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Abstract

We design and analyze deterministic truthful ap-
proximation mechanisms for multi-unit combina-
torial auctions involving a constant number of
distinct goods, each in arbitrary limited supply.
Prospective buyers (bidders) have preferences over
multisets of items, i.e., for more than one unit per
distinct good, that are expressed through their pri-
vate valuation functions. Our objective is to deter-
mine allocations of multisets that maximize the So-
cial Welfare approximately. Despite the recent the-
oretical advances on the design of truthful combi-
natorial auctions (for multiple distinct goods in unit
supply) and multi-unit auctions (for multiple units
of a single good), results for the combined setting
are much scarcer. We elaborate on the main devel-
opments of [Krysta er al., 2013], concerning bid-
ders with multi-minded and submodular valuation
functions, with an emphasis on the presentation of
the relevant algorithmic techniques.

1 Introduction

We present truthful mechanisms for multi-unit combinatorial
auctions, involving constant number of distinct goods, each in
limited supply. A widespread modern application of this gen-
eral setting is the allocation of radio spectrum licences [Mil-
grom, 2004]; each such license is for the use of a specific
frequency band of electromagnetic spectrum, within a certain
geographic area. In the design of such “Spectrum Auctions”,
licenses for the same area are considered as identical units of
a single good (the area), while the number of distinct geo-
graphic areas is, of course, bounded by a constant.

More formally, we consider the problem of auctioning “in
one go”’ multiple units of each out of a constant number of dis-
tinct goods, to prospective buyers with private multi-demand
combinatorial valuation functions, so as to maximize the so-
cial welfare. A multi-demand buyer may have distinct pos-
itive values for distinct multisets of goods, that specify his
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demand for (potentially) more than one unit per good. We
discuss deterministic truthful auction mechanisms, wherein
every bidder finds it to his best interest to reveal his value
truthfully for each multiset of items (i.e., truthful report of
valuation functions is a dominant strategy). Additionally, we
are interested in mechanisms that can compute an approxi-
mately efficient allocation in polynomial time. This problem
generalizes simultaneously combinatorial auctions of mul-
tiple goods and multi-unit auctions of a single good to the
multi-unit and combinatorial settings respectively.

Mechanism Design for combinatorial auctions of multiple
heterogeneous goods (each in unit supply) has received sig-
nificant attention in recent years, since the work of [Lehmann
et al., 1999; 2002], due to their various applications, espe-
cially in online trading systems over the Internet. Research
in Algorithmic Mechanism Design was initialized by [Nisan
and Ronen, 1999]. A mechanism elicits bids from buyers,
so as to determine an assignment of bundles to them and
payments in such a manner, so that it is to each buyer’s
best interest to reveal his valuation function truthfully to
the mechanism. The related problem of auctioning mul-
tiple units of a single good to multi-demand bidders was
considered already by [Vickrey, 1961], through a (multi-
unit) extension of his celebrated single-item Second-Price
mechanism. This extension, however, is not polynomial-
time for an arbitrary number of units. Polynomial-time ap-
proximation mechanisms for multi-unit auctions were de-
signed relatively recently [Mu’alem and Nisan, 2002; 2008;
Dobzinski and Nisan, 2010; Vocking, 2012; Nisan, 2014]. In
particular, [Nisan, 2014] devised a welfare-optimal determin-
istic polynomial-time auction mechanism, for the multi-unit
setting with submodular bidders first considered by [Vickrey,
1961]. [Vécking, 2012] designed and analyzed a randomized
universally truthful polynomial-time approximation scheme,
for bidders with unrestricted valuation functions.

Results for the more general setting of multi-unit com-
binatorial auctions are much scarcer [Bartal et al., 2003;
Grandoni et al., 2014]. Here, we consider exactly this setting,
with a constant number of distinct goods, as in [Grandoni et
al., 2014]; for a number of cases of such auctions we ana-
lyze Maximum-in-Range (MIR) allocation algorithms [Nisan
and Ronen, 2007] (see definition 2 in Section 2), that can be
paired with the Vickrey-Clarke-Groves payment rule, so as to
yield truthful mechanisms.



1.1 Overview

We discuss truthful mechanisms for multi-unit combinatorial
auctions with a constant number of goods developed recently
in [Krysta et al., 2013], for two broad classes of the bidders’
valuation functions.

