
Firefly Monte Carlo: Exact MCMC with Subsets of Data

Dougal Maclaurin
Department of Physics

Harvard University
Cambridge, MA 02138

Ryan P. Adams
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

Abstract

Markov chain Monte Carlo (MCMC) is a popular
tool for Bayesian inference. However, MCMC can-
not be practically applied to large data sets because
of the prohibitive cost of evaluating every likeli-
hood term at every iteration. Here we present Fire-
fly Monte Carlo (FlyMC) MCMC algorithm with
auxiliary variables that only queries the likelihoods
of a subset of the data at each iteration yet simu-
lates from the exact posterior distribution. FlyMC
is compatible with modern MCMC algorithms, and
only requires a lower bound on the per-datum like-
lihood factors. In experiments, we find that FlyMC
generates samples from the posterior more than an
order of magnitude faster than regular MCMC, al-
lowing MCMC methods to tackle larger datasets
than were previously considered feasible.

1 Introduction
The Bayesian approach to probabilistic modeling is appeal-
ing for several reasons: the generative framework allows one
to separate out modeling assumptions from inference proce-
dures, outputs include estimates of uncertainty that can be
used for decision making and prediction, and it provides clear
ways to perform model selection and complexity control. Un-
fortunately, the fully-Bayesian approach to modeling is often
very computationally challenging. It is unusual for non-trivial
models of real data to have closed-form posterior distribu-
tions. Instead, one uses approximate inference via Monte
Carlo, variational approximations, Laplace approximations,
or other tools.

Bayesian inference can be costly. In particular, evaluating
a new hypothesis usually requires examination of an entire
data. For example, when running Metropolis–Hastings (MH)
it is necessary to evaluate the target posterior density for each
proposed parameter update, and this posterior will usually
contain a factor for each datum. Similarly, typical variational
Bayesian procedures need to build local approximations for
each of the data in order to update the approximation to any
global parameters. In both cases, these data-intensive com-
putations are performed many times as part of an iterative
procedure.

Figure 1: Illustration of the auxiliary variable representation
of a single likelihood for a one-dimensional logistic regres-
sion model. The top panel shows how the likelihood func-
tion, Ln(θ), corresponding to a single datum n, can be parti-
tioned into two parts: a lower bound,Bn(θ), shaded blue, and
the remainder, shaded orange. The bottom panel shows that
we can introduce a Bernoulli random variable zn and con-
struct a Markov chain in this new, higher dimensional space,
such that marginalizing out (i.e. ignoring) the zn recovers the
original likelihood. If Bn(θ)� Ln(θ)−Bn(θ), the Markov
chain will tend to occupy zn = 0 and we can avoid evaluating
Ln(θ) at each iteration.

Recent methods have been proposed to partially overcome
these difficulties. Stochastic and online variational approxi-
mation procedures [Hoffman et al., 2010, 2013] can use sub-
sets of the data to make approximations to global parameters.
As these procedures are optimizations, it is possible to build
on convergence results from the stochastic optimization liter-
ature and achieve guarantees on the resulting approximation.
For Markov chain Monte Carlo, the situation is somewhat
murkier. Recent work has shown that approximate transition
operators based on subsets of data can be used for predic-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4289

tive prefetching to help parallelize MCMC [Angelino et al.,
2014]. Other work uses approximate transition operators di-
rectly, for Metropolis-Hastings (MH) and related algorithms
[Welling and Teh, 2011]. Korattikara et al. [2014] and Bar-
denet et al. [2014] have shown that such approximate MH
moves can lead to stationary distributions which are approx-
imate but that have bounded error, albeit under strong condi-
tions of rapid mixing.

In this paper we present a Markov chain Monte Carlo algo-
rithm, Firefly Monte Carlo (FlyMC), that is in line with these
latter efforts to exploit subsets of data. Our transition opera-
tor, however, is exact: it leaves the true posterior distribution
invariant. FlyMC is a latent variable model which introduces
a collection of Bernoulli variables – one for each datum –
with conditional distributions chosen so that they effectively
turn on and off data points in the posterior, hence “firefly”.
The introduction of these latent variables does not alter the
marginal distribution of the parameters of interest. Our only
requirement is that it be possible to provide a “collapsible”
lower bound for each likelihood term. FlyMC can lead to
dramatic performance improvements in MCMC, as measured
in wallclock time.

