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Abstract

We introduce kLog, a novel language for kernel-
based learning on expressive logical and relational
representations. kLog allows users to specify log-
ical and relational learning problems declaratively.
It builds on simple but powerful concepts: learning
from interpretations, entity/relationship data mod-
eling, and logic programming. Access by the ker-
nel to the rich representation is mediated by a tech-
nique we call graphicalization: the relational rep-
resentation is first transformed into a graph — in
particular, a grounded entity/relationship diagram.
Subsequently, a choice of graph kernel defines the
feature space. The kLog framework can be applied
to tackle the same range of tasks that has made
statistical relational learning so popular, including
classification, regression, multitask learning, and
collective classification. An empirical evaluation
shows that klLog can be either more accurate, or
much faster at the same level of accuracy, than
Tilde and Alchemy. kLLog is GPLv3 licensed and is
available at http://klog.dinfo.unifi.it along with tu-
torials.

1

kLog is embedded in Prolog (hence the name) and allows
users to specify different types of logical and relational learn-
ing problems in a declarative way. kLog adopts, as many
other logical and relational learning systems, the learning
from interpretations framework [De Raedt, 2008], which al-
lows to naturally represent entities (or objects) and the rela-
tionships amongst them.

kLog generates a set of features starting from a logical and
relational learning problem and uses these features for learn-
ing a (linear) statistical model. Learning problems are de-
scribed at three different levels. The first level specifies the
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logical and relational learning problem. At this level, the de-
scription consists of an E/R-model describing the structure of
the data and the data itself, which is similar to that of tradi-
tional SRL systems [Heckerman er al., 2007]. The data at
this level is then graphicalized, that is, the interpretations are
transformed into graphs. This leads to the specification of a
graph learning problem at the second level. Graphicalization
is the equivalent of knowledge-based model construction. In-
deed, SRL systems such as PRMs and MLNs also (at least
conceptually) produce graphs, although these graphs repre-
sent probabilistic graphical models. Finally, the graphs pro-
duced by kLog are turned into feature vectors using a graph
kernel, which leads to a statistical learning problem at the
third level. Again there is an analogy with systems such as
Markov logic as the Markov network that is generated in
knowledge-based model construction lists also the features.
Like in these systems, kLog features are tied together as ev-
ery occurrence is counted and is captured by a single same
parameter in the final linear model.

Thus the key contributions of the kLLog framework are
threefold: 1) kLLog is a language that allows users to declar-
atively specify relational learning tasks in a similar way as
statistical relational learning (SRL) and inductive logic pro-
gramming approaches; unlike many previous approaches to
SRL [De Raedt et al., 2008; Getoor and Taskar, 20071, it is
based on kernel methods rather than on probabilistic model-
ing; 2) kLog compiles the relational domain and learning task
into a graph-based representation using a technique called
graphicalization; and 3) kLog uses a graph kernel to con-
struct the feature space where eventually the learning takes
place. This whole process is reminiscent of knowledge-based
model construction in statistical relational learning.

2 The kLog language

We illustrate the kLog framework on a real-life example using
the UW-CSE dataset prepared by Domingos et al. for demon-
strating the capabilities of MLNs [Richardson and Domingos,
2006]. Basic entities include persons (students or professors),
scientific papers, and academic courses. Available relations
specify, e.g., whether a person was the author of a certain pa-
per, or whether he/she participated in the teaching activities
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Figure 1: E/R diagram for the UW-CSE domain.

of a certain course. The goal is to predict the students’ advi-
sors, namely the binary relation advised_by between students
and professors. Data comes in the form of true ground atoms,
under the closed-world assumption. Since (first-order logic)
functions are not allowed in the language, a ground atom is
essentially like a tuple in a relational database, for example
taught_by(course170,person211,winter_0102). kLog learns
from interpretations. This means that the data is given as a
set of interpretations (or logical worlds) where each interpre-
tation is a set of ground atoms which are true in that world.
In this illustration there are five interpretations: ai, graphics,
language, systems, and theory, corresponding to different re-
search groups in the department.

The first step in kLog modeling is to describe the domain
using a classic database tool: entity relationship diagrams.
We begin by modeling two entity sets: student and profes-
sor, two unary relations: in_phase and has_position, and one
binary relation: advised_by (which is the target in this exam-
ple). The diagram is shown in Figure 1.