Multi-Minded Bidders FEach bidder has positive value for
every distinct multiset belonging to a specific demand set of
alternatives associated with him (and at least as much for the
value of every superset of this multiset). His value is zero
elsewhere. For this class of valuation functions we describe
in Section 3 a truthful FPTAS!, that fully optimizes the social
welfare in polynomial time, while violating the supply con-
straints on the goods by a factor at most (1 + €), for any fixed
e > 0. A relaxation of the supply constraints is necessary
for obtaining an FPTAS, as the problem is otherwise strongly
NP-hard, for m > 2 goods (see the related discussion in Sec-
tion 3). In certain environments, a slight augmentation of
supply can be economically viable, for the sake of better so-
lutions (e.g., auctioneers with well supplied stocks can easily
handle occurrences of modest overselling). This result im-
proves upon an FPTAS by [Grandoni et al., 2014], which ap-
proximates the social welfare and the supplies within factor?
(1 + €), and only when bidders are single-parameter (i.e., as-
sociate the same positive value with each multiset from their
demand set) and do not overbid their demands.

Submodular Bidders The value of each bidder for a mul-
tiset of items is given by a submodular valuation function.
Thus, each bidder’s marginal value for each additional item
allocated to him (a unit of any good) is non-increasing. For
this setting we develop a PTAS !, that approximates the opti-
mum social welfare within factor (1 + ¢), for any fixed ¢ > 0,
without violating the supply constraints. To this end, we re-
visit a technique introduced by [Dobzinski and Nisan, 2010],
for multi-unit auction Mechanism Design, and generalize it
for multiple distinct goods, each in limited supply. We de-
scribe how this generalization works and also how to use it to
obtain a truthful PTAS for multi-minded bidders, that does not
violate the supply constraints. This latter result is best possi-
ble; a hardness result from [Dobzinski and Nisan, 2010] rules
out the possibility of a truthful FPTAS via their technique, for
multi-minded bidders and a single good, unless P = NP.
The assumption of m = O(1) distinct goods is im-
portant, for otherwise our two problem cases become hard
to approximate in polynomial time, within factor less than
O(y/m) [Lehmann et al., 2002] and _%5 [Khot et al., 2008;
Mirrokni et al., 2008] respectively. Also, our techniques
cannot yield truthful polynomial-time mechanisms with ap-
proximation factors less than O(m) and O(y/m) respec-
tively [Daniely et al., 2014]. We omit from our presentation a
truthful constant-approximation mechanism from [Krysta et
al., 2013], for bidders with unrestricted valuation functions.

Y(F)pTAS stands for (Fully) Polynomial Time Approximation
Scheme, see chapter 8 in [Vazirani, 2003] for a formal definition.

*In the context of social welfare maximization, by “approxima-
tion within factor p > 1” we mean recovering at least a fraction p~*
of the welfare of an optimum allocation.
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1.2 Related Work

Mechanism Design for multi-unit auctions was initiated al-
ready by the celebrated work of [Vickrey, 1961], where the
well-known single-item Second-Price auction is extended for
the case of multiple units and bidders with symmetric sub-
modular valuation functions [Lehmann et al., 2006]. This
mechanism is however not computationally efficient with re-
spect to the number of available units. A polynomial-time
truthful mechanism for this case was analyzed in [Nisan,
2014]. The design of multi-unit mechanisms with polyno-
mially bounded running time in log s, s denoting the number
of units, was first considered by [Mu’alem and Nisan, 2008].
The authors analyzed a truthful 2-approximation mechanism
for a multi-unit setting with multiple distinct goods (in limited
supply), and single-minded bidders, each valuing positively a
particular subset of goods (and its supersets). [Archer et al.,
2003] improved on this approximation ratio for a similar set-
ting, but their mechanism was based on randomized rounding
and was truthful only in expectation. Furthermore, an FPTAS
was designed and analyzed in [Briest ef al., 2005] for single-
minded bidders, in the multi-unit combinatorial setting.

