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Abstract

The domain adaptation problem arises often in the
field of sentiment classification. There are two dis-
tinct needs in domain adaptation, namely labeling
adaptation and instance adaptation. Most of current
research focuses on the former one, while neglects
the latter one. In this work, we propose a joint
approach, named feature ensemble plus sample se-
lection (SS-FE), which takes both types of adapta-
tion into account. A feature ensemble (FE) model
is first proposed to learn a new labeling function
in a feature re-weighting manner. Furthermore, a
PCA-based sample selection (PCA-SS) method is
proposed as an aid to FE for instance adaptation.
Experimental results show that the proposed SS-
FE approach could gain significant improvements,
compared to individual FE and PCA-SS, due to
its comprehensive consideration of both labeling
adaptation and instance adaptation.

1 Introduction

The problem of domain adaptation has attracted increasing
attention in the fields of both machine learning and natural
language processing (NLP). Domain adaptation arises often
in sentiment classification [Cambria et al., 2014]. For exam-
ple, we want to build a book review classifier, in case that
the labeled book reviews in hand are scarce but the labeled
movie reviews are abundant. Therefore, we need to adapt
a classifier trained by labeled reviews in the movie domain
to the book domain. Researchers have proposed a variety of
domain adaptation approaches in the literatures. In general,
the goal of domain adaptation is to build a machine learn-
ing model that maximizes the target-domain joint likelihood
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based on the source-domain labeled data:

θ∗ = arg max
θ

∫
x

∑
y
pt(x, y) log p(x, y|θ)dx

≈ arg max
θ

∫
x

p̃s(x)
∑

y
p̃s(y|x) log p(x, y|θ)dx,

where p(x, y|θ) denotes the joint distribution of instance x
and class label y defined in the learning algorithm. p̃s(x) and
p̃s(y|x) denote the approximated target-domain distribution,
which should be estimated by the source-domain labeled data.

According to the analysis in [Jiang and Zhai, 2007], there
are two distinct needs in domain adaptation: instance adap-
tation and labeling adaptation. We interpret the two needs as
follows:

• Labeling adaptation models the adaptation process of
the labeling function p̃s(y|x) → pt(y|x). Since one
term that is positive in the source domain might ex-
press an opposite sentiment in the target domain, la-
beling adaptation aims to learn a new labeling function
(or feature representation) for the target domain, using
source domain-labeled data as well as a small amount of
labeled (or a large amount of unlabeled) target-domain
data;

• Instance adaptation models the adaptation process of
instance distribution p̃s(x)→ pt(x). Since different do-
mains have different term frequencies, instance adapta-
tion aims to approximate the target-domain distribution
by assigning different weights to the source-domain la-
beled data and then conducting importance sampling.

[Pan and Yang, 2010] presented a survey on transfer learn-
ing, which categorizes transfer learning approaches in a sim-
ilar manner: feature-based transfer, instance-based transfer,
and model-parameter-based transfer.

Existing work for domain adaptation in sentiment classifi-
cation mostly belongs to labeling adaptation. [Blitzer et al.,
2007] proposed the structural correspondence learning (SCL)
algorithm. [Daumé III, 2007] introduced a simple method
for domain adaptation based on feature space augmentation.
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Pan proposed two domain adaptation approaches via trans-
fer component analysis (TCA) [Pan et al., 2010] and spec-
tral feature alignment (SFA) [Pan et al., 2011] , respectively.
[Xia and Zong, 2011] and [Samdani and Yih, 2011] proposed
feature reweighing based on an ensemble of feature sets, al-
though they divide the feature sets in different ways. [Cam-
bria and Hussain, 2015] employed PCA and linear discrimi-
nant analysis to build SenticNet, a concept-level resource for
open-domain sentiment analysis. They also used affective
knowledge to adapt general-purpose common-sense knowl-
edge to the task of polarity detection [Cambria et al., 2015].

The instance adaptation problem is also known as sample
selection bias in the machine learning scenario. To address
this problem, [Sugiyama et al., 2008] proposed a Kullback-
Leibler importance estimation procedure (KLIEP) algorithm.

In the field of NLP, [Axelrod et al., 2011] proposed a
method called pseudo in-domain data selection to select
source domain training samples based on a language model,
for cross-domain machine translation. [Xia et al., 2013a] pro-
posed an instance selection and instance weighting approach
via PU learning (PUIS and PUIW) for the task of cross-
domain sentiment classification. However, current researches
in domain adaptation focused on either labeling adaptation or
instance adaptation, individually. To the best of our knowl-
edge, research on modeling two kinds of adaptation together
is pretty scarce. In this work, we propose a joint method,
called feature ensemble plus sample selection (SS-FE), to
take full account of these two attributes for domain adapta-
tion in sentiment classification. This approach could yield
significant improvements compared to individual feature en-
semble (FE) or sample selection (SS) methods, because it
comprehensively considers both labeling adaptation and in-
stance adaptation. For more details of this work, see [Xia et
al., 2013b].