2 Firefly Monte Carlo
The Firefly Monte Carlo algorithm tackles the problem of
sampling from the posterior distribution of a probabilistic
model. We denote the parameters of interest as θ and as-
sume that they have prior p(θ). We assume that N data have
been observed {xn}Nn=1 and that these data are conditionally
independent given θ under a likelihood p(xn | θ). Our target
distribution is therefore

p(θ |{xn}Nn=1) ∝ p(θ, {xn}Nn=1) = p(θ)
N∏
n=1

p(xn|θ). (1)

We will write the nth likelihood term as a function of θ as
Ln(θ) = p(xn | θ) .

An MCMC sampler makes transitions from a given θ to
a new θ′ such that posterior distribution remains invariant.
Conventional algorithms, such as Metropolis–Hastings, re-
quire evaluation of the unnormalized posterior in full at every
iteration. When the data set is large, evaluating all N likeli-
hoods is a computational bottleneck. This is the problem that
we seek to solve with FlyMC.

For each data point, n, we introduce a binary auxil-
iary variable, zn ∈ {0, 1}, and a function Bn(θ) which
is a strictly positive lower bound on the nth likeli-
hood: 0 < Bn(θ) ≤ Ln(θ). Each zn has the following
Bernoulli distribution conditioned on the parameters:

p(zn |xn, θ) =
[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)
Ln(θ)

]1−zn
.

We now augment the posterior distribution with theseN vari-
ables:
p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p(θ, {xn, zn}Nn=1)

= p(θ)
N∏
n=1

p(xn | θ) p(zn |xn, θ) .

Figure 2: Illustration of the FlyMC algorithm operating on a
logistic regression model of a toy synthetic data set, a two-
class classification problem in two dimensions (and one bias
dimension). The top panel shows a single iteration of FlyMC,
from t = 3 to t = 4, which consists of two steps: first we
sample θ, represented by the line of equal class probability.
Next we sample the zn. In this case, we see one ‘bright’
(solid) data point become dark. The bottom panel shows the
trajectories of all components of θ and z.

This joint distribution has a remarkable property: to evalu-
ate the probability density over θ, conditioned on {zn}Nn=1,
it is only necessary to evaluate those likelihood terms for
which zn = 1. Consider factor n from the product above.

p(xn | θ)p(zn |xn, θ) =

{
Ln(θ)−Bn(θ) if zn = 1

Bn(θ) if zn = 0

The likelihood term Ln(θ) only appears in those factors for
which zn = 1 and we can think of these data as forming a
minibatch subsample of the full set. If zn = 0 for most n,
transition updates for the parameters θ will be much cheaper,
as these are applied to p(θ | {xn, zn}Nn=1).

Of course, we do have to evaluate all N bounds Bn(θ) at
each iteration. We seem to have just shifted the computational
burden from evaluating the Ln(θ) to evaluating the Bn(θ).
However, if we chooseBn(θ) to have a convenient form such
as a scaled Gaussian, then the full product

∏N
n=1Bn(θ) can

4290

be computed for each new θ in O(1) time using the suffi-
cient statistics of the distribution, which only need to be com-
puted once. To make this clearer, we can rearrange the joint
distribution in terms of a “pseudo-prior,” p̃(θ) and “pseudo-
likelihood,” L̃n(θ) as follows:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p̃(θ)
∏

n:zn=1

L̃n(θ) (2)

where the product only runs over those n for which zn = 1,
and we have defined

p̃(θ) = p(θ)
N∏
n=1

Bn(θ) L̃n(θ) =
Ln(θ)−Bn(θ)

Bn(θ)
.