[Dobzinski and Nisan, 2007; 2010] analyzed a general
scheme for designing MIR polynomial-time truthful approx-
imation mechanisms, for single-good multi-unit auctions.
This resulted in a PTAS for the case of k-minded bidders, a
2-approximation for general valuation functions that are ac-
cessed (by the allocation algorithm) through value queries,
and a %—approximation for symmetric subadditive valuation
functions. Moreoever, the authors applied their scheme to
a class of piecewise linear (multi-unit) valuation functions
over the number of units of a single good, to obtain a truthful
PTAS mechanism. For a special case of this class, [Kothari
et al., 2005] had designed earlier an FPTAS mechanism
that was, however, only approximately truthful. [Dobzin-
ski and Dughmi, 2009] gave a fruthful in expectation Fp-
TAS for multi-minded bidders. A universally truthful ran-
domized PTAS for general valuation functions accessed by
value queries was developed in [Vécking, 2012] (in con-
trast, all of our mechanisms are deterministic). For the multi-
unit combinatorial setting (i.e., with more than one distinct
goods) the known results concern mainly bidders demand-
ing at most one unit per good (e.g. [Lehmann er al., 2002;
Briest et al., 2005]). In contrast, we consider a constant
number of goods, but multi-demand bidders. [Bartal et al.,
2003] proved approximation results for multi-unit combina-
torial auctions with multi-demand bidders, where the bidders’
demands on numbers of units are upper and lower bounded.
The approximation guarantees depend on these bounds.

The study of mechanisms for a constant number of distinct
goods, each in limited supply, was initialized by [Grandoni et
al., 2014]. The authors utilized methods from multi-objective
optimization, to obtain truthful polynomial-time approxima-
tion schemes for problems including: multi-unit auctions,
minimum spanning tree, shortest path, maximum (perfect)
matching and matroid intersection. They devised truthful
FPTASes that approximate the objective function (social wel-
fare or cost) of multi-capacitated versions of these problems
within factor (1 + ¢€), while exceeding the capacities by a fac-
tor (1 + €) (capacities here correspond to limited supplies).



2 Preliminaries

We consider a set [m], of m = O(1) goods, [m] =
{1, ..., m}. Each good ¢ € [m] is available in limited supp-
ply (number of units) s, € N. A multiset of goods is denoted
by a vector x = (x(1),z(2),...,x(m)), where x(¢) is the
number of units of good ¢ € [m], £ = 1,...,m. The set
of all multisets is denoted by &/ = x}*,{0,1,...,s¢}. Let
[n] = {1,...,n} be the set of n bidders (prospective buy-
ers). Every bidder ¢ € [n] has a private valuation function
v; : U — RT, so that v;(x) for any x € U denotes the max-
imum monetary amount that ¢ is willing to pay for x € U,
referred to as his value for x. The valuation functions are nor-
malized, i.e., v;(0, ..., 0) = 0 and monotone non-decreasing:
for any two multisets x < y — where “<” holds component-
wise — we have v;(x) < v;(y).

A mechanism consists of an allocation method (algorithm),
A, and a payment rule, p. The allocation algorithm, A, elic-
its from the bidders bids b = (b1, bs, ..., b, ) that, presum-
ably, describe their valuation functions, and determines an
allocation A(b) = (x1, Xg, ..., Xy, ), where x; € U is the
multiset of goods allocated to bidder ¢. For the current Sec-
tion we deliberately ignore the fact that the bidders’ valuation
functions may not have a succinct representation that will fa-
cilitate their efficient communication to the allocation algo-
rithm; recall that the bidders’ valuation functions are — gen-
erally — defined over U = %77 ,{0,1,...,s,}. When they do
not have a succinct representation indeed, the allocation algo-
rithms that we discuss in our work access the bidders’ valu-
ation functions iteratively, through polynomially many value
queries; that is, the algorithm in each iteration asks every bid-
der for a bid on a specific multiset of items.

The payment rule determines a vector p(b) =
(p1(b), p2(b), ..., pn(b)), where p;(b) is the payment of
bidder ¢:. Every bidder 7 bids so as to maximize his quasi-
linear utility, defined as:

u;(b) = vi(A(b)) — pi(b) = vi(x;) — pi(b),

where the second equality stems from a standard assumption
of no externalities, i.e., that the value of any bidder for A(b)
depends only on his own individual allocation.