2 The Proposed Approach
2.1 Feature Ensemble
In formulating our SS-FE method, we first propose a label-
ing adaptation method via POS-based feature ensemble (FE).
This idea is based on the observation that, features with dif-
ferent type of POS tags have a distinct change in distribu-
tion in domain adaptation. We term the heavily changing
features domain-specific, and the slightly changing features
domain-independent. The domain-independent features gen-
erally perform more consistently when the domain changes.
E.g., some adjectives and adverbs, such as “great” and “like,”
always have a strong correlation with the positive class label,
regardless of domain. However, the domain-specific features
may indicate different sentiment in different domains [Cam-
bria et al., 2013], e.g., in the concept “go read the book,” the
noun “book” most likely indicates a positive sentiment for
book reviews, a but negative sentiment for movie reviews.

POS tags are supposed to be significant indicators of sen-
timent. Previous work revealed a high correlation between
the presence of adjectives and document sentiment; certain
verbs and nouns are also strong indicators of sentiment [Liu,
2012]. For cross-domain sentiment classification, we ob-
serve that features with different types of POS tags might

have different levels of distributional change in domain adap-
tation. For example, nouns change the most because do-
mains are mostly indicated by nouns, while adjectives and ad-
verbs are fairly consistent across domains. The cross-domain
Kullback-Leibler (K-L) distance regarding different POS tags
(reported in the section of Experiments) confirms our obser-
vation.

Based on this observation, we divide features into four
groups: adjectives and adverbs (J), verbs (V), nouns (N), and
the others (O). Base-classifiers will be trained on all four fea-
ture subsets.Thus, a feature vector x is made up of four parts:
x = [xJ ,xV ,xN ,xO], and we use gk(xk) to denote the la-
beling function of each base-classifier:

gk(xk) = wTk xk, k ∈ {J, V,N,O}.
After base classification, we use the Stacking algorithm

for meta-learning, where we construct the meta-learning fea-
ture vector x̃ = [gJ , gV , gN , gO] on a small amount of la-
beled data from the target domain (the validation set), and
the weights of base-classifiers are optimized by minimizing
the perceptron loss so that each components final weights
are tuned to adapt to the target domain. We represent the
weighted ensemble as

f(x) =
∑
k

θkgk(xk) ==
∑
k

θk
∑
i

wkixi,

where θk is the ensemble weight. In the meta-learning pro-
cess, we expect the algorithm to assign larger weights to
the domain-independent parts, such as adjectives and ad-
verbs, and lower weights to the domain-specific parts, such
as nouns.

2.2 Sample Selection
The FE approach adapts the labeling function p̃s(y|x) →
pt(y|x) (in our approach, g → f ). However, the labeling
adaptation is based on the condition that the instance prob-
ability ps(x) and pt(x) are the same. If there is a big gap
between them, the effect of labeling adaptation will be re-
duced. To address this issue, we propose PCA-SS as an aid
to FE. PCA-SS first selects a subset of the source domain
labeled data whose instance distribution is close to the tar-
get domain, and then uses these selected samples as training
data in labeling adaptation. Let Xt denote the document-by-
feature matrix of the target domain dataset; we then get the
target-domains latent concepts by solving the following SVD
problem:

Xt = UΣVT ,

where U and V are unit orthogonal matrices and Σ con-
tains the positive singular values of decreasing magnitude
σ1 ≥ σ2 ≥ ... ≥ σM . The latent concepts are the orthog-
onal column vectors in the matrix V, and the variance of the
data projected along the i-th column of V is equal to σ2

i .
To optimally capture the datas variations, only those la-

tent concepts corresponding to the k(k < M) largest singu-
lar values are typically retained. By selecting the columns of
P = V[:, 0 : k] ∈ RM∗k, which correspond to the latent
concepts associated with the first k singular values as the pro-
jection matrix, we obtain the document-by-concept matrix

X̃ = XP.
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Note that Hotelling’s T 2 statistic reflects the degree of the
magnitude deviation of each sample in a PCA model. In the
settings of domain adaptation, it measures the extent to which
a sample deviates from the concept space. Therefore, as the
criterion for sample selection, we consider the T 2 statistic as
a measure of “concept distance”:

D(x) = T 2(x) = zT z = xPΛ−1k PTxT ,

where z = Λ
− 1

2

k PTxT , and Λk is the diagonal matrix corre-
sponding to the top k singular values.