We can generate a Markov chain for the joint distribution
in Equation (2) by alternating between updates of θ condi-
tional on {zn}Nn=1, which can be done with any conventional
MCMC algorithm, and updates of {zn}Nn=1 conditional on
θ for which we discuss efficient methods in Section 3.2. We
emphasize that the marginal distribution over θ is still the cor-
rect posterior distribution given in Equation (1).

At a given iteration, the zn = 0 data points are “dark”: we
simulate the Markov chain without computing their likeli-
hoods. Upon a Markov transition in the space of {zn}Nn=1,
a smattering of these dark data points become “bright” with
their zn = 1, and we include their likelihoods in subsequent
iterations. The evolution of the chain evokes an image of fire-
flies, as the individual data blink on and off.

The details of choosing a lower bound and efficiently sam-
pling the {zn} are treated in the proceeding sections, but the
high-level picture is now complete. Figure 1 illustrates the
augmented space, and a simple version of the algorithm is
shown in Algorithm 1. Figure 2 shows several steps of Fire-
fly Monte Carlo on a toy logistic regression model.

3 Implementation Considerations
In this section we discuss two practical matters for imple-
menting an effective FlyMC algorithm: how to choose and
compute lower bounds and how to sample the brightness vari-
ables zn. We assume a data set with N data points and a
parameter vector, θ, of dimension D � N . We also assume
that it takes at least O(ND) time to evaluate the likelihoods
at some θ for the whole data set and that evaluating this set of
likelihoods at each iteration is the computational bottleneck
for MCMC.

The goal of an effective implementation of FlyMC is to
construct a Markov chain with similar convergence and mix-
ing properties to that of regular MCMC, while only evaluat-
ing a subset of the data points on average at each iteration. If
the average number of “bright” data points is M , we would
like this to achieve a computational speedup of nearly N/M
over regular MCMC.

3.1 Choosing a lower bound
The lower bounds, Bn(θ) of each data point’s likelihood
Ln(θ) should satisfy two properties. They should be rela-
tively tight, and it should be possible to efficiently summa-
rize a product of lower bounds

∏
nBn(θ) in time independent

of N (after setup).

The tightness of the bounds is important because it de-
termines the number of bright data points at each iteration,
which determines the time it takes to evaluate the joint poste-
rior. For a burned-in chain, the average number of bright data
points, M , will be:

M =
N∑
n=1

〈zn〉 =
N∑
n=1

∫
p(θ | {xn}Nn=1)

Ln(θ)−Bn(θ)
Ln(θ)

dθ .

Therefore it is important that the bounds are tight at values of
θ where the posterior puts the bulk of its mass.

The second required property is that the product of the
lower bounds must be easy to compute and represent. This
emerges naturally if we use scaled exponential-family lower
bounds so that their product can be summarized with a set of
sufficient statistics. The individual bounds Bn(θ) should be
easy to compute themselves, since these are computed along-
side Ln(θ) for all the bright points at each iteration.

Let’s consider a concrete example. The logistic regression
likelihood is

Ln(θ) = logit−1(tnθTxn) =
1

1 + exp{−tnθTxn}
,

where xn ∈ RD is the set of features for the nth data point
and tn ∈ {−1, 1} is its class. The logistic function has a fam-
ily of scaled Gaussian lower bounds, described in Jaakkola
and Jordan [1997], parameterized by ξ, the location at which
the bound is tight:

log(Bn(θ)) = a(tnθ
Txn)

2 + b(tnθ
Txn) + c

where:

a =
−1
4ξ

(
eξ − 1

eξ + 1

)
, b =

1

2
, c = −aξ2 + ξ

2
− log

(
eξ + 1

)
This is the bound shown in Fig. 1. The product of these

bounds can be computed for a given θ in O(D2) time, pro-
vided we have precomputed the moments of the data, at a
one-time setup cost of O(ND2).

This bound can be quite tight. For example, if we
choose ξ = 1.5 the probability of a data point being bright is
less than 0.02 in the region where 0.1 < Ln(θ) < 0.9. With a
bit of up-front work, we can do even better than this by choos-
ing bounds that are tight in the right places. For example, we
can perform a quick optimization to find an approximate max-
imum a posteriori (MAP) value of θ and construct the bounds
to be tight there. We explore this idea further in Section 4.

