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Abstract
Graphical models, such as Bayesian Networks and
Markov networks play an important role in artifi-
cial intelligence and machine learning. Inference is
a central problem to be solved on these networks.
This, and other problems on these graph models
are often known to be hard to solve in general,
but tractable on graphs with bounded Treewidth.
Therefore, finding or approximating the Treewidth
of a graph is a fundamental problem related to in-
ference in graphical models. In this paper, we study
the approximability of a number of graph problems:
Treewidth and Pathwidth of graphs, Minimum Fill-
In, and a variety of different graph layout problems
such as Minimum Cut Linear Arrangement. We
show that, assuming Small Set Expansion Conjec-
ture, all of these problems are NP-hard to approx-
imate to within any constant factor in polynomial
time.
This paper is an extended abstract of the Journal of
Artificial Intelligence Research [Wu et al., 2014]

1 Introduction
Graphical models provide a computational framework for ef-
ficiently manipulating probability distributions over high di-
mensional spaces, often involving hundreds of thousands of
variables. This framework has found applications in an enor-
mous range of domains including: medical and fault diag-
nosis, image understanding, speech recognition, web search,
coding theory, and statistical physics [Koller and Friedman,
2009]. A graphical model is an efficient representation of a
joint distribution over some set of n random variables. Even
if the random variables are binary, it is well known that an ar-
bitrary joint distribution requires the specification of 2n prob-
abilities. Luckily, in the real world, there is often structure in
∗This paper is an extended abstract of the Journal of Artificial

Intelligence Research [Wu et al., 2014]. Research supported by
NSERC.
†Present Affiliation: Facebook AI Research, 770 Broadway, New

York, USA.
‡Present Affiliation: School of Computer Science and Commu-

nication, KTH Royal Institute of Technology, Stockholm, Sweden

the distribution that allows one to express it more succinctly.
A graphical model represents such a joint probability distribu-
tion by a graph where the vertices represent the random vari-
ables, and the dependences are modeled by the graph struc-
ture. Associated with each vertex of the graph is a conditional
probability table, which specifies the conditional probabili-
ties of this random variable, conditioned on its neighboring
vertices. The two most common types of graphical models
are Bayesian networks (also called belief networks), where
the underlying graph is directed, and Markov networks (also
called Markov random fields), where the underlying graph is
undirected. The most basic problem in graphical models is
the inference problem, which is the problem of computing
the posterior marginal distribution of a variable at some ver-
tex. Unfortunately, inference in general is well-known to be
NP-hard to compute exactly as well as to approximate [Roth,
1996].

Despite this intractability, an important class of bounded
Treewidth instances of probabilistic inference has been iden-
tified and shown to be exactly computable in polynomial
time. The Treewidth of a graph [Robertson and Seymour,
1984] is a fundamental parameter of a graph that measures
how close the graph is to being a tree. Treewidth is very
closely related to the other notions in machine learning such
as Branch-width, Clique-width and Elimination-width (for an
overview of Treewidth and related notions, see [Bodlaender
et al., 1995]). On graphs with small Treewidth and where
the tree decomposition is known, a dynamic programming al-
gorithm yields a polynomial-time algorithm. Particular al-
gorithms for probabilistic inference on bounded Treewidth
graphs are the junction-tree method, variable elimination and
clique trees (e.g. see [Koller and Friedman, 2009], ch. 9, 10).

The same ideas also yield polynomial-time algorithms and
often even linear time algorithms for small Treewidth in-
stances for an astonishing variety of other NP-hard prob-
lems, including: satisfiability, counting satisfying assign-
ments, constraint satisfaction, vertex cover, maximum inde-
pendent set, Hamiltonian circuit, matrix decomposition, and
more generally all problems definable in monadic second-
order logic. (See the excellent survey [Bodlaender, 2005] for
motivation, including theoretical as well as practical applica-
tions of Treewidth.) One catch is that for all of these prob-
lems, the algorithm must begin by finding a tree decompo-
sition, and then use the decomposition to solve the problem.
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Given the tree decomposition, the algorithm is typically ex-
ponential in the width of the underlying tree decomposition.
Thus there is a need for efficient algorithms to actually com-
pute the Treewidth of a given graph, and to find tree decom-
positions with optimal or close to optimal width.

