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1 Introduction

In decision-theoretic planning problems, such as (partially
observable) Markov decision problems [Wiering and Van Ot-
terlo, 2012] or coordination graphs [Guestrin et al., 2002],
agents typically aim to optimize a scalar value function.
However, in many real-world problems agents are faced with
multiple possibly conflicting objectives, e.g., maximizing the
economic benefits of timber harvesting while minimizing
ecological damage in a forest management scenario [Bone
and Dragicevic, 2009]. In such multi-objective problems, the
value is a vector rather than a scalar [Roijers et al., 2013al.

Even when there are multiple objectives, it might not be
necessary to have specialized multi-objective methods. When
the problem can be scalarized, i.e., converted to a single-
objective problem before planning, existing single-objective
methods may apply. Unfortunately, such a priori scalariza-
tion is not possible when the scalarization weights, i.e., the
parameters of the scalarization, are not known in advance.
For example, consider a company that mines different met-
als whose market prices vary. If there is not enough time to
re-solve the decision problem for each price change, we need
specialized multi-objective methods that compute a coverage
set, i.e., a set of solutions optimal for all scalarizations. What
constitutes a coverage set depends on the type scalarization.

Much existing research assumes the Pareto coverage set
(PCS), or Pareto front, as the optimal solution set. However,
we argue that this is not always the best choice. In the highly
prevalent case when the objectives will be linearly weighted,
the convex coverage set (CCS) suffices. Because CCSs are
typically much smaller, and have exploitable mathematical
properties, CCSs are often much cheaper to compute than
PCSs. Futhermore, when policies can be stochastic, all op-
timal value-vectors can be attained by mixing policies from
the CCS [Vamplew et al., 2009]. Thefore, this project focuses
on finding planning methods that compute the CCS.

2  Computing the CCS

A CCS is a set of policies that is optimal for each possible
weight vector w of a linear scalarization function, i.e., when
the set of all possible policies is I, the CCS is a subset of II
such that Vw max,cy w - VT =max cocog W - V™', where
V7™ denotes the multi-objective value of a policy 7. The CCS
is a sufficient set to identify the so-called scalarized value

function, i.e., the function that gives the maximal scalarized
value for each w: V*(w) = max,cccsw - V™. V*(w) is
a piecewise-linear and convex (PWLC) function in the scalar-
ization weights. Finding V*(w), and thus the CCS, is solving
the multi-objective decision problem.

In this research we distinguish two approaches to comput-
ing the CCS. In the inner loop approach we solve a multi-
objective decision problem as a series of simpler/smaller
multi-objective problems. In the outer loop approach we
solve a multi-objective decision problem as a series of single-
objective problems. Specifically, we propose an outer loop
scheme called optimistic linear support (OLS), that calls a
single-objective solver as a subroutine to solve a finite series
of scalarized problem instances to produce the CCS.

While inner loop methods are typically faster for large
numbers of objectives, OLS typically scales better in the size
of the problem (e.g., the number of agents in a multi-objective
coordination graph) and can use any single-objective solver
as a subroutine. An important advantage of this is that an
improvement to the single-objective state-of-the-art directly
applies to the multi-objective case.

3 Optimistic Linear Support

Our outer loop method is called optimistic linear support
(OLS) [Roijers et al., 2014b]. OLS finds the CCS by solv-
ing a series of scalarized problems. For each scalarized prob-
lem, OLS calls a single-objective solver to find the optimal
policy. OLS retrieves the multi-objective value of this policy
and adds it to a partial CCS. Such a partial CCS induces an
approximation to V*(w) which is also a PWLC function.

OLS uses a priority queue to make smart choices about
which scalarized problem instances to solve. In particular,
OLS selects so-called corner weights that lie at the intersec-
tions of line segments of the approximate scalarized value
function resulting from a partial CCS. The priority of each
corner weight is the maximal possible improvement that can
result from finding a new multi-objective value-vector for this
w, which can be calculated using a linear program.

