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Abstract
Most logic-based machine learning algorithms rely
on an Occamist bias where textual simplicity of
hypotheses is optimised. This approach, how-
ever, fails to distinguish between the efficien-
cies of hypothesised programs, such as quick sort
(O(n log n)) and bubble sort (O(n2)). We address
this issue by considering techniques to minimise
both the resource complexity and textual complex-
ity of hypothesised programs. We describe an al-
gorithm proven to learn optimal resource complex-
ity robot strategies, and we propose future work to
generalise this approach to a broader class of logic
programs.

1 Introduction
In machine learning, the goal of a search procedure is to
find a hypothesis that is consistent with examples. If mul-
tiple hypotheses are consistent then Occam’s razor suggests
selecting the simplest one. Most logic-based machine learn-
ing algorithms rely on an Occamist bias to select hypothe-
ses which minimise textual complexity. This approach, how-
ever, fails to distinguish between the efficiencies of hypoth-
esised programs, such as quick sort (O(n log n)) and bub-
ble sort (O(n2)). Clearly, learning efficient logic programs
is valuable in many domains, such as program synthesis and
robotics.

We address this issue by considering techniques to min-
imise both the resource complexity and textual complexity of
hypothesised logic programs. Our main contribution, thus far,
is the introduction of a framework for minimising resource
complexity in robot strategy problems and the demonstration
of a learning algorithm proven to learn optimal resource com-
plexity robot strategies.

2 Related work
Logic-based machine learning literature has addressed effi-
ciently learning logic programs [Ahlgren and Yuen, 2013].
Likewise, in AI, planning literature has addressed develop-
ing efficient planners [Xing et al., 2006]. By contrast, we
want to learn efficient logic programs which are optimal with
respect to an objective function by which the quality of a

program is measured. A common objective function, based
on Occam’s razor, is the length of the hypothesis. In plan-
ning this is often the number of actions required to execute
a plan. However, if certain actions are costly, we may prefer
a hypothesis which minimises the overall cost of the actions.
Action costs have been used in answer set programming to
learn optimal plans [Eiter et al., 2003; Yang et al., 2014]. By
contrast, we want to learn recursive logic programs involv-
ing predicate invention. This includes learning robot strate-
gies where a strategy is a mapping from a set of initial situa-
tions to a set of goal situations. Some machine learning ap-
proaches support the construction of strategies [Laird, 2008;
Otero, 2005], including approaches which employ heuristic
policy optimisation [Sutton and Barto, 1998]. However, we
are unaware of any learning approach that provides a prov-
able convergent means for finding optimal strategies, nor of
any approach that generalises to a broad class of logic pro-
grams which we propose.

3 Completed work
Our approach is an extension of meta-interpretive learning
(MIL) [Muggleton et al., 2014; 2015], a form of induc-
tive logic programming based on an adapted Prolog meta-
interpreter. Whereas a standard Prolog meta-interpreter at-
tempts to prove a goal by repeatedly fetching first-order
clauses whose heads unify with a given goal, a MIL learner
attempts to prove a goal by repeatedly fetching higher-order
metarules (higher-order expressions which describe the forms
of clauses permitted, i.e. the declarative bias) whose heads
unify with a given goal. The resulting meta-substitutions are
saved in an abduction store and can be re-used in later proofs.
Following the proof of a set of goals, a hypothesis is formed
by projecting the meta-substitutions onto their correspond-
ing metarules, allowing for a form of inductive programming
which supports predicate invention and the learning of recur-
sive theories.

We have developed MetagolO, a variant of MetagolD
[Muggleton et al., 2015], an implementation of the MIL
framework which learns programs within the Datalog sub-
set H2

2 , where Hi
j consists of definite Datalog programs with

predicates of adicity at most i and at most j literals in the
body of each clause. The key difference between MetagolO
and MetagolD is the search procedure. MetagolD uses itera-
tive deepening to ensure that the first hypothesis returned con-
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tains the minimal number of clauses. By contrast, MetagolO
uses iterative descent to minimise both the resource complex-
ity and textual complexity of hypotheses. To explain this, we
first define resource complexity:

Definition 1 (Resource complexity) If E+ is a set of posi-
tive examples and H ∈ H is a hypothesis in the hypothesis
space, then the resource complexity of hypothesis H on ex-
ample set E+ is:

r(H,E+) =
∑

e∈E+

r(H(e))

where r(H(e)) is the sum of resource costs of the predi-
cates in applying the program H to example e.

To find the hypothesis with minimal resource complexity, we
employ a search procedure named iterative descent, which
works as follows: starting at iteration 1, we search for a
hypothesis H1 with the minimal number of clauses and we
do not enforce a maximum resource bound. Since the hy-
pothesis space is exponential in the length of the hypothesis
[Lin et al., 2014], the hypothesis H1 is the most tractable to
learn. The hypothesis H1 gives us an upper bound on the re-
source complexity from which to descend. At iteration i > 1,
we search for a hypothesis Hi with the minimal number of
clauses but we enforce a maximum resource bound set to
r(Hi−1, E

+) − 1. This ensures that any returned hypothesis
Hi has a lower resource complexity than any hypothesis Hj ,
where j < i. If a hypothesis Hi exists, the search continues at
i+1 until we converge on the optimal hypothesis. In [Cropper
and Muggleton, 2015], we prove convergence of this search
procedure and we describe experiments on two robot strategy
problems (a robot postman and a robot mail sorter) where the
efficiencies of learned programs are in agreement with the
theoretical optimal predictions.

4 Conclusions and future work
By focusing on robot strategies, we have made an initial at-
tempt at learning logic programs with optimal resource com-
plexity. We intend to generalise this approach to a broader
class of programs. For example, sorting algorithms provide a
classic domain for discovering optimal algorithms, where, for
instance, one may want to minimise the number of element
swaps in a strategy. Other potential domains include learning
proof tactics and learning game tactics. The ultimate goal is
to generalise our approach to learn general logic programs,
including normal logic programs.

The approach taken in this paper can be generalised in sev-
eral ways. For example, the use of dyadic datalog programs
could be generalised by using a richer set of metarules. For
the immediate future, however, we intend to remain in the H2

2
fragment, known to be Turing expressive [Muggleton et al.,
2015], which allows us to represent problems as robot strate-
gies. For example, sorting algorithms can clearly be solved
with a single-tape Turing machine. We can, therefore, rep-
resent this task as a robot strategy problem, where a robot
manipulates symbols on a strip of tape. This strategy can
be optimised, for instance, by minimising the number of ma-
nipulations required. Having learned optimal solutions for a

single-tape Turing, we can then generalise to multi-tape Tur-
ing machines.

To summarise, we believe that the ideas proposed in this
paper open exciting avenues in a variety of AI domains for
understanding the value of machine learning efficient logic
programs.
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