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Abstract

With the prevalence of mobile search nowadays,
the benefits of mobile query recommendation are
well recognized, which provide formulated queries
sticking to users’ search intent. In this paper, we in-
troduce the problem of query recommendation on
mobile devices and model the user-location-query
relations with a tensor representation. Unlike pre-
vious studies based on tensor decomposition, we
study this problem via tensor function learning.
That is, we learn the tensor function from the side
information of users, locations and queries, and
then predict users’ search intent. We develop an
efficient alternating direction method of multipli-
ers (ADMM) scheme to solve the introduced prob-
lem. We empirically evaluate our approach based
on the mobile query dataset from Bing search en-
gine in the city of Beijing, China, and show that
our method can outperform several state-of-the-art
approaches.

1 Introduction
Search marketing is witnessing a dramatic change in the

recent years where mobile search has a tremendous growth
in the market share. As the sales of smartphones and tablets
continue to rise, there’s no end in sight to the popularity of
mobile search. The benefits of query recommendation in mo-
bile environment are well recognized, which provide formu-
lated queries sticking to users’ search intent.

Query recommendation is considered an important compo-
nent in enhancing keyword-based queries in search engines.
The existing approaches [Guo et al., 2010; Feild and Allan,
2013; Li et al., 2008; Anagnostopoulos et al., 2010] mainly
focus on desktop query recommendation, which aims to pro-
vide alternative queries of the users’ issued queries or assist
users in refining their queries in desktop search. However,
they may not be suitable for mobile query recommendation
because of two reasons. First, typing or data entry on mobile
devices is more difficult than on desktop computers. It is re-
ported in [Fu et al., 2009] that even for skilled users, they can
only reach 21 words per minute on mobile devices; while on
desktop computers, the rate is at least 60 words for common

Figure 1: Query Recommendation on Bing Search

users.Second, many mobile devices come with position func-
tions such as Geographical Positioning System (GPS) and
sensors. Through these devices, more and more data are be-
ing accumulated in the form of current user’s location and
location annotations. For example, the location-based entity
system, yelp 1 provides the location annotations such as the
reviews for restaurants, shops and etc. Thus, we can identify
users’ current activities and further improve the performance
of mobile query recommendation.

In this paper, we introduce a new problem of mobile query
recommendation, which is not limited to query refinement,
but to find what users need. For example, Figure 1 shows
the automatic query recommendation system in Bing search
engine. We model the user-location-query relations with a
tensor representation. Unlike previous studies on tensor de-
composition and completion, we study this problem from
the viewpoint of missing value estimation via tensor function
learning. Given a tensor indicating the existing user-location-
query relations, we want to recommend the right query for
users based on their current location. Since the relations be-
tween users and queries at some locations are unknown (miss-
ing values in the mobile query tensor data), we want to pre-
dict the missing values in the tensor first, then recommends
users with the queries with high predicted values. We then
learn a tensor function based on the mobile query data, lo-
cation annotations and query information. We obtain the an-
notations for the location in Beijing, China from a yelp-like

1http://www.yelp.com/
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location-based entity reviewing system, dianping 2. We ex-
tract the users’ clicked webpages to enrich the information of
their issued queries. The main contributions of this paper are
as follows:

1. We introduce a new problem of query recommenda-
tion on mobile devices, and formulate a tensor function
learning model based on the side information of user,
location and query.

2. We introduce a tractable relaxation of the tensor func-
tion learning, and then obtain a convex problem of
functional coefficient nuclear norm minimization. We
present an efficient alternating direction method of mul-
tipliers (ADMM) scheme to solve the introduced prob-
lem.

3. We evaluate the performance of our method on Bing
search engine on mobile devices for three months in the
city of Beijing, China, and show that our method can
outperform several state-of-the-art solutions to the prob-
lem.

The rest of this paper is organized as follows. In Section 2,
we introduce the notions of the problem and provide a brief
review of the related work about tensor completion and query
recommendation. We introduce the problem of mobile query
recommendation and provide the optimization algorithm in
Section 3. A variety of experimental results are presented in
Section 4. Finally we provide some concluding remarks in
Section 5.