Unfortunately, while there are many good heuristics for
finding a good tree decomposition, it is NP-hard in gen-
eral to determine the Treewidth of a graph [Arnborg et al.,
1987]. However, Bodlaender et al. [Bodlaender et al.,
1995] obtained an O(log n) factor approximation algorithm
for Treewidth. In fact, they actually show that if there is a
factor c approximation algorithm for vertex separator, then
there is anO(c) approximation algorithm for Treewidth. And
if there is a factor b approximation algorithm for Treewidth
then there is an O(b log n) approximation algorithm for the
related Pathwidth problem. The best currently known approx-
imation factor for vertex separator is O(

√
log n) [Feige et al.,

2005] and thus the best algorithm for Treewidth finds a tree
decomposition that is within anO(

√
log n) factor of the opti-

mal width, and an O((
√

log n)(log n)) factor approximation
algorithm for Pathwidth.

It is a longstanding open question whether or not there is a
constant factor approximation algorithm for Treewidth. Such
an algorithm would lead to faster algorithms to find good tree-
decompositions for all of the problems mentioned above. The
current best known algorithm that achieves a constant factor
approximation for Treewidth runs in time 2O(w)O(n), where
w is the Treewidth of the underlying graph, and achieves a
factor 5 approximation [Bodlaender, 2007]. Similarly, the ap-
proximability of many related graph layout problems is also
unresolved, including Minimum Cut Linear Arrangement and
Interval Graph Completion.

In this paper, we make an important step to resolve this
problem by showing that Treewidth, Pathwidth, and a host
of related graph layout problems are hard to approximate to
within any constant factor, under the Small Set Expansion
(SSE) conjecture [Raghavendra and Steurer, 2010].

The SSE conjecture is a strengthened version of the con-
jecture that P is different from NP and warrants some ex-
planation. In the next subsection (Section 1.1), we explain
the SSE conjecture, and how it relates to the P versus NP
question and to related conjectures. We then state our main
hardness results for Treewidth, Pathwidth and graph layout
problems (Sections 1.2, and 1.4), and discuss related results
in Section 1.5.

1.1 The Small Set Expansion Conjecture
The P versus NP problem is the most important and intrigu-
ing open problem in the field of computational complexity
theory. Many decision problems in theory and practice have
been proven to be NP-hard, which indicates that they are im-
possible to compute in polynomial time, under the widely be-
lieved conjecture that P 6= NP. The discovery of the PCP
theorem in the late 80’s [Arora et al., 1998] made it possible
to prove that for many optimization problems, approximat-
ing the optimal value to within a certain factor is as hard as
computing the exact optimal value. Celebrated results show
that it is NP-hard to approximate MAX-3SAT within a ra-
tio of 7

8 + ε for any ε > 0 [Håstad, 2001], which gives the

optimal lower bound, since there is a simple algorithm that
achieves an approximation ratio of 7

8 . Despite this success,
for many important problems, such as Vertex Cover, Max-
Cut, and Kernel Clustering, the hardness of approximation
results obtained through the PCP theorem have not matched
the best approximation algorithms known.

The formulation of the Unique Games Conjecture (UGC)
due to Khot [Khot, 2002] was intended to clarify the ap-
proximability of many optimization problems. The conjec-
ture postulates that the problem of determining the value of
a certain type of game, known as a unique game, is NP-hard.
Under UGC, many of the known algorithms in approximation
are proven to be tight (for an excellent survey on this topic,
see [Khot and Vishnoi, 2005]). For instance, under the UGC,
the Vertex Cover problem is NP-hard to approximate within
a factor of 2 − ε, for any ε > 0 [Khot and Regev, 2008].
Perhaps most strikingly, Raghavendra [Raghavendra, 2008]
proved that under the UGC, the semi-definite programming
(SDP) approximation algorithm for a large class of constraint
satisfaction problems (CSP) are essentially the best one can
hope for. Thus, the UGC has become the central open prob-
lem in inapproximability and encapsulates the barrier of de-
signing better polynomial time approximation algorithms for
a large class of problems.