We study truthful mechanisms (A, p) wherein each bid-
der ¢ maximizes his utility by reporting his valuation function
truthfully, i.e., by bidding b; = v;, independently of the other
bidders’ reports, b_; = (by, ... , bp):

Definition 1 A mechanism (A, p) is truthful if, for every
bidder i and bidding profile b_,, it satisfies u;(v;,b_;) >
u;(vi, b_;), for every v.

s bi—la bi+1,

Under this definition, the outcome b = v is a domi-
nant strategy equilibrium. We are interested in designing
and analyzing truthful mechanisms (A, p), that render truth-
ful reporting of the bidders’ valuation functions a dominant
strategy equilibrium, wherein, the social welfare of the re-
sulting allocation, SW( A(b)) = SW(.A(v)) is (approxi-
mately) optimized. The social welfare of an allocation, X =
(X1, X2, ..., Xp,) is defined as: SW(X) = 3" | v;(x;). In
the sequel we will use simply X, for an allocation output by
A, without a specific reference to b, since we analyze truthful
mechanisms, that dictate b = v.
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The only well understood general method for the design
of truthful mechanisms is the Vickrey-Clarke-Groves (VCG)
auction mechanism [Vickrey, 1961; Clarke, 1971; Groves,
1973], a generalization of Vickrey’s single-item Second-Price
and multi-unit auctions [Vickrey, 1961]. Deployment of the
VCG auction, however, requires allocation algorithms A that
output welfare-maximizing allocations, for the underlying
setting; it rarely constitutes a computationally efficient alter-
native for combinatorial settings, as the underlying optimiza-
tion problem is NP-hard. As the problems that we consider
are indeed NP-hard, our mechanisms use Maximum-in-Range
(MIR) [Nisan and Ronen, 2007] allocation algorithms, that
maximize the social welfare approximately.

Definition 2 [Nisan and Ronen, 2007] An algorithm choos-
ing its output from the set A of all possible allocations is
MIR, if it fully optimizes the social welfare over a subset
R C A of allocations.

Note that the subset R, also called a range, is defined in-
dependently from the bidders’ declarations. Nisan and Ro-
nen [Nisan and Ronen, 2007] identified MIR allocation al-
gorithms as the sole device that, along with VCG payments,
yields truthful mechanisms for combinatorial auctions. That
is, any MIR allocation algorithm, .4, can be “turned” into a
truthful mechanism, if the payment for each bidder 7 is com-
puted according to the VCG payments scheme, as follows:

pi(b) = wi(A(b_;)) = > vy (A(b))

i/ i

This payment scheme coincides with the VCG payment
scheme, if A is replaced by the optimal allocation algorithm.

3 Multi-Minded Bidders

In this section we consider multi-minded bidders; every such
bidder ¢ € [n] is associated with a collection of multisets
D; C U, referred to as his demand set. We assume that each
i € [n] values each multiset d = (d(1),...,d(m)) € D; by
an amount v;(d) > 0. For every e € U \ D; we define:

max{v;(d)|d <e
Me):{ {u(d)]d < e}

if such d € D; exists
deD;

0 otherwise.

Naturally, v;(0) = 0. In this setting, the valuation function
of a bidder ¢ can be expressed compactly, as the collection
(vi(d),d)aep,. As in related literature, we assume therefore
that an algorithm expects in input bids of this form, rather
than (an oracle representing) the entire valuation function. A
bidder ¢ is a winner of the auction, if he is assigned exactly
one — or a superset of one — of his alternatives from D;.

The allocation algorithm of our mechanism will be an Fp-
TAS, that maximizes the social welfare and may violate the
supply constraints on goods by a factor at most (1 + ¢), for
any fixed e > 0. The algorithm is reminiscent of the Fp-
TAS for the well-known one-dimensional knapsack problem
(see e.g., chapter 8 in [Vazirani, 2003]). For any chosen fixed
e > 0, first it discards any alternative from the bidders’ de-
mand sets, that violates any of the supply constraints. Subse-
quently, the quantities of goods in the remaining multisets are



rounded appropriately; the supplies are also adjusted. Thus
we obtain a rounded instance. Then, we search for a welfare
maximizing allocation of the rounded instance, by usage of
dynamic programming. This allocation is shown to be opti-
mal for the initial instance as well, and violates the (initial)
supplies by a factor at most (1 + €). In light of turning this al-
gorithm into a truthful mechanism, we use notation of actual
valuation functions in its description below.

