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Abstract

We address an ensemble clustering problem, where
reliable clusters are locally embedded in given mul-
tiple partitions. We propose a new nonnegative ma-
trix factorization (NMF)-based method, in which
locally reliable clusters are explicitly considered
by using instance-wise weights over clusters. Our
method factorizes the input cluster assignment ma-
trix into two matrices H and W , which are opti-
mized by iteratively 1) updating H and W while
keeping the weight matrix constant and 2) updating
the weight matrix while keeping H and W con-
stant, alternatively. The weights in the second step
were updated by solving a convex problem, which
makes our algorithm significantly faster than exist-
ing NMF-based ensemble clustering methods. We
empirically proved that our method outperformed a
lot of cutting-edge ensemble clustering methods by
using a variety of datasets.

1 Introduction
We address the problem of combining multiple partitions (or
clusterings) into a single consolidated partition, where each
partition is a set of clusters made over the same set of in-
stances [Li et al., 2010; Ghosh and Acharya, 2011]. In the
literature, this problem has been called in various ways: en-
semble clustering, clustering aggregation, consensus clus-
tering and so on. The objective of this problem is to im-
prove the results given by single clustering algorithms [Strehl
and Ghosh, 2003]. There already exist a lot of different
types of ensemble clustering approaches, which are based
on graphs [Strehl and Ghosh, 2003; Fern and Brodley, 2004;
Gionis et al., 2005], similarities [Strehl and Ghosh, 2003],
probabilistic models [Topchy et al., 2005; Wang et al., 2011],
and consensus functions [Nguyen and Caruana, 2007; Li et
al., 2007]. See the Related Work section for detail on these
methods, particularly graph-based and consensus functions-
based methods.
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A key point of ensemble clustering is local cluster reliabil-
ity, which can be measured by how often the same instance
set shares clusters over multiple partitions. That is, if a clus-
ter is shared by a certain size of same instance set a larger
number of times, this cluster is more reliable, meaning that
cluster reliability can be estimated from input partitions, if
input partitions are diverse enough1. Furthermore we can say
that clusters can be weighted according to reliability through
instances. All existing methods have neither considered such
intrinsic local properties of input partitions nor realized this
idea. The key idea of our method is to explicitly consider
the cluster reliability by using cluster weights to enhance the
performance of ensemble clustering.

We first present a simple NMF-based ensemble cluster-
ing (NMFE), which is a rather straightforward application
of typical nonnegative matrix bi-factorization to ensemble
clustering. We then extend NMFE by the idea of cluster
reliability. That is, if a cluster has particular (coherent) in-
stances, which are always in the same cluster a larger number
of times, this cluster must be more reliable. We propose a
method, which we call Instance-wise weighted NMF-based
Aggregation (INA), which formulates the idea of cluster reli-
ability by incorporating weights over clusters to be estimated
from given partitions. More concretely, the point is to cap-
ture the shared clusters (and the shared instance set) through
the matrix factors, by which the shared (reliable) clusters will
be weighted more. To estimate the factorized matrices and
weights, INA uses an iterative algorithm which repeats the
following two steps alternately: 1) H and W are estimated
using the same way as NMFE while cluster weights are fixed,
and 2) the (globally) optimal weights are estimated analyti-
cally while H and W are fixed. Thus, INA is time-efficient
as long as NMFE is fast.

We empirically evaluated our proposed methods, NMFE
and INA, comparing with several cutting-edge ensemble clus-
tering methods by using three different scenarios on experi-
mental data: 1) a synthetic dataset with seven different types
of clusters, such as the normal distribution, scroll-shaped and
circle-shaped clusters which was introduced in [Jain, 2010] as

1Reducing redundant partitions is one important research topic
in ensemble clustering, resulting in many good work already [Had-
jitodorov et al., 2006; Li and Ding, 2008; Fern and Lin, 2008;
Azimi and Fern, 2009]. Thus we can reasonably assume that input
partitions are diverse enough.
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Figure 1: Example of L (N = 3,K1 = 3,K2 = 3 and
K3 = 2)

a challenging problem for developing new clustering meth-
ods; 2) real datasets from UCI [Newman et al., 1998] and
CLUTO [Karypis, 2002] data repositories, from which par-
titions are generated to have locally reliable clusters; and 3)
real dataset of multiview using partitions generated over each
view. INA outperformed other competing methods through-
out all three experiments, confirming the validity of our idea
on capturing locally reliable clusters.