3.2 Sampling and handling the auxiliary
brightness variables

The resampling of the zn variables, as shown in lines 3 to 5 of
Algorithm 1, takes a step by explicitly sampling zn from its
conditional distribution for a random fixed-size subset of the
data. We call this approach explicit resampling and it has a
clear drawback: if the fixed fraction is α (shown as RESAM-
PLEFRACTION in Algorithm 1), then the chain cannot have a
mixing time faster than 1/α, as each data point is only visited
a fraction of the time.

Nevertheless, explicit resampling works well in practice
since the bottleneck for mixing is usually the exploration of θ,

4291

Algorithm 1 Firefly Monte Carlo Note: Using simple random-walk MH for clarity.

1: θ0 ∼ INITIALDIST . Initialize the Markov chain state.
2: for i← 1 . . . ITERS do . Iterate the Markov chain.
3: for j ← 1 . . . dN × RESAMPLEFRACTIONe do
4: n ∼ RandInteger(1, N) . Select a random data point.
5: zn ∼ Bernoulli(1−Bn(θi−1)/Ln(θi−1)) . Biased coin-flip to determine whether n is bright or dark.
6: θ′ ← θi−1 + η where η ∼ Normal(0, ε2ID) . Make a random walk proposal with step size ε.
7: u ∼ Uniform(0, 1) . Draw the MH threshold.

8: if
JOINTPOSTERIOR(θ′ ; {zn}Nn=1)

JOINTPOSTERIOR(θ ; {zn}Nn=1)
> u then . Evaluate MH ratio conditioned on auxiliary variables.

9: θi ← θ′ . Accept proposal.
10: else
11: θi ← θi−1 . Reject proposal and keep current state.
12: function JOINTPOSTERIOR(θ ; {zn}Nn=1) . Modified posterior that conditions on auxiliary variables.
13: P ← p(θ)×

∏N
n=1Bn(θ) . Evaluate prior and bounds. Collapse of bound product not shown.

14: for each n for which zn = 1 do . Loop over bright data only.
15: P ← P × (Ln(θ)/Bn(θ)− 1) . Include bound-corrected factor.
16: return P

not zn. Explicit resampling is a simple, low-overhead algo-
rithm that is easy to vectorize for speed. The variant shown
in Algorithm 1 is the simplest: data points are chosen at ran-
dom, with replacement. Another variant is to deterministi-
cally choose a subset from which to Gibbs sample at each
iteration. Such an approach may be appropriate for data sets
which are too large to fit into memory, since we would no
longer need random access to all data points.

Explicitly sampling a subset of the zn is waste-
ful if M � N , since most updates to zn will leave
it unchanged. We can do better by drawing each
update for zn from a pair of tunable Bernoulli
proposal distributions q(z′n = 1 | zn = 0) = qd→b
and q(z′n = 0 | zn = 1) = qb→d, and performing a
Metropolis–Hastings accept/reject step with the true
auxiliary probability p(zn |xn, θ). It is only necessary to
evaluate p(zn |xn, θ) – and therefore the likelihood function
– for the subset of data points which are proposed to change
state. That is, if a sample from the proposal distribution
sends zn = 0 to zn = 0 then it doesn’t matter whether
we accept or reject. If we use samples from a geometric
distribution to choose the data points, it is not even necessary
to explicitly sample all of the N proposals.

4 Experiments
For FlyMC to be a useful algorithm it must be able to produce
effectively independent samples from posterior distributions
more quickly than regular MCMC. We certainly expect it to
iterate more quickly than regular MCMC since it evaluates
fewer likelihoods per iteration. But we might also expect it to
mix more slowly, since it has extra auxiliary variables. To see
whether this trade-off works out in FlyMC’s favor we need
to know how much faster it iterates and how much slower it
mixes.