Every entity or relationship that kLog will later use to gen-
erate features (see feature generation below) is declared us-
ing a special keyword signature. Signatures are similar to
the declarative bias used in inductive logic programming sys-
tems. There are two kinds of signatures, annotated by the re-
served words extensional and intensional. In the extensional
case, all ground atoms have to be listed explicitly as data;
in the intensional case, ground atoms are defined implicitly
using Prolog definite clauses. Intensional signatures are one
of the powerful features of kLog and allow programmers to
introduce novel relations, using a mechanism resembling de-
ductive databases. An intensional signature declaration must
be complemented by a predicate (written in Prolog) which
defines the new relation. Such relations are typically a means
of injecting domain knowledge. In our illustration, it may
be argued that the likelihood that a professor advises a stu-
dent increases if the two persons have been engaged in some
form of collaboration, such as co-authoring a paper, or work-
ing together in teaching activities. Writing Prolog predicates
for defining such new relations is straightforward. When
working on a given interpretation, kLLog materializes all in-
tensional predicates, that is, it computes and asserts all true
ground atoms in that interpretation in the Prolog database.
Intensional signatures can also be effectively exploited to in-
troduce aggregated attributes [De Raedt, 2008] (e.g., to count
the number of papers two persons have written together).

Graphicalization is our approach to capture the relational
structure of the data by means of a graph. The use of an
intermediate graphicalized representation is novel in the con-
text of propositionalization, a well-known technique in logi-
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Figure 2: Graphicalized fragment of the ai interpretation.

cal and relational learning [De Raedt, 2008] that transforms
relational data directly into an attribute-value format. This
typically results in a loss of information, cf. [De Raedt, 2008].
Our approach transforms the relational data into an equivalent
graph-based format, without loss of information. Graphical-
ization maps a set of ground atoms into a bipartite undirected
graph whose nodes are true ground atoms and whose edges
connect an entity atom to a relationship atom if the identi-
fier of the former appears as an argument in the latter. The
graph resulting from the graphicalization of a fragment of the
ai interpretation is shown in Figure 2. Predicates that exist in
the data but lack a corresponding signature (e.g., publication)
do not produce nodes in the graph. However these predicates
may be conveniently exploited in the bodies of the intensional
signatures (e.g., on_same_paper refers to publication).

After an interpretation z has been mapped into an undi-
rected labeled graph G, a feature vector ¢(z) may be ex-
tracted from G,. Alternatively, a kernel function on pairs
of graphs K(z,2') = K(G,,G/) can be computed. Thus
kLog directly upgrades graph-based kernels to fully relational
representations. The graph kernel choice implicitly deter-
mines how the predicates’ attributes are combined into fea-
tures. Now that we have specified the inputs to the learning
system, we still need to determine the learning problem. This
is declared in kLLog by designating one (or more) signature(s)
as target (in this domain, the target relation is advised_by).
Several library predicates are designed for training, e.g., kfold
performs a k-fold cross validation. These predicates accept a
list of target signatures that specifies the learning problem.

3 Graph kernel

In principle, any graph kernel can be employed in kLog.
In the current implementation, we use an extension of
NSPDK [Costa and De Grave, 2010]. While the original ker-
nel is suitable for sparse graphs with discrete vertex and edge
labels, here we propose extensions to deal with soft matches
and a larger class of graphs whose labels are tuples of mixed
discrete and numerical types. We also introduce a variant of
NSPDK with viewpoints, which can handle the case of mul-
tiple predictions within the same interpretation.

NSPDK is a convolution kernel [Haussler, 1999] where
parts are pairs of rooted patterns. Given a graph G, an in-
teger r, and a vertex v, an r-pattern rooted in v is the rooted
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Figure 3: Illustration of the soft matching kernel between
(1, 1)-parts rooted in vertices labeled by A and B.

subgraph of GG induced by vertices that can be reached from v
with a shortest-path of length r. Given an integer d, an (r, d)-
part is defined as a pair of r-patterns such that the shortest-
path distance between their roots is exactly d. In the origi-
nal formulation, NSPDK is parameterized by two integers R
(maximum radius) and D (maximum distance) and k(G, G')
is the number of common (isomorphic) (r, d)-parts in g and
G’ forallr < Randd < D.

Soft matches

The idea of counting exact pattern matches (up to isomor-
phism) to express graph similarity is adequate when the
graphs are sparse and have low degree. For other graph
classes the likelihood of finding common isomorphic patterns
is low, yielding a diagonal dominant kernel prone to overfit-
ting!. In these cases a better solution is to allow partial sub-
graph matches. In particular, we consider the frequencies of
labels within a pair of r-patterns, discarding structural infor-
mation (see Fig. 3).