2 Notions and Related Work
Before reviewing previous work, we first introduce basic

tensor notions and terminologies. An n-mode tensor is de-
fined as Y ∈ RI1×I2×...×In , and its elements are denoted as
yi1,...,in where 1 ≤ ik ≤ Ik and 1 ≤ k ≤ n. For example,
a matrix is a 2-mode tensor. The k-th mode unfolding, also
known as matricization, of an n-mode tensor Y is denoted as
unfoldk(Y) = Y(k) ∈ RIk×

∏
j 6=k Ij where the k-th mode

becomes the row index and all other (n − 1) modes become
the column indices. The tensor element (i1, i2, . . . , iN ) is
mapped to the matrix element (in, j), where

j = 1 +
N∑

k=1,k 6=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m6=n

Im.

The opposite operation is defined as foldk(Y(k)) = Y.
The Frobenius norm of the tensor Y is defined as ‖Y‖F =√∑

i1,i2,...,in
y2
i1,...,in

. It is clear that ‖Y‖F = ‖Y(k)‖F for
any 1 ≤ k ≤ n.

Mode-n product is the product of a tensor W ∈
Rp1×...×pN with a matrix A ∈ RJ×pn , denoted by W×nA.
The result is a new tensor of size p1×. . .×pn−1×J×pn+1×
. . .× pN , where each mode-n fiber is multiplied by A, that is

(W ×n A)i1,...,in−1,j,in+1,...,iN =

pn∑
in=1

Wi1,...,iNAj,in .

2http://www.dianping.com/

Vectorization is a linear transformation which converts a
matrix into a column vector. Specially, the vectorization of a
matrix X ∈ Rm×n, denoted by vec(X), is themn×1 column
vector obtained by stacking the columns of the matrix X on
top of one another, that is,

vec(X) = [x11, . . . , xm1, . . . , x1n, . . . , xmn]T ,

where xij represents the (i, j)-th element of matrix X. We
consider that vectorization is an instance of tensor unfold,
which unfolds a matrix to a vector (i.e., X(1)). Similarly,
we define the unvec that folds a vector to a matrix (i.e.,
unvec(X(1)) = X).

Let A ∈ Rm×n and B ∈ Rp×q be two matrices, re-
spectively. The Kronecker product of two matrices A and
B, denoted by A ⊗ B, is an mp × nq matrix given by
A⊗B = [aijB]mp×nq .

Tensor Decomposition and Completion has witnessed
the applications in machine learning and data mining. The
two popular tensor decomposition methods are CP decom-
position [Acar et al., 2010] and Turk decomposition [Kolda
and Bader, 2009]. The tensor decomposition method aims to
factorize an input tensor into a number of low-rank factors,
which are prone to local optimal because they are solving es-
sentially non-convex optimization problems [Liu et al., 2013;
2009]. In order to address this problem, Liu et.al. [Liu et
al., 2013] extends the trace norm of matrices to tensors,
and generalize matrix completion to convex tensor comple-
tion. Specially, given an incomplete n-mode tensor matrix
Y ∈ RI1×I2×...×In with low rank, the tensor completion
problem is given by

minX rank(X)

s.t. PΩ(Y) = PΩ(X) (1)

where Y,X ∈ RI1×I2×...×In , and PΩ keeps the entries in Ω
and zeros out others. The missing elements of X are deter-
mined such that the rank of the tensor X is as small as pos-
sible. Unfortunately, the above rank minimization problem is
NP-hard in general due to the nonconvexity and discontinu-
ous nature of the rank function. Theoretical studies [Recht
et al., 2010] show that the nuclear norm is the tightest con-
vex lower bound of the rank function. The trace norm of a
tensor is a convex combination of the trace norms of all ma-
trices unfolded along each mode. Therefore, a widely used
approach is to apply the nuclear norm as a convex surrogate
of the nonconvex tensor rank function

minX

n∑
i=1

‖X(i)‖∗

s.t. PΩ(Y) = PΩ(X) (2)

where ‖X(i)‖∗ =
∑min(m,n)
j=1 δj(X(i)) is the nuclear norm of

the i-th mode X(i) and δj(X(i)) is the j-th largest singular
value of X(i). The existing approaches [Zhang et al., 2014;
Liu et al., 2013; Wang et al., 2014; Liu et al., 2014; Zhao et
al., 2015] based on the combination of the trace norms of all
matrices have achieved excellent empirical performance.

However, the objective of our approach is to learn the ten-
sor function from the data tensor instead of completing the
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data tensor directly. Therefore, these methods are not appli-
cable to our problem.

Query Recommendation is an important functionality in
the mobile search engine. In existing work [Guo et al., 2010;
Feild and Allan, 2013; Li et al., 2008; Anagnostopoulos et
al., 2010] for query recommendation aims to assist users to
refine the issued queries. In this paper, we introduce a new
problem of query recommendation on mobile devices, which
is not limited to query refinement, but to find what users need.