Despite this tremendous progress, still there remain im-
portant yet stubborn problems such as Treewidth, Balanced
Separator, Minimum Linear Arrangement (MLA), and many
other graph layout problems whose approximation status re-
mains unresolved even assuming the UGC. In the work of
Raghavendra and Steurer [Raghavendra and Steurer, 2010],
the Small Set Expansion (SSE) Conjecture was introduced,
and it was shown that it implies the UGC, and that the
SSE Conjecture follows if one assumes that the UGC is
true for somewhat expanding graphs. In follow-up work by
Raghavendra et al. [Raghavendra et al., 2012], it was shown
that the SSE Conjecture is in fact equivalent to the UGC on
somewhat expanding graphs, and that the SSE Conjecture im-
plies NP-hardness of approximation for balanced separator
and MLA. In this light, the Small Set Expansion conjecture
serves as a natural unified conjecture that yields all of the im-
plications of UGC and also hardness for expansion-like prob-
lems that could not be resolved with the UGC.

Our main contribution in this paper is to prove that a wide
range of other graph layout problems are SSE-hard to approx-
imate to within any constant factor. For these problems, no
evidence of hardness of approximation was known prior to
our results. Moreover, we show that Treewidth, Pathwidth
and Minimum Fill-In are SSE-hard to approximate within
any constant factor. This is the first result giving hardness
of (relative) approximation for these problems, and gives ev-
idence that no constant factor approximation algorithm exists
for them.

It should be noted that the status of the SSE conjecture is
very open at this point. In particular, recent results [Arora et
al., 2010; Barak et al., 2011; Guruswami and Sinop, 2011]
give subexponential-time algorithms for small set expansion.
Still despite this recent progress providing evidence against
the SSE conjecture, it remains open. Our SSE-hardness re-
sults for Treewidth and related problems may therefore be
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viewed as establishing a new connection between a funda-
mental conjecture in complexity theory, and the approxima-
bility of a ubiquitous problem in artificial intelligence.

1.2 Width Parameters of Graphs
As mentioned earlier, determining the exact Treewidth of a
graph and producing an associated optimal tree decomposi-
tion is known to be NP-hard [Arnborg et al., 1987], and a cen-
tral open problem is to determine whether or not there exists
a polynomial time constant factor approximation algorithm
for Treewidth (see e.g., [Bodlaender et al., 1995; Bodlaen-
der, 2005]). The current best polynomial time approxima-
tion algorithm for Treewidth [Feige et al., 2005], computes
the Treewidth tw(G) within a factor O(

√
log tw(G)). On

the other hand, the only hardness result to date for Treewidth
shows that it is NP-hard to compute Treewidth within an ad-
ditive error of nε for some ε > 0 [Bodlaender et al., 1995].
No hardness of approximation is known. In many important
special classes of graphs, such as planar graphs [Seymour and
Thomas, 1994], andH-minor-free graphs [Feige et al., 2005],
constant factor approximations are known, but the general
case has remained elusive.

On the positive side, there is a large body of literature de-
veloping fixed-parameter algorithms for Treewidth. Exactly
determining the Treewidth is fixed-parameter tractable: there
is a linear time algorithm that runs in time 2poly(k)poly(n)
for computing the (exact) Treewidth for graphs of constant
treewidth [Bodlaender, 1996]. Constant factor approximation
algorithms achieve better dependence on the treewidth, k, and
n, with the best such algorithm running in time 2O(k)O(n)
[Bodlaender, 2007].