2 Method
2.1 Notation and Problem Formulation
Let P = {P 1, P 2, . . . , PM} be M input partitions, sharing
the same set of N instances X = {x1, x2, . . . , xN}. Partition
Pm (m = 1, 2, . . . ,M) consists of a set of clusters Cm =
{Cm1 , Cm2 , . . . , CmKm

}, where Km is the number of clusters
for partition Pm and X =

⋃Km

k=1 C
m
k . K =

∑M
m=1Km. We

can further define binary indicator matrix Lm, showing the
clusters to which each instance belongs, as follows:

Lmij =

{
1 if xi ∈ Cmj
0 otherwise (1)

Note that for each m, Cmj can be reordered without loss
of generality. The input is N × K binary matrix L =
[L1 L2 . . . LM ]. Fig. 1 shows an example of L.

2.2 Nonnegative Matrix Factorization for
Ensemble Clustering (NMFE)

Our objective is to find a consolidated partition P ∗ which can
be shown by indicator matrix H = {0, 1}N×K∗

, where K∗

is the number of clusters in P ∗. For each Pm, we introduce
a column permutation matrix Wm = {0, 1}Km×K∗

to align
columns of H to those of Pm so that Lm should be approx-
imated by HW T

m. Thus the problem can be defined as fol-
lows:

min
H,Wm,m=1,2,...,M

M∑
m=1

‖Lm −HW T
m‖2, (2)

where ‖ · ‖ is the Frobenius norm. Letting W =

[W T
1 W T

2 . . . W T
M ]T , Eq. (2) is equivalent to the follow-

ing general NMF problem:

min
H,W

‖L−HW T ‖2. (3)

where H and W are binary matrices.

Eq. (3) is an integer optimization problem, which is NP-
hard [Moret, 1997; Brucker, 1978; Cohen, 1960]. A general
solution of this problem is to relax H and W into a nonneg-
ative continuous domain:

min
H≥0,W≥0

‖L−HW T ‖2. (4)

A locally optimal solution of Eq. (4) can be obtained easier
than solving the optimization of Eq. (3) by using a standard
multiplicative updating procedure [Lee and Seung, 2001] as
follows:

Hik ←Hik
(LW )ik

(HW TW )ik
(5)

W jk ←W jk

(LTH)jk

(WHTH)jk
(6)

Finally, instance i is assigned to cluster x if x =
argmax

j
Hij .

2.3 Instance-wise Weighted NMF-based
Aggregation (INA)

Formulation
The key idea of INA is that, instead of considering input par-
titions (and clusters) uniformly, we introduce weights over
clusters (κij for cluster j and instance i of L), indicating the
reliability of cluster j per instance i. Specifically, with the
regularization term on the cluster weights, the objective func-
tion can be as follows:

min
H≥0,W≥0,Ψ≥0

‖L�Ψ−HW T ‖2 + λ‖Ψ‖2.

s.t. (L�Ψ)1K×1 = 1N×1. (7)

where Ψ = (κij)
N×K is a weighting matrix, L �Ψ denote

the element-wise product of matrices L and Ψ, and λ is a
regularization coefficient.

Optimization Algorithm
We can solve this problem by a locally optimal solution,
which uses an iterative algorithm that first updates H and
W and then updates Ψ alternately:

Step 1: Fix Ψ and optimize H and W according to NMFE.
Step 2: Fix H and W and optimize Ψ.

We can rewrite Eq. (7) by using scalars as follows:

‖L�Ψ−L∗‖2 + λ‖Ψ‖2

=
∑
i,j

(Eijκ
2
ij + Fijκij +Gij)

s.t.
∑
j

Lijκij = 1.

where L∗ = HW T , Eij = L2
ij + λ, Fij = −2LijL∗

ij and
Gij = (L∗

ij)
2.

Thus Eq. (7) is a convex problem, which can be solved ana-
lytically through a usual derivation of taking the derivative of
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——————————————————————–
Input: L, λ
Output: H,W ,Ψ

INA (L, λ,H,W ,Ψ)
1: Initialize Ψ (e.g., κij ← 1

M )
2: while until convergence do
3: Optimize H and W according to Eqs. (5) and (6)
4: Optimize Ψ according to Eq. (8)
5: end while
——————————————————————–
Figure 2: Pseudocode of the optimized algorithm of Instance-
wise weighted NMF-based Aggregation (INA)

Lagrange multiplier and satisfying the Karush–Kuhn–Tucker
(KKT) conditions. Then Ψ is given as follows:

κij =

{
LijL

∗
ij−µiLij

L2
ij+λ

Lij 6= 0.