By this definition, we can obtain a concept distance for
each sample x(n)s in the source domain:

D(x(n)
s ) = x(n)

s PΛ−1k PTx(n)
s

T
.

Correspondingly, we get a set of the concept distances
for each sample x

(n)
t in the target domain: D(x

(n)
t ) =

x
(n)
t PΛ−1k PTx

(n)
t

T
. Finally, we define the sample selection

threshold as:
D̄ = max

x
(n)
t ∈Xt

{D(x
(n)
t )}.

Samples in the source domain x
(n)
s with D(x

(n)
s ) > D̄ are

discarded, and those with lower concept distance than the
threshold are selected as training samples in domain adap-
tation.

2.3 Feature Ensemble Plus Sample Selection
In the above-mentioned techniques, FE models only labeling
adaptation and neglects instance adaptation, while PCA-SS
considers only instance adaptation. Therefore, we combine
PCA-SS and FE in a serial manner, and refer to the joint ap-
proach as SS-FE, to address two types of adaptation together.

we first employ PCA-SS to project the data onto a la-
tent target-domain concept space, select a subset of source-
domain samples that are close to the target domain. We then
apply FE to the selected part of data set. In FE, we first
train individual classifiers with different feature sets divided
by their POS tags. The final model is a weighted ensemble of
individual classifiers, in which the weights are turned with the
goal of increasing the weight of domain-independent features
and reducing the weight of domain-specific features.

We empirically show that both FE and PCA-SS are effec-
tive for cross-domain sentiment classification, and that SS-FE
performs better than either approach because it comprehen-
sively considers both labeling and instance adaptation.

3 Experiments
3.1 Datasets and Experimental Setup
We use the multi-domain sentiment datasets [Daumé III,
2007] for experiments. It consists of product reviews col-
lected from four different domains of Amazon.com: book
(B), DVD (D), electronics (E), and kitchen (K). Each domain
contains 1,000 positive and 1,000 negative reviews. The term
“source → target” is used to denote different cross-domain
tasks. For example, “D → B” represents the task that is
trained in the DVD domain but tested in the book domain.

Figure 1: The performance of principal component analysis-
based sample selection (PCA-SS)

In each of the tasks, labeled instances in the source domain
are used for training base-classifiers. Labeled instances in the
target domain are evenly split into 10 folds, where one fold is
used as a validation set for meta-learning, and the other nine
folds are used as a test set. All of the following experimental
results are reported in terms of an average of the 10 folds’
cross validation.

3.2 Experimental Results of PCA-SS
We first present the results of sample selection. The num-
ber of principal components is chosen with the percentage of
variance contribution larger than 99.5 percent. All samples
in the source and target domains are projected onto the con-
cept space. We sort all source domain samples in an ascend-
ing order, according to their concept distance, and present the
classification accuracy trained with a decreasing number of
selected features in Figure 1. We chose naı̈ve Bayes (NB) as
the base classification algorithm, as it reportedly performs the
best among three classifiers (NB, MaxEnt, and SVM) in the
multi-domain dataset [Xia et al., 2011]. For comparison, we
also report the performance of the same number of randomly
selected samples. We observe the experimental results from
the following perspectives.

Random selection. We first observe the result of randomly
selected samples. In all tasks, performance is gradually de-
creased by reducing the number of selected samples. This is
in accordance with our standard understanding that decreas-
ing training samples hurts machine learning performance.

PCA-based sample selection. In most of the tasks, the
performance increases when the number of selected samples
decreases at the first stage. After reaching the peak value, the
performance gradually decreases. This leads to the conclu-
sion that using a selected subset of samples as training data
may improve classification performance over training on all
samples. The conclusion holds well in the tasks of D → B,
B → D, B → E, D → E, B → K, D → K. It is also worth
noticing that sample selection is not quite effective in some
tasks (such as E→ B, K→ D, and K→ E). We will discuss
why later.
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Table 1: Cross-domain classification accuracy.
Tasks Base-J Base-V Base-N Base-O Unigrams FE PCA-SS SS-FE
D→B 0.7589 0.668 0.6307 0.6432 0.7685 0.7987 0.7759 0.8038
E→B 0.6907 0.6015 0.6038 0.5938 0.7156 0.7163 0.7162 0.7286
K→B 0.7034 0.5997 0.5943 0.5974 0.7265 0.7334 0.7285 0.7294
B→D 0.7665 0.6871 0.6597 0.6348 0.7854 0.7874 0.7889 0.7910
E→D 0.7228 0.5877 0.6142 0.5743 0.7350 0.7296 0.7373 0.7460
K→D 0.7179 0.5994 0.6142 0.5766 0.7469 0.7563 0.7458 0.7570
B→E 0.7319 0.6186 0.5649 0.5755 0.6915 0.7223 0.7199 0.7424
D→E 0.7431 0.6168 0.6005 0.5624 0.7040 0.7496 0.7477 0.7707
K→E 0.8051 0.7185 0.6961 0.6076 0.8235 0.8226 0.8243 0.8293
B→K 0.7568 0.6328 0.5936 0.5916 0.7265 0.7412 0.7507 0.7807
D→K 0.7334 0.6228 0.5987 0.6025 0.7299 0.7644 0.7630 0.7782
E→K 0.8083 0.7285 0.7037 0.6237 0.8330 0.8324 0.8412 0.8487