A related graph parameter is the so-called Pathwidth,
which can be viewed as measuring how close G is to a path.
The Pathwidth pw(G) is always at least tw(G), but can be
much larger. The current state of affairs here is similar as for
Treewidth; though the current best approximation algorithm
only has an approximation ratio of O(

√
log pw(G) logn)

[Feige et al., 2005], the best hardness result is NP-hardness
of additive nε error approximation.

Using the Small Set Expansion (SSE) Conjecture
[Raghavendra and Steurer, 2010], we show that both tw(G)
and pw(G) are hard to approximate within any constant fac-
tor. In fact, we show something stronger: it is hard to dis-
tinguish graphs with small Pathwidth from graphs with large
Treewidth. Specifically:

Theorem 1.1. For every α > 1 there is a c > 0 such that
given a graph G = (V,E) it is SSE-hard to distinguish be-
tween the case when pw(G) ≤ c · |V | and the case when
tw(G) ≥ α · c · |V |.

In particular, both Treewidth and Pathwidth are SSE-hard
to approximate within any constant factor.

1.3 Minimum Fill-In
A closely related graph theoretic property is the Minimum
Fill-In of a graph, the minimum number of edges required to
add to a graph to triangulate it (i.e., make it chordal). This
property has important applications with sparse matrix com-
putations (and in particular Gaussian elimination) and artifi-

cial intelligence (see the excellent survey by Heggernes [Heg-
gernes, 2006]).

MINIMUM FILL-IN has been known to be fixed parame-
ter tractable since 1994, when Kaplan et al. [Kaplan et al.,
1994] gave an O(|E|16k) algorithm, where k is the number
of edges required. From there, several improvements to the
running time have been given, with the most recent in 2012 by
Fomin and Villanger 2012, who gave the first subexponential
parameterized algorithm, running in time O(2O(

√
k log k) +

k2|V | · |E|). In the work of Natanzon et al. 1998, a poly-
nomial time approximation algorithm was presented, which
computed a value at most 8k2, where k is the optimal solu-
tion. For graphs with degree bounded by d, their algorithm
achieves an approximation ratio of O(d2.5 log4(kd)).

This remains the best polynomial time approximation al-
gorithm known to date. In particular, it has remained an open
question whether a polynomial time constant factor approx-
imation algorithm exists. In this paper, we show that this is
not possible, assuming the SSE Conjecture.

Theorem 1.2. It is SSE-hard to approximate the Minimum
Fill-In of a graph to within a constant factor.

1.4 The Connection: Layout Problems
In a graph layout problem (also known as an arrangement
problem, or a vertex ordering problem), the goal is to find
an ordering of the vertices, optimizing some condition on the
edges, such as adjacent pairs being close. Layout problems
are an important class of problems that have applications in
many areas such as VLSI circuit design.

A classic example is the Minimum Cut Linear Arrangement
problem (MCLA). In this problem, the objective is to find a
permutation π of the vertices V of an undirected graph G =
(V,E), such that the largest number of edges crossing any
point,

max
i
|{(u, v) ∈ E|π(u) ≤ i < π(v)}|, (1)

is minimized. MCLA is closely related to the Minimum Lin-
ear Arrangement problem (MLA), in which the max in (1) is
replaced by a sum.

The MCLA problem can be approximated to within a fac-
tor O(log n

√
log n). To the best of our knowledge, there is

no hardness of approximation for MCLA in the literature. Its
cousin MLA was recently proved SSE-hard to approximate
within any constant factor [Raghavendra et al., 2012], and we
observe that the same hardness applies to the MCLA problem.

Theorem 1.3. It is SSE-hard to approximate the Minimum
Cut Linear Arrangement problem within any constant factor.