3 Query Recommendation via Tensor
Function Learning

In this section, we first introduce some notions for mobile
query recommendation, which are the observed data tensor of
user-location-query relations Y, the side information matrix
of users U, annotation of locations matrix R and query intent
matrix Q. We then formally present the problem of mobile
query recommendation via tensor function learning and pro-
vide the optimization algorithm to solve the problem.

We denote the observed data tensor of user-location-query
relations Y ∈ Rm×l×n where m is the number of queries,
l is the number of locations and n is the number of users.
The observed user-location-query entries in Y are the query
issued by users at some location. However, we observe that
the tensor Y of mobile query data is very sparse and there
are a number of missing relations. We let Ω be the set of
observed user-location-query relations in Y. Entry Yijk is
said to be observed if the k-th user issue the i-th query at the
j-th location (i.e. (i, j, k) ∈ Ω).

We consider that the query intent is the side information
for the existing queries, denoted by Q ∈ RI1×n. We extract
the clicked webpages of the mobile queries and collect their
classification labels such as “enterprise” and “business” . We
note that the webpage can have multiple labels. We then
denote the side information of locations by R ∈ RI2×l,
which is collected from the location-based entity reviewing
systems. We extract the annotated tags for the locations such
as “food” and “hotpot” . We represent the feature of loca-
tions and query intent using the bag-of-words model. We de-
note the side information of users by U ∈ RI3×m, which is
obtained from the mobile devices such as its brand and op-
erating system. The I1, I2 and I3 are the feature dimension
of users, locations and query intent, respectively. Using the
notions above, we introduce the problem of tensor function
learning below.

3.1 The Problem
We now describe the learning problem for mobile query

recommendation. Given query intent Q ∈ RI1×n, annotated
locations R ∈ RI2×l and user information U ∈ RI3×m, we
denote the parameter tensor by W ∈ RI1×I2×I3 . Therefore,
we present the tensor function by

fW(Q,R,U) = W ×1 Q×2 R×3 U (3)

where ×1 is the mode-1 product for parameter tensor W and
query intent Q. For example, the prediction for entry Yijk

U

R
Y W

Q

Annotated

Locations

Query Intent

User Information

Mobile Query Data

Figure 2: The Framework of Tensor Function Learning for
Mobile Query Recommendation

based on parameter tensor W is given by

Ŷijk =

I1∑
j1=1

I2∑
j2=1

I3∑
j3=1

Wj1,j2,j3Qi,j1Rj,j2Uk,j3

where Qi,:, Rj,: and Uk,: are the side information of the i-th
query, j-th location and k-th user, respectively. We illustrate
the framework of tensor function learning for mobile query
recommendation in Figure 2. The tensor Y, matrices U, R
and Q with the gray color are known and the parameter tensor
W with the white color is unknown.

We observe that there is a strong correlation between
queries, locations and users in the mobile query data Y. For
example, both the query “having an injection” and the query
“where is the zoo” often co-exist in the mobile queries of
some users. Thus, to avoid the overfitting problem of func-
tion learning and exploit the correlation between queries, lo-
cations and users, we encourage the parameter tensor W to
have a simple structure in the sense that they involves a small
number of “degree of freedoms”. Thus, it is natural to assume
that the tensor function learning are of low-rank constraints.
Consequently, we cast the problem of tensor function learn-
ing into the optimization problem of tensor completion, given
by

minW rank(W)

s.t. PΩ(Y ) = PΩ(fW(Q,R,U)) (4)

where the minimization of rank(W) is considered as the
regularizer for function learning. By requiring PΩ(Y ) =
PΩ(fW(Q,R,U)), we expect that the learned tensor func-
tion can accurately estimate the query-location-user relations
in Y.

Unlike the standard algorithm for tensor completion that
requires solving an optimization problem involved the data
matrix Y of m × l × n, the optimization problem given in
Problem (4) only deals with the parameter tensor W with
I1×I2×I3. The size of parameter tensor W is much smaller
than the data tensor Y. Thus, the computation burden of our
model is significantly more efficient.