3.3 Experimental Results of SS-FE
In this section, we present the results of SS-FE. Four base
NB classifiers are trained on the four feature sets, where fea-
tures with term frequency no less than three are selected and
the BOOL weight is adopted. Table 1 reports the classifica-
tion accuracy of each component classifier (Base-J, Base-V,
Base-N, and Base-O), and the system using all features (Uni-
grams), only FE, only PCA-SS, and SS-FE. We compared the
following three aspects.

FE vs. Baselines. We first compare base classifiers and
Unigrams. It is interesting that Base-J yields a comparative
performance to Unigrams. In some tasks, Base-J is even bet-
ter. With an efficient ensemble of all base classifiers, FE per-
forms consistently better than each base classifier and the Un-
igrams system.

PCA-SS vs. Baselines. When comparing PCA-SS and
Unigrams, we reconfirm the conclusion from Figure 1 that,
with a selected subset of training samples, the PCA-SS could
improve significantly.

FE, PCA-SS, and SS-FE. SS-FE is consistently better
than Unigrams, FE, and PCA-SS, except for one task K →
B, where SS-FE is slightly weaker than FE. We summarize
the results as follows: first, in the tasks, such as D→ B and
K → D, where FE is more effective but the PCA-SS is less
effective (denoted as FE � SS), the SS-FE improvements
are generally gained by labeling adaptation. Second, in the
tasks where the effects of PCA-SS are more significant than
FE (FE ≺ SS), such as E→ D and E→ K, the SS-FE im-
provements are mainly from instance adaptation. Third, in
the tasks where FE and PCA-SS are both effective, such as D
→ E and B→ K, the improvements finally gained by SS-FE
are remarkable.

3.4 Why POS-Based Feature Ensemble?
Table 2 shows the average KL distance (KLD) across all tasks
regarding to different POS tags and their weights learnt in
FE. Generally, the KLD of different types of POS tags can
be ranked as: N >>V > J > O. The KLD of N is signif-
icantly larger than the other POS tags, indicating that the
change of N is the biggest across domains. The KLD of J
is significantly smaller than that of N. V gives the compa-

Table 2: KL distance between source and target domains in
different POS tags.

POS J V N O
KLD 0.306 0.312 1.048 0.083

Weight 0.47 0.19 0.16 0.18

Table 3: KL distance between source and target domains.
Task B-D B-E B-K D-E D-K E-K
KLD 0.187 0.458 0.472 0.443 0.475 0.284

rable KLD. This suggests that features in J and V are more
domain-independent, in comparison with N. We then observe
the weights of different parts of POS tags learnt in FE. The
weight of J is the largest, while the weight of N is compar-
atively small. This confirms our motivation for POS-based
feature ensemble.

3.5 Why Feature Ensemble plus Sample Selection?
In this work, labeling adaptation is conducted in a feature
reweighing manner by FE. Instance adaptation is embodied
in the manner of sample selection, where the empirical likeli-
hood is obtained based on the selected subset of samples. To
validate this analysis, we further present the KLD of different
domain pairs in Table 3. We find that the KLD of B-D and
E-K are relatively low, which suggests that these domains are
similar in distribution. This corresponds well with our ex-
perimental results: first, in tasks such as D → B and K →
D, the improvement of SS-FE is generally gained by label-
ing adaptation. This is quite reasonable, because their KLD
is relatively low and the demand for instance adaptation is
not large. Second, for the domain pairs whose distributional
change is bigger, such as E → D and E → K, the improve-
ment of SS-FE is mainly due to instance adaptation rather
than labeling adaptation.

4 Conclusions
We have presented the SS-FE approach to conduct labeling
adaptation and instance adaptation together for domain adap-
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tation. Experimental results showed the effectiveness of SS-
FE in both labeling adaptation and instance adaptation.
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