0 otherwise
(8)

where

µi =

∑
j

L2
ijL

∗
ij

L2
ij+λ

− 1∑
j

L2
ij

L2
ij+λ

After obtaining H , W and Ψ, we assign cluster x to in-
stance i, if x = argmax

j
Hij . Fig. 2 shows a pseudocode of

the optimization algorithm of INA. For the validity of this
algorithm, the time complexity and convergence proof are
shown in appendices. Finally we can briefly show the validity
of our formulation from Eq. (8): If we remove the regulariza-
tion term (i.e. λ = 0), κij can be approximated as follows:

κij ∼ L∗
ij −

∑
j L

∗
ij − 1

K
(9)

We note that this indicates that the prediction result, i.e. L∗
ij ,

is directly connected to reliability weight κij , being consis-
tent with our motivation of incorporating the cluster weights.

3 Related Work
Graph-based methods: Three representative ensemble clus-
tering methods are all graph-based methods [Strehl and
Ghosh, 2003]: Cluster-based Similarity Partitioning Algo-
rithm (CSPA), HyperGraph-Partitioning Algorithm (HGPA)
and Meta-CLustering Algorithm (MCLA). CSPA has two
steps: 1) a similarity matrix over instances is generated by
how many times each pair of two instances is in the same
cluster and 2) similarity-based graph partitioning is applied
to the similarity matrix. HGPA and MCLA use hypergraphs,
in which a node is an instance and a hyperedge is a cluster of
instances in a partition. HGPA applies graph-cut partitioning
to the nodes in the hypergraph, while in MCLA hyperedges
are clustered and then each instance is assigned to its mostly
associated cluster (i.e. hyperedge).

Another graph-based ensemble clustering method, hybrid
bipartite graph formation (HBGF) [Fern and Brodley, 2004]
generates a “meta-graph” (in which both input instances and
input clusters are nodes) which is a bipartite graph, in which

nodes are clustered. This is a one-step procedure which par-
titions given clusters into “meta-clusters” and assigns each
instance to one meta-cluster simultaneously. HBGF always
works well, comparing to a variety of graph-based ensem-
ble clustering methods [Huang et al., 2011], including CSPA,
HGPA and MCLA (this was confirmed in our experiment).

Nonnegative matrix factorization (NMF): The first, rep-
resentative NMF-based method is NMF-based consensus
clustering (NMFC) [Li et al., 2007], which uses orthogonal
nonnegative matrix tri-factorization (tri-NMF) [Ding et al.,
2006]. NMFC was extended to weighted consensus cluster-
ing (WCC) by considering weights over input partitions [Li
and Ding, 2008].

The input of NMFC is a connectivity (similarity) matrix
W , in which Wm

ij is 1 if instances i and j are in the same
cluster of the m-th partition, zero otherwise. Then to ob-
tain the consensus clustering, which is closest to all partitions,
NMFC formulates the following optimization problem:

min
H̃

T
H̃=I,H̃,Q>0

‖W̃ − H̃QH̃
T ‖2, s.t. Q is a diagonal.

where W̃ ij =
1
M

∑M
i=1 W

m
ij . NMFC solves this problem by

a multiplicative updating rule which is very similar to most
standard optimization method of NMF. NMFC deals with the
input multiple partitions equally and also clusters in one par-
tition uniformly, by which important information of the input
partitions might be lost.

To overcome this issue, WCC [Li and Ding, 2008] intro-
duces weights over input partitions to formulate connectivity
matrix W̃ as follows:

W̃ =
1

M

M∑
m=1

wmWm, (10)

where w = (w1, w2, . . . , wM )T , wm ≥ 0, ‖w‖1 = 1.
The problem formulation is tri-NMF again, and the optimiza-
tion algorithm repeats the following two steps alternately: 1)
weights w are fixed and H is estimated by a standard multi-
plicative updating for tri-NMF, and 2) H is fixed and weights
w are estimated by using quadratic programming (QP). This
procedure is similar to INA, while QP may cause the follow-
ing two serious problems, which are not in INA: 1) QP leads
to a relatively sparse solution, like choosing only the best par-
tition, and so it may not work if there are no good partitions,
2) QP may be computationally inefficient.