Following the convex relaxation approach for tensor trace
norm in [Liu et al., 2013; Tomioka and Suzuki, 2013], we
introduce the auxiliary matrix variables Z1, Z2 and Z3 for
the unfolding of parameter tensor W on the mode of query
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Algorithm 1 Solving Problem (5) via TFL
Input: data tensor Y, user matrix U, query matrix Q and location matrix R
Initialize: W = 0, Zn = 0, Γn = 0, µ = 10−6, maxµ = 1010, ρ = 1.05, ε = 10−8

1: while not converge do
2: Update Zn, W and X by Equation (8), (14) and (16), respectively.
3: Update the multiplier Γn by Γn = Γn + µ(W(n) − Zn).
4: Update the parameter µ by µ = min(ρµ,maxµ).
5: Check the convergence condition, max(‖W(n) − Zn‖2F , n = 1, 2, 3) < ε.
6: return X and W.

W(1), location W(2) and user W(3), respectively. Therefore,
we convert Problem (4) to the following equivalent problem:

minW,{Zn},X

3∑
n=1

‖Zn‖∗ +
λ

2
‖X− fW(Q,R,U)‖2F

s.t. Z(n) = W(n), n = 1, 2, 3.

PΩ(X) = PΩ(Y) (5)

where the summation of the auxiliary matrix variables∑3
n=1 ‖Zn‖∗ is the convex relaxation of rank(W). The

trade-off parameter λ balances the weight between the data
penalty ‖X − fW(Q,R,U)‖2F and the regularization term∑3
n=1 ‖Zn‖∗, which is usually set empirically.

3.2 The Optimization
In this section, we propose an efficient Tensor Func-

tion Learning algorithm (TFL) based on alternating direc-
tion method of multipliers (ADMM) to solve the Problem (5).
ADMM [Boyd and Vandenberghe, 2004] decomposes a large
problem into a series of smaller subproblems, and coordinates
the solutions of subproblems to compute the optimal solution.

We rewrite Problem (5) via augmented Lagrangian func-
tion, given by

L =
3∑

n=1

(< Γn,W(n) − Zn > +
µ

2
‖W(n) − Z(n)‖2F

+ ‖Zn‖∗) +
λ

2
‖X−W ×1 Q×2 R×3 U‖2F (6)

where Γn, n = 1, 2, 3, are the matrices of Lagrange multi-
pliers, and µ > 0 is a penalty parameter. ADMM solves the
proposed problem by minimizing the Lagrange function L
over W, X, {Zn}, and then updating the multipliers {Γn}.

We first introduce a useful tool: the singular value shrink-
age operator [Cai et al., 2010] to estimate the matrix Zn in
tensor function learning.
Definition 1 (Singular Value Shrinkage Operator) Consider
the singular value decomposition (SVD) of a matrix Z ∈
Rm×n of rank r,

Z = UΣVT ,Σ = diag({δi}1≤i≤r).
Define the singular value shrinkage operator Dτ as follows:

Dλ(Z) = UDλ(Σ)VT

and

Dλ(Σ) = diag({max{0, δi − λ}}).

Using the singular value shrinkage operator above, we have
the following useful theorems for the composite objective
functions below:
Theorem 1 ( [Cai et al., 2010]) For each λ ≥ 0 and W ∈
Rm×n, we have

Dλ(W) = arg min
α

1

2
‖Z−W‖2F + λ‖Z‖∗,

where the matrix Dλ(W) is the solution to this optimization
problem with nuclear norm regularizer.

Updating Zn: Ignoring constant terms, the minimization
with respect to Zn is given by

Zn = arg min
Zn

1

µ
‖Zn‖∗ +

1

2
‖W(n) − Zn +

Γn
µ
‖2F . (7)

Thus, we can obtain the closed form solution of Zn by The-
orem 1 as follows:

Zn = D 1
µ

(
W(n) +

Γn
µ

)
. (8)

We then introduce the following Theorem to estimate the
parameter tensor W given the side information of queries Q,
locations R and users U.
Theorem 2 (Block Matrices and Kronecker Products) Sup-
pose vec(X) denotes the vectorization of the matrix X
formed by stacking the columns of X into a single column
vector. Consider for instance the equation AXB = C, where
A, B and C are given matrices and the matrix X is the un-
known. We can rewrite this equation as

(BT ⊗A)vec(X) = vec(AXB) = vec(C), (9)

where ⊗ is the Kronecker product.
Updating W: Ignoring constant terms, the minimization

with respect to W is given by

W = arg min
W

3∑
n=1

µ

2
‖W(n) − Zn +

Γn
µ
‖2F

+
λ

2
‖X−W ×1 Q×2 R×3 U‖2F . (10)

For ease of presentation, we let

A =
3∑

n=1

refold(Zn −
Γn
µ

), (11)

B = X×1 QT ×2 RT ×3 UT , (12)

C = QQT ⊗RRT ⊗UUT . (13)
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(a) GPS Distribution of Mobile
Queries
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(b) GPS Distribution of Anno-
tated Locations

Figure 3: Data Distribution in Beijing: The dotted points in
the left figure represent the GPS of mobile queries and the
dotted points in the right figure represent the GPS of anno-
tated locations. The x-axis and y-axis represent the longitude
and latitude of the dotted points, respectively.

