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Abstract

This paper presents two frameworks that gener-
alize Conditional Preference networks (CP-nets).
The first generalization is the LCP-theory, first or-
der logic theory that provides a rich framework to
express preferences. The the second generaliza-
tion, the PCP-networks, is a probabilistic general-
ization of CP-nets that models conditional prefer-
ences with uncertainty.

1 Introduction
Preferences have an important role in AI and are involved
in many situations of our life, therefore it is important to
study how to model and reason with them. The ability of
express preferences in an intuitive and compact way is essen-
tial, so many representations of preferences have been devel-
oped. We focus in particular on multi-attribute and structured
frameworks. CP-nets [Boutilier et al., 2004] are the main
graphical model that represents conditional and qualitative
preferences and there exists a lot of generalizations of this
framework: the main are GCP-nets [Goldsmith et al., 2008],
CP-theories [Wilson, 2004] and comparative conditional the-
ories [Wilson, 2009]. All these framework have a special syn-
tax and semantic, need ad hoc algorithms and also they don’t
support probabilistic information.

With the purpose to unify all the conditional preference
models, we provide a first generalization of CP-nets, that is, a
first order logic framework: Logical Conditional Preference
(LCP) theories. LCP-theories don’t use special syntax or se-
mantic, but they are based only on statements that are univer-
sally quantified first-order formulas. We provide an imple-
mentation of this new framework that have a computational
complexity comparable with the state of the art procedures.

The Probabilistic Conditional Preference networks (PCP-
nets) are the second generalization of CP-nets that we pro-
vide. This framework models conditional preferences with
probabilistic uncertainty, maintaining the dependency struc-
ture employed by CP-nets. Given a PCP-net, we study deeply
three reasoning tasks: aggregating a profile of agents (each
one described by a CP-net) into a PCP-net, finding the out-
come (a complete assignment to all the variables) that is most
preferred by the agents or deciding whether one outcome is

collectively preferred to another (a dominance query). Gener-
ally outcome optimization and dominance are performed di-
rectly and sequentially on the profile of CP-nets. We propose
instead to aggregate the collection of CP-nets into a single
structure, a PCP-net, on which we directly perform collective
reasoning tasks: we can store or communicate to the agents
a single, compact structure instead of a possibly large collec-
tion of CP-nets.

2 Logic formulation for Conditional
Preference

LCP rules are universally quantified first-order formulas
(∀c → o � o′) expressing preferences over outcomes o, o′
for c a set of constraints (conjunction of equality atoms) over
variables and constants.

Definition 1 Given two distinct sets of n variables X̄ =
X1, · · · , Xn and Ȳ = Y1, · · · , Yn with domains D1, · · · , Dn

and c a condition (formula) with free variables in X̄ , Ȳ , con-
sisting of a conjunction of equality formulas, a LCP-Rule is
of the form: ∀i∈{1,··· ,n}Xi, Yi : Di. c→ o � o′, where o and
o′ are outcomes on X̄ and Ȳ respectively.

Given a collection of LCP-rules C, the corresponding
LCP-theory L[C] has as axioms the formulas corresponding
to the rules, and the transitivity axiom.

LCP-Rules generate ground atomic formulas of the form
o1 · · · on � o′1 · · · o′n, each one is entailed for every choice
of values for Xi (oi) and Yi (o′i) that satisfies the condition
described in c. It is important to notice that, in LCP rules, we
directly represent an ordering on outcomes (o � o′) instead
of on single features.

We provide algorithms for optimizing and comparing out-
comes and for consistency checking. The computational
complexity is higher since we are managing a more general
model, but our results are comparable with the state of the art
procedures.

We observe that CP-nets and the corresponding general-
izations are special cases of LCP theories, but LCP theories
also express other interesting kinds of preferences. For ex-
ample, LCP theories can represent recursive preferences, that
are statements that specify preferences conditioned on other
preferences (e.g “If Alice prefers to go to the cinema then
Bob prefers cinema too”). LCP theories can also represents
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minimal and maximal description of preferences (e.g. “I pre-
fer everything rather than going to the cinema” or “I prefer to
go to the cinema rather then any other option”).