We conducted three experiments, each with a different data
set, model, and parameter-update algorithm, to give an im-
pression of how well FlyMC can be expected to perform. In

each experiment we compared FlyMC, with two choices of
bound selection, to regular full-posterior MCMC. We looked
at the average number of likelihoods queried at each iteration
and the number of effective samples generated per iteration,
accounting for autocorrelation. The results are summarized
in Figure 3 and Table 1. The broad conclusion is that FlyMC
offers a speedup of at least one order of magnitude compared
with regular MCMC if the bounds are tuned according to a
MAP-estimate of θ. In the following subsections we describe
the experiments in detail.

4.1 Logistic regression
We applied FlyMC to the logistic regression task described
in Welling and Teh [2011] using the Jaakkola-Jordan bounds
described earlier. The task is to classify MNIST 7s and 9s,
using the first 50 principal components (and one bias) as fea-
tures. We used a Gaussian prior over the weights and chose
the scale of that prior by evaluating performance on a held-out
test set. To sample over θ, we used symmetric Metropolis-
Hasting proposals, with step size chosen to yield an accep-
tance rate of 0.234 [Roberts et al., 1997], optimized for each
algorithm separately. We sampled the zn using the implicit
Metropolis-Hastings sampling algorithm.

We compared three different algorithms: regular MCMC,
untuned FlyMC, and MAP-tuned FlyMC. For untuned
FlyMC, we chose ξ = 1.5 for all data points. To com-
pute the bounds for the MAP-tuned algorithm, we per-
formed stochastic gradient descent optimization to find a set
of weights close the the MAP value and gave each data
point its own ξ to make the bounds tight at the MAP pa-
rameters: Ln(θMAP) = Bn(θMAP) for all n. For untuned
FlyMC, and MAP-tuned FlyMC we used qd→b = 0.1 and
qd→b = 0.01 respectively, chosen to be similar to the typical
fraction of bright data points in each case.

The results are shown in Figure 3a and summarized in Ta-
ble 1. On a per-iteration basis, the FlyMC algorithms mix
and burn-in more slowly than regular MCMC by around a

4292

Average Effective Speedup
Algorithm Likelihood queries Samples per relative to

per iteration 1000 iterations regular MCMC

Data set: MNIST Regular MCMC 12,214 3.7 (1)

Model: Logistic regression Untuned FlyMC 6,252 1.3 0.7

Updates: Metropolis-Hastings MAP-tuned FlyMC 207 1.4 22

Data set: 3-Class CIFAR-10 Regular MCMC 18,000 8.0 (1)

Model: Softmax classifcation Untuned FlyMC 8,058 4.2 1.2

Updates: Langevin MAP-tuned FlyMC 654 3.3 11

Data set: OPV Regular MCMC 18,182,764 1.3 (1)

Model: Robust regression Untuned FlyMC 2,753,428 1.1 5.7

Updates: Slice sampling MAP-tuned FlyMC 575,528 1.2 29

Table 1: Results from empirical evaluations. Three experiments are shown: logistic regression applied to MNIST digit classi-
fication, softmax classification for three categories of CIFAR-10, and robust regression for properties of organic photovoltaic
molecules, sampled with random-walk Metropolis–Hastings, Langevin-adjusted Metropolis, and slice sampling, respectively.
For each of these, the vanilla MCMC operator was compared with both untuned FlyMC and FlyMC where the bound was
determined from a MAP estimate of the posterior parameters. We use likelihood evaluations as an implementation-independent
measure of computational cost and report the number of such evaluations per iteration, as well as the resulting sample efficiency
(computed via R-CODA [Plummer et al., 2006]), and relative speedup.

factor of two, as illustrated by the autocorrelation plots. Even
on a per-likelihood basis, the naı̈ve FlyMC algorithm, with
a fixed ξ, performs worse than regular MCMC, by a factor
of 0.7, despite needing fewer likelihood evaluations per itera-
tion. The MAP-tuned algorithm was much more impressive:
after burn-in, it queried only 207 of the 12,2214 likelihoods
per iteration on average, giving a speedup of more than 20,
even taking into account the slower per-iteration mixing time.
We initialized all chains with draws from the prior. Notice
that the MAP-tuned algorithm performs poorly during burn-
in, since the bounds are less tight during this time, whereas
the reverse is true for the untuned algorithm.