Another example of graph layout is the Interval Graph
Completion Problem (IGC). In this problem, the objective is
to find a supergraph G′ = (V,E′) of G with the same vertex
set V , such that G′ is an interval graph (i.e., the intersection
graph of a set of intervals on the real line) and having mini-
mum number of edges. While not immediately appearing to
be a layout problem, using a simple structural characteriza-
tion of interval graphs one can show that IGC can be reformu-
lated as finding a permutation of the vertices that minimizes
the sum over the longest edges going out from each vertex,
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i.e., minimizing∑
u∈V

max
(u,v)∈E

max{π(v)− π(u), 0}. (2)

See e.g., [Charikar et al., 2010]. The current best
approximation algorithm for IGC achieves a ratio of
O(
√

log n log log n) [Charikar et al., 2010]. It turns out that
the SSE Conjecture can be used to prove super-constant hard-
ness for this problem as well.
Theorem 1.4. It is SSE-hard to approximate the Interval
Graph Completion problem within any constant factor.

Theorems 1.3 and 1.4 are just two examples of layout prob-
lems that we prove hardness of approximation for. By vary-
ing the precise objective function and considering directed
acyclic graphs, in which case the permutation π must be a
topological ordering of the graph, one can obtain a variety of
graph layout problems. We consider a set of eight such prob-
lems, generated by three natural variations, and show super-
constant SSE-based hardness for all of them in a unified way.

1.5 Previous Work
As the reader may have noticed, for all the problems men-
tioned, the best current algorithms achieve similar poly-
logarithmic approximation ratios. Given their close relation,
this is of course not surprising. Most of the algorithms are
obtained by recursively applying some algorithm for the c-
balanced separator problem, in which the objective is to find
a bipartition of the vertices of a graph such that both sides
contain at least a c fraction of vertices, and the number of
edges crossing the partition is minimized.

In the pioneering work on separators by Leighton and Rao
[Leighton and Rao, 1999], an O(log n) approximation algo-
rithm for c-balanced separator was given, which was used
to design O(log2 n) approximation algorithm for a num-
ber of graph layout problems such as MLA, MCLA, and
Register Sufficiency. In the groundbreaking work of Arora
et al. [Arora et al., 2009], semidefinite programming was
used to give an improved approximation ratio of O(

√
log n)

for c-balanced separator. Using their ideas, improved al-
gorithms for ordering problems have been found, such as
the O(

√
log n log logn) approximation algorithm for IGC

and MLA [Charikar et al., 2010], the O(
√

log n) approx-
imation algorithm for Treewidth [Feige et al., 2005] and
the O(

√
log n log n) approximation algorithm for Pathwidth

[Feige et al., 2005].
On the hardness side, our work builds upon the work of

[Raghavendra et al., 2012], which showed that the SSE Con-
jecture implies superconstant hardness of approximation for
MLA (and for c-balanced separator). The only other hard-
ness of relative approximation that we are aware of for these
problems is a result of Ambühl et al. [Ambuhl et al., 2007],
showing that MLA does not have a PTAS unless NP has ran-
domized subexponential time algorithms.

2 Definitions and Preliminaries
For an undirected graph G = (V,E), and subsets S, S′ ⊆ V ,
E(S, S′) denotes the set of edges that go between S and S′.
In other words, E(S, S′) is the set of edges (u, v) ∈ E such
that u ∈ S and v ∈ S′.

2.1 Treewidth, Elimination Width, and Pathwidth
Definition 2.1 (Tree decomposition, Treewidth). Let G =
(V,E) be a graph, T a tree, and let V = (Vt)t∈T be a family
of vertex sets Vt ⊆ V indexed by the vertices t of T . The
pair (T,V) is called a tree decomposition of G if it satisfies
the following three conditions:

(T1) V = ∪t∈TVt;
(T2) for every edge e ∈ E, there exists a t ∈ T such that both

endpoints of e lie in Vt;
(T3) for every vertex v ∈ V , {t ∈ T | v ∈ Vt} is a subtree of

T ’.
The width of (T,V) is the number max{|Vt| − 1 | t ∈ T},

and the Treewidth of G, denoted tw(G), is the minimum
width of any tree decomposition of G.
Definition 2.2. LetG = (V,E) be a graph, and let v1, . . . , vn
be some ordering of its vertices. Consider the following pro-
cess: for each vertex vi in order, add edges to turn the neigh-
borhood of vi into a clique, and then remove vi from G. This
is an elimination ordering of G. The width of an elimination
ordering is the maximum over all vi of the degree of vi when
vi is eliminated. The elimination width of G is the minimum
width of any elimination order.
Theorem 2.3 (See e.g., [Bodlaender, 2007]). For every
graph G, the elimination width of G equals tw(G).