In WCC, weights are over input partitions only, while
weights of INA are over all clusters of the input partitions.
In other words, WCC deals with clustering in each partition
equally, by which cluster reliability information cannot be in-
corporated and discarded in WCC. The next section shows
that this difference between INA and WCC leads to the per-
formance advantage of INA over WCC.

4 Experiments
We conducted three experiments to evaluate the performance
of the two proposed methods, NMFE and INA, compar-
ing with six cutting-edge methods, CSPA, HGPA, MCLA,
HBGF, NMFC and WCC. Note that HBGF is one of the high-
est performance graph-based method and NMFC and WCC
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(a) (b) (c) (d)
    

Figure 3: Results of Experiment 1 by component clustering methods: (a) k-means, (b) hierarchical clustering with single-
linkage, (c) spectral clustering with the manifold distance and (d) that with the Euclidean distance.

(a) (b) (c) (d)
    

(e) (f) (g) (h)
    

Figure 4: Ensemble clustering results of Experiment 1 by (a) CSPA, (b) HGPA, (c) MCLA, (d) HBGF, (e) NMFC, (f) WCC,
(g) NMFE and (h) INA.

are the two latest NMF-based methods. Through all experi-
ments, for a fair comparison, the true number of clusters was
given as a priori parameter to all methods. The performance
was evaluated by normalized mutual information (NMI), a
well-used information theoretic measure for evaluating clus-
tering methods [Fred and Jain, 2003], averaging over 100 tri-
als for each method, with paired t-test to examine the signifi-
cance on the performance difference between two methods.

4.1 Experiment 1: Benchmark Data in [Jain, 2010]
We first used a famous benchmark dataset with seven clusters,
which are shaped by two Gaussians, two scrolls and three cy-
cles [Jain, 2010]. The structures of these seven clusters are
very diverse, which makes it very hard to separate these clus-
ters each other. No existing clustering methods could com-
pletely separate these seven clusters [Jain, 2010].

We obtained twenty different partitions by running the fol-
lowing twenty different clustering algorithms: two k-means

(the Euclidean distance and the city block distance), three
hierarchical clustering (single-linkage, average-linkage and
complete linkage) and 15 spectral clustering (eight with the
manifold distance under different parameters, six with the
Gaussian distance under different parameters and the last one
with the Euclidean distance). Fig. 3 shows clustering re-
sults by typical clustering methods (points shown by the same
shape are in the same cluster). We can easily see that all these
clustering results were partially correct but failed to separate
the seven clusters clearly.

Fig. 4 shows results obtained by running eight ensemble
clustering methods, CSPA, HGPA, MCLA, HBGF, NMFC,
WCC, NMFE and INA over the twenty partitions (points of
the same shape are in the same resultant cluster). This fig-
ure shows that any clustering methods cannot separate seven
true clusters clearly, except INA (Fig. 4h), which obtained
the perfect clustering result. The second best method was
HBGF (Fig. 4d), which gave a perfect result except two
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Table 1: Data in Experiment 2. N is #instances. #clus
is #clusters, N LC is #instances in the largest cluster and
N SC is #instances in the smallest cluster.

Datasets N #clusters N LC N SC

Anneal 100 4 76 6
Breast 106 6 22 14
Ecoli 336 8 143 2
Glass 214 6 76 9
Protein 116 6 32 15
Statlog 946 4 240 226
Sponge 503 7 118 36
Zoo 101 7 41 4
Tr11 414 9 132 6
Tr12 313 8 93 9
Tr23 204 6 91 6
Tr31 927 7 352 2
Tr41 878 10 243 9
Tr45 690 10 160 14

scrolls which were wrongly clustered. Overall INA outper-
formed all other seven ensemble clustering methods on the
very difficult benchmark dataset. HBGF was the best among
the graph-based methods, and so we will show the results of
HBGF only out of them in the subsequent experiments, due
to space limitations. Thus hereafter we focused on the five
best methods, i.e. HBGF, NMFC, WCC, NMFE and INA.

4.2 Experiment 2: UCI and CLUTO
Table 1 shows the summary of the datasets we used in this
experiment: 1) eight from the UCI data repository [Newman
et al., 1998] under the criterion that each dataset has less than
1,000 instances and the number of labels (clusters) is between
4 to 10 to make all compared methods run in a practical
amount of computation time. 2) six from the CLUTO data
repository [Karypis, 2002], a standard document database of-
ten used for document clustering, extracted under the same
criterion as that on the UCI data repository.