4.2 Softmax classification
Logistic regression can be generalized to multi-class classifi-
cation problems by softmax classification. The softmax like-
lihood of a data point belonging to class k of K classes is

Ln(θ) =
exp(θT

kxn)∑K
k′=1 exp(θ

T
k′xn)

,

where θ is now a K ×D matrix. The Jaakkola-Jordan bound
does not apply to this softmax likelihood, but we can use a
related bound, due to Böhning [1992], whose log matches
the value and gradient of the log of the softmax likelihood at
some particular θ, but has a tighter curvature. Murphy [2012]
has the result in full in the chapter on variational inference.

We applied softmax classification to a three-class version
of CIFAR-10 (airplane, automobile and bird) using 256 bi-
nary features discovered by Krizhevsky [2009] using a deep
autoencoder. Once again, we used a Gaussian prior on the
weights, chosen to maximize out-of-sample performance.

This time we used the Metropolis-adjusted Langevin algo-
rithm (MALA, Roberts and Tweedie [1996]) for our param-
eter updates. We chose the step sizes to yield acceptance
rates close to the optimal 0.57 [Roberts and Rosenthal, 1998].
Other parameters were tuned as in the logistic regression ex-
periment.

The softmax experiment gave qualitatively similar results
to the logistic regression experiment, as seen in Figure 3b and
Table 1. Again, the MAP-tuned FlyMC algorithm dramati-
cally outperformed both the lackluster untuned FlyMC and
regular MCMC, offering an 11-fold speedup over the latter.

4.3 Robust sparse linear regression
Linear regression with Gaussian likelihoods yields a closed-
form expression for the posterior. Non-Gaussian likelihoods,
however, like heavy-tailed distributions used in so-called “ro-
bust regression” do not. Our final experiment was to per-
form inference over robust regression weights for a very large
dataset of molecular features and computed electronic proper-
ties. The data set, described by Hachmann et al. [2011, 2014]
consists of 1.8 million molecules, with 57 cheminformatic
features each [Olivares-Amaya et al., 2011; Amador-Bedolla
et al., 2013]. The task was to predict the HOMO-LUMO
energy gap, which is useful for predicting photovoltaic ef-
ficiency.

We used a student-t distribution with ν = 4 for the likeli-
hood function and we computed a Gaussian lower bound to
this by matching the value and gradient of the t distribution
probability density function value at some ξ (ξ = 0 for the un-
tuned case, ξ = θT

MAPx for the MAP-tuned case). We used
a sparsity-inducing Laplace prior on the weights. As before,

4293

0

20

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0
)

0 1000 2000 3000

Iterations

0

6

12

L
ik

el
ih

o
o
d
 e

v
al

u
at

io
n
s

p
er

 i
te

ra
ti

o
n
 (

th
o
u
sa

n
d
s)

0 3500

Delay (iterations)

A
u
to

co
rr

el
at

io
n

(a) MNIST with MH

10

15

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0
)

0 250 500

Iterations

0

18

L
ik

el
ih

o
o
d
 e

v
al

u
at

io
n
s

p
er

 i
te

ra
ti

o
n
 (

th
o
u
sa

n
d
s)

0 500

Delay (iterations)

A
u

to
co

rr
el

at
io

n

(b) CIFAR-10 with Langevin

50

100

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0

)

Regular MCMC

Untuned FlyMC

MAP-tuned FlyMC

0 200 400

Iterations

0

20

L
ik

el
ih

o
o

d
 e

v
al

u
at

io
n

s
p

er
 i

te
ra

ti
o

n
 (

m
il

li
o

n
s)

(c) OPV with Slice Sampling

Figure 3: Tuned and untuned Firefly Monte Carlo compared to regular MCMC with three different operators, data sets, and
models: (a) the digits 7 and 9 from the MNIST data are classified using logistic regression, with a random-walk Metropolis-
Hastings operator; (b) softmax classification on three classes (airplane, automobile, and bird) from the CIFAR-10 image dataset,
using Langevin-adjusted Metropolis; (c) robust regression on the HOMO-LUMO gap (as computed by density functional theory
calculations) for a large set of organic photovoltaic molecules, using slice sampling. In each subfigure, the top shows the trace
of the log posterior density to illustrate convergence, and the bottom shows the average number of likelihoods computed
per iteration. One standard deviation is shown around the mean value, as computed from five runs of each. The blue lines
are computed using the full-data posterior, and the green and orange lines show the untuned and tuned Firefly MC traces,
respectively.

we chose the scales of the prior and the likelihood to optimize
out-of sample performance.