Thus Treewidth is another example of a layout problem. In
principle this layout problem can be formulated in the frame-
work of Section 2.3, but the choice of cost function is now
more involved than the vertex- and edge-counting considered
there.
Definition 2.4 (Path decomposition, Pathwidth). Given a
graph G, we say that (T,V) is a path decomposition of G if it
is a tree decomposition of G and T is a path. The Pathwidth
of G, denoted pw(G), is the minimum width of any path de-
composition of G.

As claimed earlier, Pathwidth is in fact equivalent with a
graph layout problem. (See the next section for the formal
definition of layout.)
Theorem 2.5 ([Kinnersley, 1992]). For every graph G, we
have pw(G) = Layout(G;V,max).

2.2 Minimum Fill-In
Definition 2.6 (Chordal, Triangulation). A graph G is
chordal if and only if every cycle of length at least 4 has a
chord. For any (possibly non-chordal) graph G, a triangula-
tion of G is a supergraph of G which is chordal.
Definition 2.7 (Minimum Fill-In). The Minimum Fill-In of
a graph G is the minimum number of edges required to add
to G to triangulate it; i.e., so that the resulting supergraph is
chordal.

The problem of determining the Minimum Fill-In of a
graph is sometimes called the Chordal Graph Completion
problem.

A perfect elimination ordering of G is an elimination or-
dering such that no edges are ever added to G. Put another
way, for each vertex vi, its neighbours appearing after it in
the ordering form a clique.
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Theorem 2.8 ([Fulkerson and Gross, 1965]). A graph G is
chordal if and only if it has a perfect elimination ordering.

Treewidth and Minimum Fill-In are related through the fol-
lowing theorem.
Theorem 2.9 (Folklore). Suppose G is a graph with
Treewidth k. Then every triangulation of G has a clique of
size k + 1.

2.3 Graph Layout Problems
In this subsection, we describe the set of graph layout prob-
lems that we consider. A problem from the set is described by
three parameters, These three parameters are by no means the
only interesting graph layout problems (and some of the set-
tings give rise to more or less uninteresting layout problems).
However, they are sufficient to capture the problems we are
interested in except Treewidth, which in principle could be
incorporated as well though we refrain from doing so in or-
der to keep the definitions simple (see Section 2.1 for more
details).

First a word on notation. Throughout the paper, G =
(V,E) denotes an undirected graph, and D = (V,E) denotes
a directed (acyclic) graph. Letting n denote the number of
vertices of the graph, we are interested in bijective mappings
π : V → [n]. We say that an edge (u, v) ∈ E crosses point
i ∈ [n] (with respect to the permutation π, which will always
be clear from context), if π(u) ≤ i < π(v).

We consider the following variations:
1. Undirected or directed acyclic: In the case of an undi-

rected graph G, any ordering π of the vertices is a feasi-
ble solution. In the case of a DAG D, only the topologi-
cal orderings of D are feasible solutions.

2. Counting edges or vertices: for a point i ∈ [n] of the
ordering, we are interested in the set Ei(π) of edges
crossing this point. When counting edges, we use the
cardinality of Ei as our basic measure. When counting
vertices, we only count the set of vertices Vi to the left
of i that are incident upon some edge crossing i. In other
words, Vi is the projection of Ei(π) to the left-hand side
vertices. Formally:

Ei(π) = {e ∈ E |π(u) ≤ i < π(v) where e = (u, v)}
Vi(π) = {u ∈ V |π(u) ≤ i < π(v) for some (u, v) ∈ E}
We refer to |Ei(π)| or |Vi(π)| (depending on whether we
are counting edges or vertices) as the cost of π at i.