Rounding Fix any constant ¢ > 0. First, for any ¢ € [n],
remove all the alternatives d € D; such that d(¢) > s, for
any £ = 1,...,m (if all alternatives of some bidder ¢ are
removed, remove 7). Henceforth, we use the same notation,
U, [nl], D;, etc., for the remaining alternatives and bidders.
The demands of the alternatives d € D; of each i € [n] are
rounded as follows. For every ¢ € [n] and for every d € D,
we produce a multiset d’ = (d’(1),...,d (m)) so that, for

each good ¢ € [m], we have d'(¢) = L”'E'i(f) |. Then we adapt
the supply of each good appropriately, to s, = [2]. Given
this rounded version of the problem instance, we will use dy-
namic programming to produce an allocation for it; this will
directly translate into an allocation for the original problem
instance, that is welfare-optimal and violates the (original)
supply constraints by a factor at most (1 + ¢€). In the sequel,
for any multiset d in the demand set D; of some bidder i, we
use d’ to refer to the rounded multiset as described above.

Dynamic Programming We use two tables, V and A,
for storing respectively social welfare values and alloca-

tions. Each cell of each table is indexed by the tu-
ple (i, q1,...,qm), for ¢ = 1,...,n, where ¢, €
{0,1,2,..., [n/e]}, for £ = 1,...,m. Notice that there

are n(1 4 [n/e])™ such cells in each table, which is a poly-
nomially bounded number for m = O(1) and any fixed € > 0.
To simplify notation, in the sequel we use q for (¢1, - - ., Gm)-
V(i,q) stores the maximum welfare of an allocation X, i.e.,
>_; v;(x;), whose rounded version X' = (L%&J )j.e
1. uses only multisets that are in the demand sets of the
bidders in {1, 2, ..., i},
2. has total demand w.r.t. good ¢ = 1, ..., m which is pre-
cisely ye, i.e., Y, 25(€) = qq.
The corresponding cell Afé, q] holds this allocation X.

Let us explain how we compute the cells V(1,q) and
Al[l, q] first, for every q € {0,1,...,[n/e]}™. For each
vector q: we identify a multiset d € D; with d’ = q,
that maximizes the value of bidder 1, if such a multiset ex-
ists. If it does exist, we store the value in V(1,q) and a
partial allocation {(1,d)} in A[l, q]. Otherwise, we set
V(1,q) = 0 and A[1, q] = {(1,0) }. This procedure is de-
scribed on the left of Figure 1. On the right of the figure,
a generalization of this computation is described for bidder
i + 1, once the values V(i,q) and A[i, q] are known for all
ae{0,1,..., [n/el}m.

The size of each table is n([Z] + 1)™ and we need time
roughly O(max; |D;| + m) to compute one entry of the ta-
ble, so the overall time of the algorithm leads to an Fp-
TAS. For its optimality, we argue that the algorithm opti-

mizes the welfare over a superset of feasible solutions X =
(x1, X2, ...,Xy,) for the initial problem instance,; indeed, for
every good £ = 1,...,m we have: ), z;(¢) < sy, or, equiv-

alently, Zl% < 2, thus ), {%J < [2] = s
Thus, X is also feasible for the rounded problem instance
and inspected by the dynamic programming algorithm.

For the approximate violation of the supply constraints,
let X be an output allocation, for the original problem in-

stance. For any good ¢ = 1, ..., m we have: ), %f) <

> i {MJ +n. The rounded version of X is feasible for the

eS¢

eS¢

> %ﬁsy) < Z+414n, whichyields ) 7, z;(£) < (1+2¢)sy.

Note that the algorithm is exact, in that it grants every bid-
der a multiset from his demand set (or none). This feature is
essential in proving that the algorithm is MIR and, thus, that

it yields a truthful mechanism:

rounded instance, thus, ), [MJ < [2] < 2 4 1. Then,

Theorem 1 Multi-unit combinatorial auctions with multi-
minded bidders and a constant number of distinct goods ad-
mit a truthful FPTAS, that optimizes the social welfare fully,
while violating the supplies of goods at most by a factor
(1 + ¢), for any fixed € > 0.