We performed parameter updates using slice sampling
[Neal, 2003]. Note that slice sampling results in a variable
number of likelihood evaluations per iteration, even for the
regular MCMC algorithm. Again, we found that MAP-tuned
FlyMC substantially outperformed regular MCMC, as shown
in Figure 3c and Table 1.

5 Discussion
In this paper, we have presented Firefly Monte Carlo, a
Markov chain Monte Carlo algorithm using subsets (mini-
batches) of data. FlyMC is exact in the sense that it has
the true full-data posterior as its target distribution. This is
achieved by introducing binary latent variables whose states
represent whether a given datum is bright (used to compute
the posterior) or dark (not used in posterior updates). By
carefully choosing the conditional distributions of these la-
tent variables, the true posterior is left intact under marginal-
ization. The primary requirement for this to be efficient is that
the likelihoods term must have lower bounds that collapse in
an efficient way.

There are several points that warrant additional discussion
and future work. First, we recognize that useful lower bounds
can be difficult to obtain for many problems. It would be help-
ful to produce such bounds automatically for a wider class of

problems. As variational inference procedures are most often
framed in terms of lower bounds on the marginal likelihood,
we expect that Firefly Monte Carlo will benefit from devel-
opments in so-called “black box” variational methods [Wang
and Blei, 2013; Ranganath et al., 2014]. Second, we believe
we have only scratched the surface of what is possible with
efficient data structures and latent-variable update schemes.
For example, the MH proposals we consider here for zn have
a fixed global qd→b, but clearly such a proposal should vary
for each datum. Third, it is often the case that larger state
spaces lead to slower MCMC mixing. We have shown em-
pirically that the slower mixing can be more than offset by
the faster per-transition computational time. In future work
we hope to show that fast-mixing Markov chains on the pa-
rameter space will continue to mix fast in the Firefly auxiliary
variable representation.

Firefly Monte Carlo is closely related to recent ideas in us-
ing pseudo-marginal MCMC [Andrieu and Roberts, 2009] for
sampling from challenging target distributions. If we sam-
pled each of the variables {zn} as a Bernoulli random vari-
able with success probability 0.5, then the joint posterior we
have been using becomes an unbiased estimator of the orig-
inal posterior over θ, up to normalization. Running pseudo-
marginal MCMC using this unbiased estimator would be a
special case of FlyMC: namely FlyMC with z and θ updated
simultaneously with Metropolis-Hastings updates.

4294

Acknowledgements
We thank Andrew Miller, Jasper Snoek, Michael Gelbart,
Brenton Partridge, Oren Rippel and Elaine Angelino for help-
ful discussions. We also thank Alan Aspuru-Guzik, Johannes
Hachmann, and Roberto Olivares-Amaya for the use of the
OPV data set and introduction to the cheminformatic feature
set. Partial funding was provided by Analog Devices (Lyric
Labs), NSF IIS-1421780, and Samsung Advanced Institute of
Technology.

References
Carlos Amador-Bedolla, Roberto R. Olivares-Amaya, Jo-

hannes Hachmann, and Alan Aspuru-Guzik. Organic pho-
tovoltaics. In K. Rajan, editor, Informatics for Materials
Science and Engineering, pages 423–440. Elsevier, Ams-
terdam, 2013.

Christophe Andrieu and Gareth O Roberts. The pseudo-
marginal approach for efficient Monte Carlo computations.
The Annals of Statistics, pages 697–725, 2009.