3. Aggregation by sum or max: given an ordering π, we
aggregate the costs of each point i ∈ [n], by either sum-
mation or by taking the maximum cost.

Given these choices, the objective is to find a feasible or-
dering π that minimizes the aggregated cost.
Definition 2.10. (Layout value) For a graph H (either an
undirected graph G or a DAG D), a cost function C (either E
or V ), and an aggregation function agg : R∗ → R (either Σ
or max), we define Layout(H;C, agg) as the minimum ag-
gregated cost over all feasible orderings of H . Formally:

Layout(H;C, agg) = min
feasible π

agg
i∈[n]
|Ci(π)|.

Problem Equivalent with
undir. edge sum Minimum/Optimal Linear Ar-

rangement
undir. edge max Minimum Cut Linear Arrange-

ment; CutWidth
undir. vertex sum Interval Graph Completion;

SumCut
undir. vertex max Pathwidth
DAG edge sum Minimum Storage-Time Se-

quencing; Directed MLA/OLA
DAG edge max
DAG vertex sum
DAG vertex max Register Sufficiency

Table 1: Taxonomy of Layout Problems

Combining the different choices gives rise to a total of eight
layout problems (some more natural than others). Several of
these appear in the literature under one or more names, and
some turn out to be equivalent1 to problems that at first sight
appear to be different. We summarize some of these names
in Table 1. In some cases the standard definitions of these
problems look somewhat different than the definition given
here (e.g., for Pathwidth, and Interval Graph Completion).
For the Pathwidth problem, we discuss these equivalences of
definitions in the following two sections.

For Interval Graph Completion, recall from Section 1.4 that
the objective is to minimize∑

u∈V
max

(u,v)∈E
max{π(v)− π(u), 0}.

In other words, we are counting the longest edge going to the
right from each point i. If the length of this edge is l then
the edge contributes 1 to Vi(π), . . . , Vi+l−1(π) and hence the
objective can be rewritten as∑

u∈V
|Vi(π)|,

so that Interval Graph Completion is Layout(G;V,Σ).

2.4 Small Set Expansion Conjecture
In this section we define the SSE Conjecture. LetG = (V,E)
be an undirected d-regular graph. For a set S ⊆ V of vertices,
we write ΦG(S) for the (normalized) edge expansion of S,

ΦG(S) =
|E(S, V \ S)|

d|S|
The Small Set Expansion Problem with parameters η and δ,
denoted SSE(η, δ), asks ifG has a small set S which does not
expand or whether all small sets are highly expanding.
Definition 2.11 (SSE(η, δ)). Given a d-regular graph G =
(V,E) 2, SSE(η, δ) is the problem of distinguishing between
the following two cases:

1Here, we consider two optimization problems equivalent if there
are reductions between them that change the objective values by at
most an additive constant.

2d is a constant

4226



Yes There is an S ⊆ V with |S| = δ|V | and ΦG(S) ≤ η.
No For every S ⊆ V with |S| = δ|V | it holds that ΦG(S) ≥

1− η.
This problem was introduced by Raghavendra and Steurer

[Raghavendra and Steurer, 2010], who conjectured that the
problem is hard.
Conjecture 2.12 (Small Set Expansion Conjecture). For
every η > 0, there is a δ > 0 such that SSE(η, δ) is NP-hard.

We say that a problem is SSE-hard if it is as hard to solve
as the SSE problem. Formally, a decision problem P (e.g.,
a gap version of some optimization problem) is SSE-hard if
there is some η > 0 such that for every δ > 0, SSE(η, δ)
polynomially reduces to P .

Raghavendra et al. 2012 showed that the SSE Problem can
be reduced to a quantitatively stronger form of itself. To state
this stronger version, we need to first define Gaussian noise
stability.
Definition 2.13. Let ρ ∈ [−1, 1]. We define Γρ : [0, 1] →
[0, 1] by

Γρ(µ) = Pr
[
X ≤ Φ−1(µ) ∧ Y ≤ Φ−1(µ)

]
where Φ−1 is inverse function of normal distribution, and X
and Y are jointly normal random variables with mean 0 and

covariance matrix
(

1 ρ
ρ 1

)
.