Tuples of properties

A standard assumption in graph kernels is that vertex and
edge labels are elements of a discrete domain. However, in
kLog the information associated with vertices is a tuple that
can contain both discrete and real values. Here we extend
NSPDK to allow both a hard and a soft match type over
graphs with property tuples that can be discrete, real, or a
mixture of both types. The key idea is to use a canonical ver-
tex identifier (see [Frasconi et al., 2014]) to characterize each
element in the tuple within each (r, d)-pattern: in this way the
kernel is then the sum of kernels on the tuples that appear in
vertices sharing the same canonical identifier. Different spe-
cializations of the kernel on tuples can be defined, depending
on the type of property values in the tuple items and the type
of matching required. These specializations include soft and
hard matches for tuples of discrete, real-valued, and mixed
type values (see [Frasconi et al., 2014] for details). Note that
the kernel on real-valued properties is limited to the dot prod-
uct to ensure efficient computation.

'A concrete example is when text information associated to a
document is modeled explicitly, i.e., when word entities are linked
to a document entity: in this case the degree corresponds to the doc-
ument vocabulary size.

Domain knowledge bias via kernel points

At times it is convenient, for efficiency reasons or to inject
domain knowledge into the kernel, to be able to explicitly se-
lect a subset of parts to be matched. We provide a declarative
way to do so, by introducing the notion of kernel points, a
subset of vertices associated with the ground atoms of spe-
cially marked signatures. In this case, patterns whose roots
are not kernel points are ignored. Kernel points are typically
vertices that are believed to represent information of high im-
portance for the task at hand. Note that vertices that are not
kernel points still contribute to the kernel computation when
they occur in the neighborhoods of kernel points.

Viewpoints

When we are interested in predictions about individual in-
terpretations (like for example in the classification of small
molecules), the above approach is immediately usable in con-
junction with plain kernel machines like SVMs. When mov-
ing to more complex tasks involving, e.g., classification of
entities or tuples of entities, one option is to resort to a struc-
tured output technique, where f(z) = argmax, w' ¢(z,y),
where ¢(x,y) is the feature vector associated with interpre-
tation (x,y). Alternatively, we may convert the structured
output problem into a set of independent subproblems, each
consisting of predicting a single ground atom ¢ € y of the
target relation. In this case, we call the viewpoint of ¢, W,
the set of vertices that are adjacent to c in the graph. In or-
der to define a suitable kernel, we first consider the mutilated
graphs where all vertices in y, except ¢, are removed. We
then define a kernel on mutilated graphs, following the same
approach of the NSPDK, but with the additional constraint
that the first root must be in W,. In this way, we do not ob-
tain truly collective predictions. Still, even in this reduced
setting, the kLog framework can be exploited in conjunction
with meta-learning approaches that surrogate collective pre-
diction. For example, Prolog predicates in intensional sig-
natures can effectively be used as expressive relational tem-
plates for stacked graphical models [Kou and Cohen, 2007]
where input features for one instance are computed from pre-
dictions on other related instances.

4 KkLog in practice

We now illustrate how kLLog can be applied in different types
of learning problems. Details on results and experimental set-
tings are given in the full paper [Frasconi et al., 2014].

Predicting a single property of one interpretation

A simple example in this setting is the prediction of the bio-
logical activity of small molecules, a major task in chemoin-
formatics, where graph kernels (see [Vishwanathan et al.,
2010] and references therein) offer state-of-the-art solutions.
From the kLog perspective the data consists of several inter-
pretations, one for each molecule. To evaluate kLLog we used
two data sets: Bursi [Kazius et al., 2005] and Biodegradabil-
ity [Blockeel et al., 2004].

The learning task in Bursi is to discriminate between mu-
tagens and nonmutagens. Our results are stable (within .03
AUROC) with respect to the choice of kernel hyperparam-
eter (maximum radius and distance) and SVM regulariza-
tion and essentially match the best results reported in [Costa
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and De Grave, 2010] (AUROC 0.92 + 0.01 using functional
groups and 0.9 £ 0.01 using atoms and bonds) even with-
out composition with a polynomial kernel. By comparison,
Tilde [Blockeel and De Raedt, 1998], accessing the same set
of Prolog atoms as kLog, obtained 0.63 4 0.09 (functional
groups) and 0.8 £ 0.02 (atoms and bonds).

The Biodegradability data set contains 328 compounds
and the regression task is to predict their half-life for aer-
obic aqueous biodegradation. We estimated prediction per-
formance in the setting described in [Blockeel et al., 2004].
When using functional groups, kLog obtained an RMSE of
1.07 &+ 0.01. For comparison, the best RMSE obtained by
kFOIL is 1.14 4 0.04 (kFOIL was shown to outperform Tilde
and S-CART in [Landwehr et al., 2010]).

Link prediction

We focus on the application of kLog in the UW-CSE do-
main discussed in Section 2. We evaluated prediction ac-
curacy according to the leave-one-research-group-out setup
of [Richardson and Domingos, 2006]. The whole 5-fold pro-
cedure runs in about 20 seconds on a single core of a 2.5GHz
Core i7 CPU. Compared to MLNs, kLog in the current imple-
mentation has the disadvantage of not performing collective
assignment but the advantage of defining more powerful fea-
tures thanks to the graph kernel. The recall-precision curve
of kLog dominates that of MLN.