Elaine Angelino, Eddie Kohler, Amos Waterland, Margo
Seltzer, and Ryan P. Adams. Accelerating mcmc via paral-
lel predictive prefetching. In Proceedings of the 30th Con-
ference on Uncertainy in Artificial Intelligence, 2014.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards
scaling up Markov chain Monte Carlo : an adaptive sub-
sampling approach. In Proceedings of the 31st Interna-
tional Conference on Machine Learning, 2014.

Dankmar Böhning. Multinomial logistic regression algo-
rithm. Annals of the Institute of Statistical Mathematics,
44(1):197–200, 1992.

Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-
Evrenk, Carlos Amador-Bedolla, Roel S. Sanchez-Carrera,
Aryeh Gold-Parker, Leslie Vogt, Anna M. Brockway, and
Alan Aspuru-Guzik. The harvard clean energy project:
Large-scale computational screening and design of organic
photovoltaics on the world community grid. The Journal
of Physical Chemistry Letters, 2(17):2241–2251, 2011.

Johannes Hachmann, Roberto Olivares-Amaya, Adrian
Jinich, Anthony L. Appleton, Martin A. Blood-Forsythe,
Laszlo R. Seress, Carolina Roman-Salgado, Kai Trepte,
Sule Atahan-Evrenk, Suleyman Er, Supriya Shrestha, Ra-
jib Mondal, Anatoliy Sokolov, Zhenan Bao, and Alan
Aspuru-Guzik. Lead candidates for high-performance or-
ganic photovoltaics from high-throughput quantum chem-
istry - the harvard clean energy project. Energy Environ.
Sci., 7:698–704, 2014.

Matthew D. Hoffman, David M. Blei, and Francis Bach. On-
line learning for latent Dirichlet allocation. In Advances in
Neural Information Processing Systems 23, 2010.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John
Paisley. Stochastic variational inference. Journal of Ma-
chine Learning Research, 14(1):1303–1347, 2013.

Tommi S. Jaakkola and Michael I. Jordan. A variational ap-
proach to Bayesian logistic regression models and their ex-
tensions. In Workshop on Artificial Intelligence and Statis-
tics, 1997.

Anoop Korattikara, Yutian Chen, and Max Welling. Auster-
ity in MCMC Land: Cutting the Metropolis-Hastings Bud-
get. In Proceedings of the 31st International Conference
on Machine Learning, 2014.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, Department of Computer
Science, University of Toronto, 2009.

Kevin P. Murphy. Machine learning: a probabilistic perspec-
tive. MIT Press, Cambridge, MA, 2012.

Radford M. Neal. Slice sampling. The Annals of Statistics,
31(3):705–767, 06 2003.

Roberto Olivares-Amaya, Carlos Amador-Bedolla, Johannes
Hachmann, Sule Atahan-Evrenk, Roel S. Sanchez-Carrera,
Leslie Vogt, and Alan Aspuru-Guzik. Accelerated com-
putational discovery of high-performance materials for or-
ganic photovoltaics by means of cheminformatics. Energy
Environ. Sci., 4:4849–4861, 2011.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines.
CODA: Convergence diagnosis and output analysis for
MCMC. R News, 6(1):7–11, 2006.

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black
box variational inference. In Proceedings of the 17th Inter-
national Conference on Artificial Intelligence and Statis-
tics, 2014.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling
of discrete approximations to Langevin diffusions. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 60(1):255–268, 1998.

Gareth O Roberts and Richard L Tweedie. Exponential con-
vergence of Langevin distributions and their discrete ap-
proximations. Bernoulli, pages 341–363, 1996.

Gareth O. Roberts, Andrew Gelman, and Walter R. Gilks.
Weak convergence and optimal scaling of random walk
Metropolis algorithms. Annals of Applied Probability,
7:110–120, 1997.

Chong Wang and David M Blei. Variational inference in non-
conjugate models. The Journal of Machine Learning Re-
search, 14(1):1005–1031, 2013.

Max Welling and Yee Whye Teh. Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings of
the 28th International Conference on Machine Learning,
2011.

4295