Fact 2.14. ([Raghavendra et al., 2012]) There is a con-
stant c > 0 such that for all sufficiently small ε and all
µ ∈ [1/10, 1/2],

Γ1−ε(µ) ≤ µ(1− c
√
ε).

Conjecture 2.15 (SSE Conjecture, Equivalent Formula-
tion). For every integer q > 0 and ε, γ > 0, it is NP-hard
to distinguish between the following two cases for a given d-
regular graph G = (V,E)

Yes There is a partition of V into q equi-sized sets S1, . . . , Sq
such that ΦG(Si) ≤ 2ε for every 1 ≤ i ≤ q.

No For every S ⊆ V , letting µ = |S|/|V |, it holds that
ΦG(S) ≥ 1− (Γ1−ε/2(µ) + γ)/µ.

3 Brief Overview of Reductions
In this section, we give a very brief overview of the reduc-
tions used to prove that the layout problems are SSE-hard to
approximate within any constant factor.

For the two undirected edge problems (i.e., MLA and
MCLA), the hardness follows immediately from the strong
form of the SSE Conjecture – for the case of MLA this was
proved in [Raghavendra et al., 2012] and the proof for MCLA
is similar. This is our starting point for the remaining prob-
lems. Unfortunately, the results do not follow from hardness
for MLA/MCLA in a black-box way; for the soundness anal-
yses we end up having to use the expansion properties of the
original SSE instance.

We then give a reduction from MLA/MCLA with expan-
sion, to the four directed problems. This reduction simply
creates the bipartite graph where the vertex set is the union

of the edges and vertices of the original graph G, with di-
rected arcs from an edge e to the vertices incident upon e in
G. The use of direction here is crucial: it essentially ensures
that both the vertex and edge counts of any feasible ordering
corresponds very closely to the number of edges crossing the
point in the induced ordering of G.

To obtain hardness for the remaining two undirected prob-
lems, we perform a similar reduction as for the directed case,
creating the bipartite graph of edge-vertex incidences. How-
ever, since we are now creating an undirected graph, we can
no longer force the edges to be chosen before the vertices
upon which they are incident, which was a key property in
the reduction for the directed case. In order to overcome this,
we duplicate each original vertex a large number of times.
This gives huge penalties to orderings which do not “essen-
tially” obey the desired direction of the edges, and makes the
reduction work out.

The results for treewidth follows from an additional analy-
sis of the instances produced by the reduction for undirected
vertex problems.

Please refer to [Wu et al., 2014] for detailed proofs.

4 Conclusion and Open Problems
We proved SSE-hardness of approximation for a variety of
graph problems. Most importantly we obtained the first inap-
proximability result for the treewidth problem and Minimum
Fill-In.

The status of the SSE conjecture is, at this point in time,
very uncertain, and our results should therefore not be taken
as absolute evidence that there is no polynomial time approx-
imation for (e.g.) treewidth. However, at the very least, our
results do give an indication of the difficulty involved in ob-
taining such an algorithm for treewidth, and builds a connec-
tion between these two important problems. We leave the
choice of whether to view this as a healthy sign of strength
of the SSE Conjecture, or whether to view it as an indication
that the conjecture is too strong, to the reader.

There are many important open questions and natural av-
enues for further work, including:

1. It seems plausible that these results can be extended to a
wider range of graph layout problems. For instance, our
two choices of aggregators max and Σ can be viewed
as taking `∞ and `1 norms, and it seems likely that the
results would apply for any `p norm (though we are not
aware of any previous literature studying such variants).

2. It would be nice to obtain hardness of approximation re-
sult for our problems based on a weaker hardness as-
sumption such as UGC. It is conjectured in [Raghaven-
dra et al., 2012] that the SSE conjecture is equivalent
to UGC. Alternatively, it would be nice to show that
hardness of some of our problems imply hardness for
the SSE Problem.
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