In a second experiment, we predicted the relation ad-
vised_by starting from partial information (i.e., when rela-
tions Student (and its complement Professor) are unknown,
as in [Richardson and Domingos, 2006]). In this case, we
created a pipeline of two predictors. Our procedure is remi-
niscent of stacked generalization [Wolpert, 1992]. In the first
stage, a leave-one-research-group-out cross-validation pro-
cedure was applied to the training data to obtain predicted
groundings for Student (a binary classification task on enti-
ties). Predicted groundings were then fed to the second stage
which predicts the binary relation advised_by. Again, the
recall-precision curve of kLog dominates that of MLN. Since
kLog is embedded in the programming language Prolog, it is
easy to use the output of one learning task as the input for the
next one as illustrated in the pipeline. This is because both
the inputs and the outputs are relations. Relations are treated
uniformly regardless of whether they are defined intension-
ally, extensionally, or are the result of a previous learning run.
Thus kLog satisfies what has been called the closure principle
in the context of inductive databases [De Raedt, 2002]; it is
also this principle together with the embedding of kLLog inside
a programming language (Prolog) that turns kLog into a true
programming language for machine learning [Mitchell, 2006;
De Raedt and Nijssen, 2011; Rizzolo and Roth, 2010].

Entity classification

The WebKB data set [Craven et al., 1998] consists of aca-
demic Web pages from four computer science departments
to be categorized (we used four classes: research, student,
course, and faculty). Because of the relationships has, that as-
sociates words to web pages, vertices representing webpages
have large degree in the graphicalized interpretations. In this
domain we can therefore appreciate the flexibility of the soft
match kernel. We compared kLog to MLN and to Tilde on
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the same task. For both systems we used logical formulae or
language bias that encode the same domain knowledge ex-
ploited in kLLog. For MLN, we followed the weight averag-
ing protocol described in [Lowd and Domingos, 2007]. The
average multiclass accuracies in the leave-one-university-out
setting are 0.88 for kLog and MLN, and 0.86 for Tilde. The
average I measures are 0.88 for kLog, 0.81 for MLN, and
0.78 for Tilde. Although the accuracies of the three meth-
ods are essentially comparable, their requirements in terms
of CPU time are dramatically different: using a single core of
a second generation Intel Core i7, kLog took 36s, Alchemy
27,041s (for 100 iterations, at which the best accuracy is at-
tained), and Tilde: 5,259s.

Domains with a single interpretation

The Internet Movie Database (IMDb) collects information
about movies and their cast, people, and companies work-
ing in the motion picture industry. We focus on predicting,
for each movie, whether its first weekend box-office receipts
are over US$2 million, a learning task previously defined
in [Neville and Jensen, 2003]. The learning setting defined so
far (learning from independent interpretations) is not directly
applicable since train and test data occur within the same in-
terpretation. The notion of slicing in kLLog allows us to over-
come this difficulty. Intuitively, slicing sorts ground atoms
according to a total order so that training atoms for the target
relation are always before test atoms in that order. We sliced
the data set according to production year, and starting from
year y = 1997 until year y = 2005, we trained on the frame
{y — 1,y — 2} and tested on the frame {y}. kLog obtained
an AUROC of 0.93 £ 0.03. In the same setting and using
the same background knowledge, MLN and Tilde obtained
AUROC 0.85 £ 0.03 and 0.87 % 0.04, respectively. On this
data set, Tilde was the fastest system, completing all train-
ing and test phases in 220s, followed by kLog (1,394s) and
Alchemy (12,812s). However, the AUC obtained by kLLog is
consistently higher across all prediction years.

5 Conclusions

kLog tightly integrates logical and relational learning with
kernel methods and constitutes a principled framework for
statistical relational learning based on kernel methods rather
than on graphical models. There are unanswered questions
and interesting open directions for further research. One im-
portant aspect is the possibility of performing collective clas-
sification (or structured output prediction). Such learning
problems can be naturally defined within kLLog’s semantics
but developing clever and fast algorithms for this purpose is
an interesting open issue. The graph kernel that is currently
employed in kLog is just one of many possible choices. An-
other direction for future research is the implementation of a
library of kernels suitable for different types of graphs (e.g.,
small-world networks or graphs with high-dimensional la-
bels), as well as the integration of other existing graph ker-
nels.

kLog is actively used for developing applications. We
are exploring applications of kLog in natural language pro-
cessing [Verbeke et al., 2012a; 2012b; 2014; Kordjamshidi



et al., 2012] and computer vision [Antanas et al., 2012;
2013].
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