For each dataset, we generated input partitions from the
ground truth with imposed local property, since controlled ex-
periments are helpful for understanding the characteristic of
competing methods. We first assigned true cluster labels to
instances and then made instances move to different clusters,
with a certain probability (which we call perturbation rate).
For example, when the perturbation rate is 0.1, we move 10%
of all instances to different clusters. However, in order to
check the performance of capturing correct (or reliable) clus-
ters, we kept one cluster per partition correct with a certain
probability (which we call selection probability). The follow-
ing is a simple example with 15 instances for 4 clusters (with
the sizes of 5, 4, 3 and 3) where the first cluster (assigned by
1) is the correct cluster (with the selection probability of 1.0).

|11111|3212|432|143|

Table 2: NMI values of Experiment 2: The significantly best
method for each dataset is highlighted with boldface. “Ave”
means the simple average of NMI over all input partitions.

Dataset Ave HBGF NMFC WCC NMFE INA

Anneal 0.169 0.450 0.441 0.170 0.691 0.850
Breast 0.145 0.343 0.713 0.219 0.772 0.921
Ecoli 0.107 0.203 0.524 0.127 0.453 0.527
Glass 0.124 0.462 0.680 0.201 0.763 0.871
Protein 0.140 0.344 0.709 0.203 0.789 0.934
Statlog 0.136 0.979 0.985 0.219 0.985 0.987
Sponge 0.081 0.398 0.761 0.153 0.839 0.866
Zoo 0.175 0.289 0.541 0.190 0.613 0.818
Tr11 0.096 0.243 0.693 0.149 0.691 0.759
Tr12 0.098 0.226 0.726 0.249 0.746 0.822
Tr23 0.121 0.403 0.671 0.275 0.734 0.859
Tr31 0.072 0.511 0.713 0.122 0.696 0.704
Tr41 0.069 0.212 0.616 0.114 0.594 0.641
Tr45 0.072 0.182 0.622 0.143 0.623 0.675

We fixed the perturbation rate and the selection probability
at 0.9 and 0.5, respectively, arbitrarily. For each dataset, 30
partitions were generated.

Table 2 is the results of all five methods, clearly show-
ing that INA outperformed all other competing methods in
all 14 datasets, being statistically significant (paired t-test not
shown due to space limitations), except only one dataset. The
second best was NMFE, which outperformed the other three
competing methods (WCC, NMFC and HBGF) in all datasets
except only five cases. We further stress that even under the
selection probability of 0.5 (meaning that only one reliable
cluster per two partitions on average), the NMI values by INA
were very high, implying the high robustness of INA.

We further checked the change of reliability weights of
INA during the optimization procedure by using Breast in
Table 1. Fig. 5 (a) shows the changes of weights over 30
partitions, in which 15 partitions were generated in the above
manner (one cluster in each partition can be correct) while
the other 15 partitions were with random cluster assignment.
Starting with random values, the weights for partitions with
correct clusters became larger (more red) through the itera-
tions, because the same set of examples share the same cor-
rect clusters two or three times. On the other hand, Fig. 5 (b)
shows the weight change for only 5 partitions with correct
clusters and 25 partitions with random assignment. In this
case, the correct clusters could not be captured well, because
of no examples, which share the same cluster more than once
(since, for six true clusters, only five partitions with one dif-
ferent correct cluster). This result directly shows that the re-
liability weights can capture the cluster reliability in terms of
how often clusters are shared by the same set of instances.

4.3 Experiment 3: Multi-views Dataset
We finally used real text datasets, called 3-Sources 2, which
was retrieved from three online news sources: BBC, Reuters,

2http://mlg.ucd.ie/datasets/3sources.html
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Figure 5: Weight values during iterations from initial (left) to
final (right), and the most left column shows true clusters.

and The Guardian. From February to April 2009, 169 distinct
news stories were reported by all three sources. By manual
annotation, each story was labeled (and used as true cluster
label) with one of six different topics: business, entertain-
ment, health, politics, sport and technology. Table 3 shows
the statistics of the 3-Sources dataset.