Computational Hardness Note that this problem is
strongly NP-hard, when we do not allow violation of supply
constraints and m > 2 [Chekuri and Khanna, 2000]. It is well
known that if a problem is strongly NP-hard, it does not admit
an FPTAS, unless P=NP, see, e.g., [Vazirani, 2003]. Also the
assumption that m is a fixed constant is necessary. Otherwise
the problem is hard to approximate in polynomial time within
m'/2=¢, for any € > 0 [Lehmann et al., 2002]. By apply-
ing a simple reduction from [Lehmann et al., 2002], from the
MAXIMUM INDEPENDENT SET PROBLEM [Hastad, 1996],
we can establish the same approximation hardness, even if
we allow supply violation, when m is non-constant.

An Application: Multi-Dimensional Knapsack Our Fp-
TAS can be applied to the Multi-dimensional Knapsack Prob-
lem [Chekuri and Khanna, 2000] (MDKP), where the knap-
sack has a constant number m = O(1) of distinct compart-
ments, each of capacity s;, £ € [m]. The problem asks to
fit in the knapsack a subset out of a universe ¢/ of n given
m-dimensional objects, so that the sum of the collected ob-
jects’ sizes in each dimension ¢ does not exceed sy, and the
total value of all collected objects is maximized. Each object
i € [n] is represented by a vector d; = (d;(1),..., d;(m))
and has a value v;. Thus, each such object corresponds ex-
actly to a single-parameter bidder with valuation function
vi(d) = v;, if d > d;, and v;(d) = 0 otherwise. Our FPTAS
is applicable to the MDKP because, as mentioned, it is exact
in that it allocates every bidder (i.e., “fits in the knapsack”™)
either an exact alternative from his demand set, D;, or none.
We can generalize the MDKP setting further, by handling any
mix of packing and covering constraints (i.e., of any of the
forms {>, <}), for m = O(1) dimensions and one covering
or packing constraint per dimension.
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foreveryq e {0, 1, ..., [n/e] }"™ do:
1. D «—{deD;|d =q}
2. if D] # ( then

1. d «+— argmax,ep; vi(a)

2. V(1, @) +— vi(d)
3. AL ol +— {(1,d) }

3. else

1. V(1, q) «+— 0.
2. A[l, q] +— {(1,0)}

foreveryq e {0, 1, ..., [n/e] }"™ do:
1. D§+1 — {d GDi+1|d/ < q}
2. if D), # ( then
1. d +— arg max [v;1(a) +V(i, q —a’)]
a€D;,,
2. Vil $<— ’UH_l(d) T V(Z, q— d/)

3. ifVi+1 > V(L q) then
1. V(’L +1, q) S Vit+1
2. Ali+1,q]«— Afi,q—dJu{(+1,d)}
4. else
1. V(i+1,q)+— V(i q)
2. Ali+1,q] «— Afi, qu{(i+1,0)}
3. else
1. V@i+1,q)+— V(i q)
2. Ali+1,q] «— Afi, qu{(i+1,0)}

Figure 1: Computation of the Dynamic Programming tables’ entries, for bidder 1 (left) and for bidder ¢ 4 1 (right).

4 The Generalized Dobzinski-Nisan Method

We discuss here a direct generalization of a method designed
by [Dobzinski and Nisan, 2010], for truthful single-good
multi-unit auction mechanisms. The method’s generalization
for multiple goods yields a truthful PTAS for bidders with
submodular valuation functions over multisets. The method
requires as subroutine a MIR «-approximation algorithm .4,
that, for an instance of the problem involving a constant num-
bert = O(1) of bidders and m = O(1) goods, approximates
the optimum welfare within factor o. Moreover, A is MIR
with range R 4. The method executes iteratively this algo-
rithm A for appropriately chosen combinations of a subset of
at most t bidders and a subset of at most m distinct goods. In
each iteration, it completes appropriately the partial alloca-
tion output by A and, in the very end, returns the best found
complete allocation for the whole instance of n bidders and
m = O(1) goods. If A is MIR, the method can be shown
to be MIR as well; moreover, it recovers a fraction at least
(a1 — t%) of the optimum welfare of the whole instance.