The powerful of the LCP formulation is to provide a for-
malization with no special syntax or semantics to represent
preferences (contra the others frameworks [Boutilier et al.,
2004; Wilson, 2004; 2009; Bienvenu et al., 2010]), general-
ization of the existing models, with a competitive computa-
tional complexity.

3 Probabilistic CP-nets (PCP-nets)
Definition 2 A PCP-net (Probabilistic CP-net) [Cornelio
et al., 2013] is a directed graph where each node represents
a variable (feature) {X1, . . . , Xn}, with finite domain. For
each feature Xi, there is a set of parent features Pa(Xi) that
can affect the preferences over the values of Xi. This defines
a dependency graph in which each node Xi has edges from
all features in Pa(Xi). Given this structural information, for
each feature Xi, instead of giving, for each complete assign-
ment on Pa(Xi), a total ordering over the domain of Xi (as
in CP-nets), we give a probability distribution over the set of
all the possible total orderings.

PCP-nets are a strict generalization of CP-nets: when we re-
strict the probability distributions of a PCP-net in {0, 1} we
obtain the definition of CP-net. Thus, a PCP-net defines a
probability distribution over a collection of CP-nets: the set
of induced CP-nets that are CP-nets that can be obtained from
the input PCP-net by choosing an ordering from each proba-
bility distribution over orderings.

Aggregation. We use PCP-nets in a multi-agent context to
compactly represent a collection of CP-nets: we use probabil-
ities to reconcile possibly conflicting preferences expressed
by a group of agents. Given a profile of CP-nets (set of CP-
nets on the same variables), there may not exists a PCP-net
that induces exactly the same distribution over the initial pro-
file of CP-nets. We define aggregation methods that work
even in this case: we introduce and evaluate two aggrega-
tion methods [Cornelio et al., 2015]: PR generates a PCP-net
setting the probabilities in PCP-tables by adding the relative
frequencies of the CP-nets in the profile with a particular con-
figuration; LS minimizes the mean squared error between the
probability distribution induced by the PCP-net over the in-
put CP-nets and their relative frequency. Both methods are
polynomial under certain conditions, but our theoretical and
experimental results suggest that PR is more accurate.

Optimality. Finding an optimal outcome corresponds to
find the outcome that best represents the preferences of the
agents. We consider two notions of optimality for outcomes:
the most probable optimal outcome: the outcome with the
highest probability of being optimal; the optimal outcome of
the most probable induced CP-net: the optimal outcome of
the induced deterministic CP-net with the highest probability.
Computing both of them takes polynomial time if the graph
of the PCP-net has bounded width. Our experimental and
theoretical results show that the optimal outcome of the most
probable induced CP-net is the most accurate.

Dominance. Given a PCP-net, dominance returns the
probability that one outcome is preferred to another. There

are many results that show that this problem is hard [Bigot
et al., 2013; Boutilier et al., 2004; Goldsmith et al., 2008],
thus we study algorithms to compute an approximation of this
value. We define an approximation interval for the dominance
value [Cornelio et al., 2015], that can be computed in poly-
nomial time. We observe that in the case of separable PCP-
nets, the lower bound of this interval corresponds to the real
value of dominance. This theoretical result suggests that the
lower bound could be a good approximation of the real value
of the dominance also for non-separable PCP-nets. The ex-
perimental evaluation confirms that the distance between the
lower bound to the true dominance probability is generally
very small.

4 Future work
There are many lines for future research: extend LCP-
theories allowing hard constraints or include probabilities
in LCP formulation allowing to manage uncertain scenarios
with a richer framework for Conditional Preference. Another
idea is to generalize CP-nets in a probabilistic framework us-
ing different probability theories: we generalized CP-theories
using the Dempster-Shafer theory and we used the results ob-
tained in [Moral and Wilson, 1994] to provide an efficient
method that approximates dominance probability.
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