compared our pro-
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posed approach with a few related methods. Our experimen-
tal results suggest the proposed approach can effectively im-
prove multi-label classification performance on datasets with
incomplete labels over the existing state-of-the-art methods.
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