Each news source, which we call a view, has its own char-
acteristic and should be separated. We generated features by
processing words in original sentences using TFIDF [Man-
ning et al., 2008] and randomly selected P% of all features to
make the data more diverse. We then generated 10 partitions
from each view by using k-means.

Table 4 shows the results, indicating that INA outper-
formed other competing methods in all cases, being statisti-
cally significant (detailed numbers of paired t-test not shown
due to space limitations). The second best method was
NMFE, which was followed by HBGF, NMFC and WCC.

5 Concluding Remarks
We have proposed INA, a new NMF-based ensemble cluster-
ing formulation and an efficient algorithm for factorizing ma-
trices and estimating cluster weights. A key feature of INA
is the weights over clusters (per instance) which are trained

Table 3: 3-Sources. Dim is # features.

Datasets N #clusters Dim N LC N SC

BBC 169 6 3560 56 11
Reuters 169 6 3631 56 11
Guardian 169 6 3068 56 11

Table 4: NMI values of Experiment 3, changing P. The sig-
nificantly best method for each P value is highlighted with
boldface. “Ave” means the same as that in Experiment 2.

P(%) Ave HBGF NMFC WCC NMFE INA
50 0.610 0.752 0.733 0.644 0.772 0.775
60 0.625 0.768 0.741 0.661 0.778 0.781
70 0.638 0.769 0.745 0.669 0.781 0.783
80 0.645 0.766 0.744 0.675 0.783 0.787
90 0.654 0.770 0.751 0.690 0.790 0.792
100 0.660 0.779 0.747 0.709 0.790 0.793

from given partitions. The trained weights allow to capture
locally reliable clusters, coherent instances and eventually
key clusters, which are important to obtain the most consis-
tent partition. We empirically showed that this unique feature
makes INA the most powerful method in performance among
the cutting-edge ensemble clustering methods.
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A Time Complexity
The time complexity of the optimization algorithm of INA is
O(K2NMT ) (T is the number of iterations), while that of
NMFC is O(KN2T ), implying that INA is much faster than
NMFC (and WCC), since in reality KM � N .

B Convergence Proof
We denote the loss function, ‖L�Ψ−HW T ‖2 + λ‖Ψ‖2,
by J . Let J t1 be J before Step 1 at the t-th iteration of the
optimization algorithm, and similarly let J t2 be J before Step
2 at iteration t.

First J t1 ≥ 0. We then prove that J is reduced by each step
of the algorithm, i.e. J t1 ≥ J t2 and J t2 ≥ J t+1

1 .
For Step 1, we can see J t1 ≥ J t2 by the standard derivation

of NMF [Lee and Seung, 2001].
For Step 2, in Eq. (8), κij is updated as follows:

κij =
b− γ
a

,

where a = Lij +
λ

Lij
, b = L∗

ij and γ = µi.
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Lemma 1 Let a1, a2, b1, b2, c and γ be real values. We as-
sume that the sum of two real values x and y is given by
x+ y = b1−γ

a1
+ b2−γ

a2
.

f(x, y)(= a1x
2+b1x+a2y

2+b2y+c) is minimized when
x = x0 and y = y0, where x0 = b1−γ

a1
and y0 = b2−γ

a2
.

Proof Assume that x = b1−γ
a1

+ ε and y = b2−γ
a2
− ε, then

f(x, y) = a1(x− b1
a1
)2 + a2(y− b2

a2
)2 +C = a1(

γ
a1
− ε)2 +

a2(
γ
a2
− ε)2 + C = ( 1

a1
+ 1

a2
)γ2 + (a1 + a2)ε

2 + C >

( 1
a1

+ 1
a2
)γ2 + C = f(x0, y0). (C is a constant.) �

Theorem 1 J t2 ≥ J t+1
1 .

Proof In Step 2, for each i, κij is updated by Eq. (8), which
is in the form of bij−γaij

(again γ = µi). We prove that Eq. (8)
is the only updating rule which can reduce J most at Step 2.
We assume that the optimized κij at Step 2 can have different
γ for different j. However Lemma 1 says that the loss can
be reduced more if we use the same γ for different j. This
leads to a contradiction, meaning that optimal κij must be
obtained from the same γ for different j. This further means
that Eq. (8) is the only updating rule of κij that minimizes the
loss at Step 2. This proves J t2 ≥ J t+1

1 . �

The proof is complete, since J t1 ≥ 0 and J t1 ≥ J t2 ≥ J t+1
1 .
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