Let us explain first how the Dobzinski-Nisan method com-
pletes a partial allocation output by the presumed algorithm
A described above. Subsequently, we will describe such an
algorithm A for the case of bidders with submodular valu-
ation functions. The method is described in detail in Fig-
ure 2. It determines first a set P, of possible supplies for each
good £ = 1, ..., m; these are powers of (1 4+ 1/(2n)) no
larger than s, — and rounded downwards to the largest integer
— inclusively of 0, as described in lines 1.1 and 1.2 of Fig-
ure 2. Subsequently, for every possible subset 7" of at most
t = O(1) bidders and for every combination of supplies of
goods (x1, ..., Xm) € ( Xj2, P ), the method:

1. first executes the algorithm A for the bidders in 7" and
for all m goods, each good with the “remaining” supply
S¢ — X¢, to obtain a partial allocation.

2. Then, it splits the other part of each good’s supply,
X¢, into at most 2n? multi-unit bundles, of 3, =
max{|x¢/(2n?)], 1} units per such bundle. It finds the
optimum allocation of these bundles to the remaining
[n] \ T bidders.

The (optimal) allocation of the splitted multi-unit bundles
of goods to bidders in [n] \ T is carried out by dynamic pro-
gramming. By re-indexing the bidders appropriately, assume
that T ={n—t+1,...,n}kthus n]\ T ={1,...,n — t}.
Foreveryi=1,...,n —tandforeveryq = (q1,-.-,qm) €
(x;’;l[an]), define V(i,q) = V(4,(q1,---,Gm) ) to be the
maximum value of welfare that can be obtained by allocating
at most ¢, multi-unit bundles from each good ¢ = 1,...,m,

to bidders 1, ...,4. Each entry V(i,q) of the dynamic pro-
gramming table can be computed using:

V(Zaq) = 21}2)(;(’01((1/1/817 L) Q;nﬂm)+v(2717q7q,))7

where ¢ < q is taken component-wise; i.e., maximization
occurs over all ' with ¢'(¢) < ¢(¢) foreach / = 1,...,m.

The following result quantifies the performance of the
Dobzinski-Nisan method for multiple goods; its proof is a di-
rect extension of a related result from [Dobzinski and Nisan,
20101, for the case of a single good.

Theorem 2 Let A be a MIR algorithm, with time complexity
Ta(t,(s1,--.,8m)) for t bidders and at most sy units from
each good ¢ = 1,...,m. There exists a range of alloca-
tions, R, such that the Dobzinski-Nisan Method runs in time
polynomial in log s1, .. .,10g S, n, TA(t, (81, -, 8m)), for
every t = O(1), and outputs an allocation with value at least

a fraction (o=t — ") of the optimum social welfare.

t+1

The Method’s Range The (generalized) Dobzinski-Nisan
method optimizes over a range of possible allocations, that
can be described independently of the bidders’ declara-
tions. This range depends on the range of the algorithm
A used within the method. Following [Dobzinski and
Nisan, 2010] we describe the method’s range as a set of
(Ra,T5X1, - -, Xm)-round allocations. Let us first describe
the notion of a round allocation, for any 7 < ¢, for some fixed
t = O(1). An allocation X is (R 4, T, X1, - - - , Xon)-round if:
1. There exists a subset T C [n] of 7 = |T'| bidders, such
that the (partial) allocation X[ is optimum in the range
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1. for/=1,...,mdo:
1. define ug := (1+ 5-)
Ung S|

2. define P, := {0,17 lwel, [uZ],..., {ug J )8
2. for every subset 7' C [n] of bidders, |T| < t, do:
Xm) € (X7 Pr) do:

1. for every (x1,.--

14

1. Run A with sy — X, units from each good ¢ € [m] and bidders in 7.
2. Split the remaining y, units from each good ¢ € [m] into < 2n? bundles

(per good), each of max { | 2% |, 1} units.

3. Find the optimal allocation of the multi-unit bundles among bidders [n] \ T

3. return the best allocation found.

Figure 2: The Dobzinski-Nisan Method for multiple goods.