Therefore, the optimal solution of W is given by

W = unvec((3µI + λC)−1vec(µA + λB)). (14)

Updating X: The optimization problem with respect to X
is formulated as follows:

minX ‖X−W ×1 Q×2 R×3 U‖2F
s.t. PΩ(X) = PΩ(Y) (15)

By deriving the KKT conditions for Equation (15), the opti-
mization solution of X is given by

X = PΩ(Y) + PΩc(W ×1 Q×2 R×3 U) (16)

where Ωc is the complement of Ω, i.e., the set of the unob-
served query log entries.

The entire procedure for tensor function learning is sum-
marized in Algorithm 1. The main computation cost of the
algorithm in each iteration is the cost of SVD in Line 2. The
addition cost in Line 3 and Line 4 is much smaller. Note that
our function learning model alleviates the computation bur-
den since the size of parameter tensor is much smaller than
data tensor. For large scale problems, we can adopt some ex-
isting techniques [Li et al., 2010] to accelerate the computa-
tion of SVD and make Algorithm 1 more efficient, and apply
the parallel ADMM techniques [Shang et al., 2014] for the
proposed optimization problem. Suppose the penalty term µ
in the final iteration is µ∗, the convergence of Algorithm 1
for Problem (5) is O( 1

µ∗ ), which is guaranteed in [Lin et al.,
2011].

4 Experiments
In this section, we conduct several experiments on the mo-

bile queries from Bing search engine and location-based en-
tity reviewing systems dianping, to show the effectiveness of
our proposed approach for query recommendation on mobile
devices. The experiments are conducted by using Matlab and
TensorToolBox [Bader et al., 2015], tested on machines with
Windows OS Intel(R) Core(TM) i7-2600 CPU 3.40GHz, and
128 GB RAM.

4.1 Data Preparation
In the experiment, we apply our method on the Bing mo-

bile dataset, which consists of users’ location and their mo-
bile queries from Bing search engine during Jan. 2014 to
June 2014 in the city of Beijing, China. To protect users’ pri-
vacy, we remove the GPS points for work places, homes, and
users’ information, and use the sampled data for doing the
experiments. We sample 3,000 users and 1,000 different mo-
bile queries from the dataset where users’ id is anonymized
during the sampling. Thus, we collect the 114,138 query-
location-user relations. We sample 10% of the mobile queries
and illustrate the GPS distribution of them in Figures 3(a).

We collect 105,271 entities from the location-based entity
reviewing system, dianping. We sample 10% of the location-
based entities and illustrate the their GPS distribution 3(b).
The locations used in the experiments are in the categories of
“shopping”, “food”, “hotel”, “education”, “automotive” and
etc. We then obtain query intent from the clicked webpages
and side information of location-based entities from the re-
views in dianping. To further protect users’ location privacy,
we represent the users’ location by location category. In this
work, we use 30 location categories to represent users’ loca-
tion.

4.2 Evaluation Criteria
We evaluate the performance of our method for mobile

query recommendation using RMSE (root mean-square er-
ror). We randomly sample 90% of the observed query-
location-user relations in tensor Y as training data. We then
consider the remaining 10% of the observed relations as test-
ing data. The RMSE metric is given by

RMSE =

√
‖PΩt(Y − fW(Q,R,U))‖2F

|Ωt|
,

where Y and fW(Q,R,U)) are the true and predicted
query-location-user relations, respectively. The set Ωt con-
sists the indices of all the relations in the testing data and
PΩt keeps the entries in Ωt and zeros out others. The met-
ric RMSE has been widely adopted in the evaluation of rec-
ommender systems, such as Netflix Prize [Bennett and Lan-
ning, 2007]. In our setting, the RMSE indicates the differ-
ence between the true existing query-location-user relations
and the predicted ones. The smaller RMSE means better per-
formance of the method. For each setting, we carry out the
cross-validation on RMSE for ten times and record the mean
value.