Due to a theorem by Cheng [Cheng, 1988] we know that
highest maximal possible improvement is at one of the corner
weights. Therefore, if we have checked all corner weights
and have not found an improvement, we can stop. When the
single-objective solver that OLS calls is exact, OLS is guar-
anteed to find the exact CCS within a finite number of calls to
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this single-objective solver. When the single-objective solver
is e-approximate, OLS finds an e-CCS [Roijers et al., 2014a].

When there is not enough time to let OLS converge, the
approximate CCS can be used as a bounded approximation to
the full CCS. Le., the maximal possible improvement of the
corner weight that is the head of the priority queue is a bound
on the quality of the approximate CCS.

OLS is typically faster than inner loop methods for prob-
lems with small numbers of objectives. For two and three
objective problems, the number of times OLS needs to call
the single-objective solver is linear in the size of the CCS.
Because many real-world problems have only a small num-
ber of objectives, OLS is often preferable.

4 Multi-Objective Decision Problems

We investigated different multi-objective decision problems.
In particular, multi-objective coordination graphs (MO-
CoGs), (multi-agent) multi-objective Markov decision pro-
cesses (MOMDPs), and multi-objective partially observable
Markov decision processes (MOPOMDPs).

In MO-CoGs, a team of agents needs to perform a single
joint action to optimize the team value. For this problem we
created an inner loop method called convex multi-objective
variable elimination (CMOVE) [Roijers et al., 2013b]. This
method follows the same scheme as single-objective vari-
able elimination (VE), i.e., it solves a series of local sub-
problems that follows from eliminating agents from the co-
ordination graph. However, rather than a single optimal lo-
cal action, CMOVE computes a local CCS for each local
subproblem. We compared this to our outer loop method,
called variable elimination linear support (VELS) [Roijers et
al., 2014b], which combines OLS and VE. Futhermore, we
also created memory-efficient inner and outer loop methods
based on AND/OR tree search [Roijers et al., 2015b]. The ex-
periments on MO-CoGs indicate that the inner loop method,
CMOVE, scales better in the number of objectives, while
the outer loop method, VELS, scales better in the number of
agents and can compute an e-CCS, leading to large additional
speedups. Furthermore, VELS is more memory-efficient than
CMOVE. In fact, VELS uses little more memory than VE.
When memory is very restricted and VELS cannot be applied,
the memory-efficient outer loop method provides an alterna-
tive. Although it is considerably slower than VELS, some of
this loss can be compensated by allowing some error (¢).

In MOMDPs, we combined OLS with the exact single-
objective solver SPUDD and the approximate single-
objective solver UCT* and tested it on a complex planning
problem with a very high number of states called the main-
tenance planning problem [Roijers et al., 2014al. We show
experimentally that good approximations to the CCS can be
found, even when we allow relatively little time for UCT*.

In MOPOMDPs [Roijers et al., 2015al, we improve upon
OLS by reusing policies and values found for earlier scalar-
ized problem instances in calls to the single-objective solver
later in the sequence, drastically improving computation time.

In future research, we will try to develop efficient multi-
objective planning algorithms for multi-agent sequential set-
tings. We aim to find an e-approximate CCS planning method

for fully obserable multi-agent MDPs. In order to achieve
this, we would first need to find an e-approximate single ob-
jective planning method that exploits sparse interactions be-
tween agents in multi-agent MDPs. Then, we can extend this
to the multi-objective case using both the inner and the outer
loop approach, and compare the resulting methods.

Next to fully observable settings, we aim to find multi-
objective planning methods for decentralized problems such
as Dec-POMDPs. In these problems, agents receive only lo-
cal observations about the state, making it harder to coordi-
nate. For decentralized problems we aim to exploit recent in-
sights that enable the use of POMDP methods in this setting
[Oliehoek and Amato, 2014].
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