‘R 4 of algorithm A, for the sub-instance involving bid-
ders in T" and sy— x¢ units from each good ¢ = 1, ..., m.
2. Each bidder ¢ € [n] \ T obtains an exact mul-
tiple of max{|2%],1} units from good ¢ and:
Siempr Til) <nmax {| 3% |, 1}, forl =1,...,m.
Then, for any fixed ¢ = O(1) and for a MIR algorithm
A with range R 4 as discussed above, the range of the gen-
eralized Dobzinski-Nisan method contains all the possible
(RA, Ty X1,-- - Xm)-round allocations, for any 7 < ¢ and
(X1, Xm) € (X7, Pr), where P is defined as in step 1.2
of the method, in Figure 2. Quite elaborate as this descrip-
tion may be, it prescribes exactly the set of allocations that
the Dobzinski-Nisan method optimizes upon. By the results
of [Nisan and Ronen, 2007], we can obtain a truthful mecha-
nism simply by pairing it with VCG payments.

A P1AS for Multi-Minded Bidders The generalized Dob-
zinski-Nisan method for multiple distinct goods can be
applied directly in the setting of (multi-parameter) multi-
minded bidders, that we studied in Section 3, to give us a
PTAS that respects the supply constraints of the goods. A
result of [Dobzinski and Nisan, 2010] rules out the possi-
bility of FPTAS, when the supply constraints are fully re-
spected, thus, the PTAS is best possible in this setting. Let
k = max; | D;| denote the maximum size of any bidder’s de-
mand set. For m = O(1) goods and for any number ¢ = O(1)
bidders, the optimum assignment can be found exhaustively
in time polynomial in log sg, £ = 1,...,s, and m: there are
exactly O(k') cases to be examined exhaustively, so that the
optimum is found. Then, by fixing any ¢ > 0, we can use
this (trivially MIR) algorithm A within the procedure of Fig-
ure 2, fort = m - % —1and o = 1. By Theorem 2, we thus
obtain a PTAS that, complementarily to the developments of
Section 3, approximates the optimum social welfare within
factor (1 + ¢€) and respects the supply constraints.

A PTAS for Submodular Bidders We consider bidders
with submodular valuation functions over multisets in I/:

Definition 3 Forany{ =1,...,m let ey be the unary vector
with eg(¢) = 1 and e;(j) = 0, for j # L. Let x and y
denote two multisets from U, so that x <y, where “<” holds
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component-wise. Then, a non-decreasing function v : U —
RT is submodular if v(x + €p) — v(x) > v(y + e¢) — v(y).

These valuation functions, being exponentially large to de-
scribe compactly, are accessed by the algorithm through value
queries; i.e., the algorithm asks the bidders for their value, for
each particular multiset that it needs to process.

The MIR algorithm A needed by the Dobzinski-Nisan
method optimizes over a range of allocations, defined as fol-
lows. For any € > 0, define & = 1+¢; the range of .4 contains
all allocations that assign bidders multi-unit bundles of each
good ¢ € [m], where each bundle has cardinality equal to an
integral power of . The specified range can be examined ex-
haustively in polynomial time; to find a welfare-maximizing
allocation, we can try O(log; s¢) cases per good, for each of
t — 1 bidders, given a fixed bidder for assigning the remain-
ing units. Trying all possible multi-unit bundle assignments
of a specific good ¢ — and for all possible choices of a “re-
mainders” bidder — is O (t(logs s¢)'~'). Because for every
allocation of a specific good we need to examine all possible
allocations for the remaining m — 1 goods, the overall com-
plexity is O (t™ (logs maxg s¢)*=Y™), which is polynomial-
ly bounded for ¢t = O(1) and m = (1). We show in [Krysta et
al., 2013] that — for a constant number of bidders and goods —
this algorithm 4 is in fact an FPTAS, w.r.t. welfare; it yields a
truthful PTAS when used within the Dobzinski-Nisan method.

Theorem 3 Multi-unit combinatorial auctions with a con-
stant number of distinct goods and bidders with submodular
valuation functions admit a truthful PTAS.

5 Conclusions

We elaborated on MIR polynomial-time deterministic mech-
anisms, for approximate social welfare maximization in
multi-unit combinatorial auctions. The main results include
(i) a truthful FPTAS for multi-minded bidders, that approx-
imates the supply constraints within factor (1 + €) and op-
timizes the social welfare; (ii) a deterministic truthful PTAS
for submodular bidders, that approximates the social welfare
within factor (1 + €) without violating the supply constraints.
For (ii) we used a generalization of a single-good multi-unit
allocation method proposed in [Dobzinski and Nisan, 2010].
Our developments are best possible in terms of time-efficient
approximation, as follows by relevant hardness results.
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