4.3 Performance Comparisons
We compare our proposed method with other five pop-

ular tensor recommendation algorithms including canonical
polyadic decomposition (CP) [Acar et al., 2010], Turk de-
composition (Turk) [Kolda and Bader, 2009], generalized
higher-order orthogonal decomposition (gHOI ) [Liu et al.,
2014], and tensor recommendation incorporating side infor-
mation (UCLAF) [Zheng et al., 2010]. We summarize these
algorithm as follows:
• CP algorithm: The canonical polyadic decomposition

algorithm is a generalization of the matrix singular value
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Table 1: Testing RMSE values on mobile query recommendation. Results with best mean values are bolded.

Sampled Training Data Algorithm
CP Turk gHOI UCLAF TFL

50% 0.2076 0.2092 0.1702 0.1438 0.14
55% 0.2066 0.2088 0.1694 0.1417 0.1288
60% 0.2063 0.208 0.1682 0.1385 0.1244
65% 0.2061 0.2078 0.1682 0.1374 0.1228
70% 0.2051 0.2071 0.1667 0.1374 0.1208
75% 0.2049 0.2068 0.1667 0.1367 0.1195
80% 0.2046 0.2066 0.1664 0.136 0.1153
85% 0.2042 0.2061 0.1664 0.1352 0.1126
90% 0.2042 0.2056 0.1661 0.1349 0.1104

decomposition (SVD) to tensors, which represents a ten-
sor by a sum of the outer products of rank-1 tensors.

• Turk algorithm: The Turk decomposition algorithm de-
composes a tensor into a set of matrices and one small
core tensor, where each matrix is orthogonal.

• gHOI algorithm: The generalized higher-order orthogo-
nal decomposition algorithm decomposes a tensor under
the framework of Turk decomposition, where the core
tensor is regularized by nuclear norm.

• UCLAF algorithm: The UCLAF algorithm decomposes
a tensor into a set of matrices, where the matrices are
regularized by side information.

We illustrate the performance of all the algorithm in Ta-
ble 1 by sampling 50% to 90% of the training data. The best
mean values are bolded. We expect the relative decreasing of
RMSE for a more effective recommendation method.

We summarize the experimental results in Table 1 as fol-
lows:

• We observe that the performance of the gHOI algorithm
is better than both the popular tensor decomposition al-
gorithms CP and Turk. Apart from CP and Turk, gHOI
formulates the convex relaxation of the tensor decompo-
sition problem based on the combination of the nuclear
norm of all matrices and achieves excellent empirical
performance.

• The UCLAF method achieves better performance than
other baseline methods. This suggest that the side in-
formation can also improve the performance of mobile
query recommendation.

• In all the cases, our TFL method achieves the best per-
formance. This shows that leveraging the power of both
the side information of locations and queries, and the
convex formulation based on nuclear norm minimization
on parameter tensor of tensor function learning, the per-
formance of mobile query recommendation can be fur-
ther improved.

4.4 Convergence Study
The updating rule for minimizing the objective function of

TFL is essentially iterative. Here we investigate how TFL
method converges.

Iteration (x 10)
0 5 10 15 20 25 30 35 40 45 50

|P
Ω

(Y
-f
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(Q

,R
,U

))
|/|
Ω

|
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0.4

0.5
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Figure 4: The convergence of TFL

Figure 4 shows the convergence curve of TFL method.
The y-axis is the value of error rate on the training set (i.e.,
|PΩ(Y−fW(Q,R,U))|

|Ω| and x-axis denotes the iteration number.
We can observe that method TFL converges after the 500-th
iteration.

5 Conclusions
In this paper, we introduce the problem of mobile query

recommendation from the perspective of tensor function
learning. Unlike previous studies based on tensor decomposi-
tion and completion, we propose the tensor function learning
approach for estimating the missing query-location-user rela-
tions for mobile query recommendation. We learn the tensor
function from the side information of the queries, locations
and users with low-rank constraints. We then provide an iter-
ative procedure for Tensor Function Learning, TFL, to solve
the proposed optimization problem, using the framework of
ADMM. We collect the mobile queries in Bing search engine
for three months in the city of Beijing, China. We conduct the
experiments on Bing mobile query dataset, and the location-
based entity reviewing system, dianping. The experimental
results demonstrate the effectiveness of our method against
several state-of-the-art tensor recommendation algorithms. In
the future, we will explore the kernel tensor function for the
problem of mobile query recommendation.
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